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To expand the framework available for interpreting experiments on disordered strongly correlated systems,
and in particular to explore further the strong-coupling zero-bias anomaly found in the Anderson-Hubbard
model, we ask how this anomaly responds to the addition of nonlocal electron-electron interactions. We use
exact diagonalization to calculate the single-particle density of states of the extended Anderson-Hubbard model.
We find that for weak nonlocal interactions the form of the zero-bias anomaly is qualitatively unchanged. The
energy scale of the anomaly continues to be set by an effective hopping amplitude renormalized by the nonlocal
interaction. At larger values of the nonlocal interaction strength, however, hopping ceases to be a relevant energy
scale and higher energy features associated with charge correlations dominate the density of states.
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I. INTRODUCTION

As the simplest model which incorporates strong correla-
tions, the Hubbard model is widely used as a starting point
for exploring the diverse behaviors of transition metal oxides.
Understanding the effect of disorder in these systems is of
interest given the importance of chemical doping in tuning
their properties. In fact, nanoscale electronic disorder has been
observed and explicitly correlated with the locations of dopant
atoms in some materials.1 Disorder can be incorporated into
the Hubbard model, and the most widely studied version is
the Anderson-Hubbard model (AHM), which is defined below.
The combination of local interactions and disorder in the AHM
has been shown to result in a suppression of the density of
states (DOS) at the Fermi level, a feature known as a zero-bias
anomaly (ZBA). The ZBA in the AHM has a number of
unique features: The DOS suppression occurs in the absence
of nonlocal interactions, in contrast with other, well-known
examples including both the Efros-Shklovskii Coulomb gap2

and the Altshuler-Aronov anomaly.3 Moreover, the energy
scale in the AHM ZBA is proportional to the hopping
amplitude t and independent of both the local interaction U and
the disorder strength � within a broad range of phase space.

The strong-coupling ZBA appears to arise from kinetic
energy savings, rather than from a reduction of the Coulomb
energy.4 In the absence of hopping, electronic states are
confined to individual atomic sites. With nonzero t , these
states can extend over nearby sites, lowering the electronic
kinetic energy. In the large U limit, however, this spreading
of electronic wave functions is strongly inhibited by the
local Coulomb interaction. Nonetheless, if the disorder is
sufficiently strong, there will be atomic sites for which the
energy of double occupancy is nearly degenerate with the
energy to form a singlet with one of its neighbors. For these
special configurations, the local Coulomb interaction does
not inhibit electronic motion between the two atoms, and the
energy of the system is reduced by an amount of order t relative
to the atomic case.4,5 This leads directly to the suppression of

spectral weight at the Fermi energy over an energy scale t .
This mechanism is unique to strongly correlated systems.

Given the presence of nonlocal interactions in real ma-
terials, as well as their importance in theories of ZBAs in
other models, it is natural to ask how nonlocal interactions
influence the kinetic-energy-driven ZBA in the AHM. This
formal question bears on a number of classes of materials.

(1) Most directly this work relates to doped transition
metal oxides. DOS measurements6,7 in SrRu1−xTixO3 and
LaNi1−xMnxO3 show deviations from the standard pictures
of Efros-Shklovskii2 and Altshuler-Aronov,3 and it is an open
question whether this is because of strong correlation physics.
In addition, early work on the ZBA in the AHM suggested that
disorder may contribute to the stability of the pseudogap in
high-temperature superconductors.8

(2) A second class of materials to which this work may
be relevant are dilute doped semiconductors and granular
metals. Generally described using atomic-limit models, these
systems display Coulomb gap behavior. Open questions
include whether there is an association between the Coulomb
gap and glassy behavior9–11 and how electron mobility (and
hence screening) influences the observed behaviors.11,12

(3) A third class of materials are two-dimensional electron
gas systems, such as thin metal films and metal-oxide-
semiconductor field-effect transistors. Whereas (noninteract-
ing) localization theory concludes that there should be no
metal-insulator transition in two dimensions, experiments
on these systems suggest otherwise.13 Recently it has been
proposed that the insulating behavior in these films is in
fact due not to disorder but to interactions.14 To support this
proposal, the extended Hubbard model was explored, but only
in the clean limit. Even if interactions drive the insulating
behavior, the systems remain disordered.

(4) Finally, organic conductors are another class of materials
in which strong correlations can be important. Very recently it
has been shown that disorder can be introduced into organic
conductors by x-ray irradiation, resulting in novel behaviors
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FIG. 1. (Color online) Symmetrized DOS versus frequency at half
filling (n = 1) for t = 1, � = 12, U = 8, and V values as indicated.
Throughout this work, results are for 12-site lattices averaged over
1000 disorder configurations. The left inset shows the geometry of the
Betts clusters studied.17 The right inset indicates the location of each
parameter set on the phase diagram of the clean extended Hubbard
model.

and expanded opportunities for exploring interactions and
disorder.15,16

To expand the theoretical framework available for inter-
preting these diverse materials, we explore the DOS of the
extended Anderson-Hubbard model (EAHM) on a number
of trajectories in the available phase space, all in the strong
disorder limit. Figure 1 summarizes our main result, namely,
the presence of a crossover in the form of the DOS as a function
of interaction strength. When the nonlocal interactions are
weak, electron mobility plays a key role, generating in
particular the narrow kinetic-energy-driven ZBA seen earlier
in the AHM.4,8 In the half-filled case shown in Fig. 1, when
nonlocal interactions are strong, atomic-limit physics domi-
nates the DOS: A broad suppression around the Fermi level
is associated with charge correlations driven by the nearest-
neighbor repulsion. Doping away from half filling reduces the
impact of interactions and hence attenuates this effect.

Section II describes our approach while our results are
presented and discussed in Sec. III.

II. METHOD

The EAHM includes the hopping t and on-site Coulomb
repulsion U of the traditional Hubbard model as well as two
additional terms, a nearest-neighbor Coulomb repulsion V and
disordered site potentials εi :

H = −t
∑

〈i,j〉,σ
ĉ
†
iσ ĉjσ +

∑
i

Un̂i↑n̂i↓

+
∑
〈i,j〉

V

2
n̂i n̂j +

∑
i,σ

εi n̂iσ . (1)

We consider a two-dimensional square lattice. ĉ
†
iσ is the

creation operator for lattice site i and spin σ . n̂iσ = ĉ
†
iσ ĉiσ .

〈i,j 〉 refers to nearest-neighbor pairs. The site potentials εi

are chosen from a flat distribution of width �: P (εi) =
�(�/2 − |εi |)/�, where � is the Heaviside function. We
focus on the limit of strong disorder: All results shown are
for � = 12 in units of the hopping t .

The Lanczos method is used to calculate the DOS of 12-site
clusters. The geometry chosen is the Betts cluster17 shown in
the left inset of Fig. 1. Periodic boundary conditions are used.

The Lanczos method18 denotes a collection of iterative
procedures all founded on the idea that a matrix Q can be

found such that Q† H Q = T , where T is a tridiagonal matrix.

Computational savings come from the fact that the number of
columns n in Q may be less than the number of rows such that

T is smaller than H . The extremal eigenvalues of T converge
quickly to those of H as a function of increasing n. Finding the
DOS using the Lanczos method proceeds in two steps. First,
restarted Lanczos is used to find the ground state |�0〉 and
energy E0. Second, block recursion19 is used to calculate the
Green’s function.

The local DOS at site i of a particular disorder configuration
c is given by

ρci(ω) = − 1

π
Im Gc

ii(ω), (2)

where

Gc
ii(ω) = 〈

ψc
0

∣∣ĉi

[
ω + Ec

0 − Ĥ + iη
]−1

ĉ
†
i

∣∣ψc
0

〉
+ 〈

ψc
0

∣∣ĉ†i [ω − Ec
0 + Ĥ + iη

]−1
ĉi

∣∣ψc
0

〉
(3)

is the ith diagonal element of the real-space Green’s function.
Here |ψc

o 〉 and Ec
0 are the ground state wave function and the

ground state energy of disorder configuration c. The DOS of
a single disorder configuration is

ρc(ω) = 1

Ns

Ns∑
i=1

ρci(ω), (4)

where Ns = 12 is the number of sites in the lattice. We present
DOS results averaged over many disorder configurations:

ρ(ω) = 1

Nconfig

Nconfig∑
c=1

ρc(ω). (5)

The number of disorder configurations Nconfig = 1000 for all
results presented here. At half filling, particle-hole symmetry
is expected, and we take advantage of this to further smooth
our results by averaging positive and negative frequencies.

Because we study systems with very strong disorder, the
mean free path is of the order of the lattice spacing, and hence
the disorder averaged DOS can be expected to be representative
of the DOS in the thermodynamic limit. Comparison of
Lanczos results on a 10-site cluster with determinant quantum
Monte Carlo results on a 64-site system by Chiesa et al.8

support this.

III. RESULTS AND DISCUSSION

To explore how nonlocal interactions affect the ZBA in the
AHM, we present here DOS results first for the case of half
filling, followed by lower dopings.
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A. Half filling

1. Review of the V = 0 case

Before proceeding to the new results, let us review what
is known about the V = 0 case. The highest curve in Fig. 1
shows the ZBA found in the AHM, which was explored by
Chiesa et al.8 For sufficiently strong disorder, the width of this
ZBA is independent of disorder strength, interaction strength,
and doping. The one parameter which controls the width is the
hopping t , on which the width depends linearly. The existence
of a ZBA in the absence of nonlocal interactions is novel. The
two standard frameworks for discussing ZBAs were developed
by Efros and Shklovskii2 and by Altshuler and Aronov.3

Efros and Shklovskii2 addressed a system with 1/r Coulomb
interactions and disordered site potentials in the atomic limit.
They argued that the DOS at an energy ε is proportional to
|ε − εF |d−1, where εF is the Fermi level and d is the dimension.
The zero DOS at the Fermi level is known as a soft gap
or more specifically as the Coulomb gap, and its existence
depends on the infinite range of the Coulomb interaction.
Altshuler and Aronov3 considered the limit of weak disorder
and weak interactions and used diagrammatic perturbation
theory to show that in this limit a cusp appears in the DOS
near the Fermi level. The result is not especially sensitive to the
form of the interaction. However, for purely local interactions
the correction to the DOS is positive; DOS suppression only
occurs when nonlocal interactions are present. In both the
Altshuler-Aronov3 and Efros-Shklovskii2 pictures nonlocal
interactions are key to the suppression of the DOS at the Fermi
level, yet in the AHM there is a ZBA. Moreover, although a
dependence on the effective nonlocal interaction J ∝ t2/U

might be expected, here the dominant energy scale is t

alone.
To understand this linear dependence on t , it is useful to

start from the atomic limit and then consider what happens
as hopping is turned on.4,5,20,21 In the atomic limit, each site
contributes to the DOS at, at most, two energies: the site
potential εi , and εi + U . It is convenient to refer to these
as the lower Hubbard orbital and the upper Hubbard orbital.
When the site is singly occupied, it contributes to the DOS
at both energies because a particle may be either added or
removed. When the site is empty (doubly occupied) only
the addition (removal) of a particle is possible and hence
the DOS contribution is only at εi (εi + U ). In the ground
state, sites with potentials εi > μ are empty, those for which
μ > εi > μ − U are singly occupied, and those for which
μ − U > εi are doubly occupied. Putting these together, the
atomic-limit DOS corresponding to any combination of �,
U , and μ may be constructed. The case of � = 12, U = 8,
and μ = 4 (half filling) is shown in Fig. 2(a). The numbers
in each block indicate the ground state occupancy of the
sites which contributed. An important point for our purposes
is that there is no ZBA at zero temperature in the atomic
limit. Nonzero temperature does suppress the DOS even in
the atomic limit,20 but we restrict ourselves here to zero
temperature.

We now ask how hopping affects the DOS. To address this it
is convenient to consider the simple case of a two-site system.
Consider in particular the configuration shown in Fig. 2(b):
ε1 + U is just below the chemical potential, and ε2 is just above
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FIG. 2. (Color online) DOS versus frequency at half filling (n =
1) for � = 12 and U = 8. (a) Analytic result for V = 0 and t = 0 with
the occupancies of contributing sites indicated. (b) Diagram showing
an arrangement of atomic orbitals for which the introduction of
hopping moves DOS weight away from the Fermi level. (c) Numerical
results for V = 0 and t values as indicated. (d) Numerical results for
V = 1.6 and t values as indicated.

it. In the atomic limit, the first site will be doubly occupied and
the second empty, corresponding to the Fock state |20〉 and to
a grand potential E − μN near zero. However, when hopping
is allowed, the new ground state will be a linear combination
of the singlet states (|↑↓〉 − |↓↑〉)/√2 and |20〉. The grand
potential of this ground state is lower than the atomic one by
t , because the probability amplitude for finding an electron is
now spread over both sites, lowering the kinetic energy of the
many-body state. To linear order in t , there is no corresponding
shift in the one-particle and three-particle excited states. The
energy of transitions is therefore increased, corresponding to
a shift of the poles in the Green’s function away from the
Fermi level. If we consider an ensemble of such two-site
systems, the result is the opening of a ZBA in the DOS of
width t .4,5

While larger lattices present many additional
complications,21 this simple two-site picture demonstrates
how kinetic-energy savings can lead to a ZBA of width t . It
is worth emphasizing that this behavior is unique to strongly
correlated systems because it relies on there being a large
difference in energy between the atomic lower and upper
Hubbard orbitals at each site. For this reason, the effect is not
captured by mean-field treatments. Finally, we note that the
effect requires double occupancy on some nonzero fraction of
sites. Figure 2(a) shows that, in the atomic limit when both
empty and doubly occupied sites are present, the Fermi level
falls somewhere within the high central-plateau. When the
chemical potential is lowered such that no sites are doubly
occupied, the Fermi level instead sits at the left edge of this
central plateau. When hopping is nonzero but still much less
than U and �, this feature of the central plateau in the DOS
persists, and the position of the Fermi level relative to this
central plateau continues to be indicative of the level of double
occupancy. Because of the importance of double occupancy
in the formation of the ZBA, the linear t dependence of the
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ZBA is only expected when the Fermi level falls within this
central plateau.4

2. Evolution of the DOS with V

Having reviewed the V = 0 case, we return to Fig. 1.
The remaining curves demonstrate the evolution of the DOS
as a function of the nearest-neighbor interaction strength V .
Qualitatively, the lower V curves resemble the V = 0 curve
and are distinct from those at higher V values. For V = 0.8 and
V = 1.6 the most obvious changes are in the height and width
of the central peak, while the form of the ZBA is relatively
consistent. For V = 2.4 and V = 3.2, however, there is a
strong shift of spectral weight away from the Fermi level,
such that the DOS is largest near the band edges. Moreover,
the ZBA loses its sharp form and opens into a hard gap. The
sections below provide a more detailed discussion first of the
distinct physics present when V �= 0 and then of the small V

behavior and finally of the large V behavior.

3. Comparing V = 0 with V �= 0

A striking feature of Fig. 1, as noted above, is the similarity
in the shape of the ZBAs seen at V = 0.8 and 1.6 with that at
V = 0. Figure 2 emphasizes an important distinction between
the case of V = 0 and that of V �= 0.

For the case V = 0, Fig. 2(c) shows the DOS with and
without hopping. The t = 0 curve shows the wedding-cake
structure predicted in Fig. 2(a), with no ZBA. When t is turned
on, a ZBA emerges with a width linear in t as described above.

In contrast, when V �= 0, Fig. 2(d) shows that there is a
ZBA even in the atomic limit. This rounded anomaly at t = 0
is a manifestation of the same atomic limit physics found
in the Efros-Shklovskii2 Coulomb gap, but for a short-range
interaction. The DOS is not suppressed to zero here because
the interaction range is finite.

When hopping is turned on, the shape of the ZBA changes
abruptly. Note that the t = 0.5 curve coincides with the t = 1
curve at low energies and with the t = 0 curve at higher
energies. This suggests that the reshaping of the ZBA by
hopping begins at the Fermi level and spreads outward in
energy as t is increased. The atomic limit (t = 0) is classical
in the sense that only integer occupancy is allowed. It appears
that the quantum effects introduced by hopping have their first
effect on the DOS at the Fermi level, while classical behavior
persists at higher energies.

In summary, Fig. 2 emphasizes the sharp distinction in the
atomic limit between having nonlocal interaction and having
only local interaction. The addition of hopping generates a new
ZBA which is qualitatively similar with and without nonlocal
interactions.

4. Small V

We now turn to a more quantitative comparison of the three
qualitatively similar curves: V = 0, 0.8, and 1.6. Figure 3(a)
shows the three curves vertically shifted to coincide at the
Fermi level. Here we see that the ZBA is becoming broader
as V is increased. For these small V values, a mean-field
treatment of the nonlocal interaction provides some insight.
A mean-field treatment of the nearest-neighbor interaction
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FIG. 3. (Color online) Symmetrized DOS versus frequency at half
filling (a) and at quarter filling (c) shifted to coincide at the Fermi
level. t = 1, � = 12, U = 8, and V values as indicated. Panels (b)
and (d) show the same data plotted versus frequency in units of the
mean-field rescaled hopping t̃ .

results in the following expression:

V

2

∑
〈ij〉

n̂i n̂j ≈V
∑
〈ij〉

[
nj n̂i−

∑
σ

fji ĉ
†
iσ ĉjσ −ninj

2
+ fijfji

]
,

(6)

where ni ≡ ∑
σ 〈ĉ†iσ ĉiσ 〉 and fjiσ ≡ 〈ĉ†jσ ĉiσ 〉 with 〈· · ·〉 denot-

ing the expectation value with respect to the ground state. The
last two terms are constants which simply shift the zero of
energy. The first term in this expression renormalizes the site
energies εi consistent with the idea that interactions screen
the disorder potential. However, when V is very small relative
to the disorder potential and U is large such that the charge
density is very uniform, this term will have very little effect.
Our focus here is on the second term which results in a
renormalized hopping integral:

t → t̃ = t + Vfji,

where i and j are nearest-neighbor sites. This is consistent
with the gradual increase in the width of the anomaly as V is
increased.

More precisely, Fig. 3(b) shows the V = 0, 0.8, and 1.6
curves with the frequency axis in units of t̃ . Under this
rescaling, the V = 0.8 curve coincides very closely with
the V = 0 curve in the frequency range of the ZBA. The
V = 1.6 curve also matches but only at very low energies.
That this mean-field approach works less well at V = 1.6 than
at V = 0.8 is due in part to the other changes V causes in
the system as discussed further in the next section. However,
another issue here is that in calculating t̃ for this figure we
used fij averaged over all bonds in the lattice. With more
computational effort, a value for t̃ more specifically associated
with the sites which contribute to the DOS near ω = 0 could
be constructed. We expect fij to be larger on bonds between
sites with orbital configurations as in Fig. 2(b), and hence we
expect that this improved mean-field treatment would create a
stronger rescaling resulting in a better match at V = 1.6.
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5. Large V

Interaction strength generally falls off with distance, mak-
ing V values near U unphysical. However, well before this
cutoff, qualitatively distinct behavior arises: The V = 2.4 and
3.2 curves in Fig. 1 are very different from those at lower V

values. There is a strong shift of spectral weight well away
from the Fermi level such that the DOS is largest near the
band edges.

A useful point of reference is the clean extended Hubbard
model. In two dimensions, this model has a first-order phase
transition between charge density wave (CDW) order for U <

4V and spin density wave (SDW) order for U > 4V .22 The
right-hand inset in Fig. 1 shows this clean phase diagram with
the locations corresponding to the DOS curves marked.

How does disorder affect this phase diagram? Quenched
disorder influences first-order phase transitions in a wide
variety of ways depending on the details of the model.23

One possibility is that the phase boundary may be moved.
However, in our case the boundary is between two ordered
phases, neither of which is enhanced by the disorder. Indeed,
the fact that the abrupt change in the shape of our DOS occurs
between V = 1.6 and V = 2.4 suggests that U = 4V remains
significant. The bigger issue is whether regions of order remain
on either side of this line.

On the U = 0 axis, a connection may be made with the well-
studied random-field Ising model (RFIM). The atomic limit of
the EAHM at U = 0 is H = ∑

i εini + V
2

∑
〈i,j〉 ninj . Using

ni = Si + 1, this becomes H = ∑
i εiSi + V

2

∑
〈i,j〉 SiSj +

constants (for fixed particle number). When U = 0, site
occupancies ni are restricted to 0 and 2 at zero temperature.
Therefore, this is precisely the RFIM with εi playing the
role of the local field and V/2 the spin interaction favoring
antiferromagnetic (AFM) order. In two dimensions, the RFIM
is always disordered.24 Although a more rigorous proof
has been developed,25 this is most easily illustrated by the
following surface-to-volume argument.24 Imagine the system
begins with perfect AFM order, and then consider flipping all
the spins in a domain of size Ld where d is the dimension.
Such a flip will raise the energy associated with the interaction
term by an amount proportional to the length of the boundary:
Ld−1. This flip will also change the energy associated with
the random field. By the central-limit theorem, this change in
field energy has an average value of zero and root mean square
value proportional to Ld/2. When the field energy savings are
less than the interaction energy cost (Ld/2 < Ld−1) the system
remains ordered. However, for d � 2, domain formation is
favored, and the system is disordered for any nonzero disorder
strength. Smaller ratios of disorder strength to interaction
strength correspond to larger characteristic domain sizes.

Returning to the EAHM, the correspondence with the
RFIM shows that in the atomic limit and with U = 0 the
EAHM will have no CDW order for any nonzero disorder
strength. Moreover, hopping and on-site interactions both
lower the energy cost of the boundaries. Hopping makes
the site occupancies continuous variables which can vary
smoothly across domain walls. Onsite interaction promotes
single occupancy, and single occupancy corresponds in the
RFIM to sites with zero spin. Placed on a boundary, such sites
lower the interaction-energy cost of the boundary. We therefore

do not expect true long-range CDW order in our disordered
system.

Nonetheless, there is a crossover in the vicinity of U = 4V ,
where there is a phase transition in the clean system. For 4V <

U (V = 0, 0.8, and 1.6 in Fig. 1), on-site repulsion remains
the dominant interaction, and the kinetic-energy-driven ZBA
found when V = 0 persists. When 4V > U (V = 2.4 and 3.2
in Fig. 1), the nonlocal interaction dominates and the DOS
appears to be dominated by atomic-limit physics.

The case of V = 3.2 is particularly simple to understand
from an atomic-limit perspective: The DOS has a lower band
and an upper band separated by a hard gap. The location,
width, and shape of these bands are all consistent with the
electrons forming a checkerboard pattern of alternating empty
and doubly occupied sites. The lower band corresponds to
the removal of particles from doubly occupied sites. The
nearest neighbors of doubly occupied sites are all empty;
so the DOS contribution of a single site with potential εi is
εi + U − μ, with no dependence on V . The site potentials εi

are distributed between −�/2 and +�/2, creating a band
in the DOS of width � centered on U − μ. The upper band
corresponds to the the addition of particles to empty sites.
For an empty site there is no on-site energy cost to adding
a particle, but the nearest neighbors of empty sites are all
doubly occupied. In this case, the DOS contribution of a
single site with potential εi is εi + 8V − μ. Again, there is
a distribution of site potentials, resulting in a band of width �

centered on 8V − μ. In both cases the DOS slants downward
toward the Fermi level. This is because the ground state for a
specific disorder configuration in a finite-size system will tend
to have sites of especially low potential be doubly occupied
and sites of especially high potential be empty. This means
that the lower band (coming from doubly occupied sites)
will have somewhat more contributions from sites with low
potentials and somewhat fewer contributions from sites with
high potentials. Note that this picture suggests that, although
true CDW order is not expected, for these parameter values
the size of the checkerboard domains is larger than our system
size.

In this atomic-limit picture, for V = 2.4 the separation
between the centers of the two bands 8V − U is 11.2, slightly
less than the disorder strength. The two bands have therefore
run together, but their slant downward toward the Fermi level
is still apparent.

6. Spin and charge correlations

To further highlight the crossover between V � 1.6 and
V � 2.4, the spin and charge correlations are shown in
Figs. 4(a) and 4(c). For comparison, the spin correlations
for a perfect singly occupied antiferromagnetic system are
+3/4, −1/4, and +1/4 for on-site, nearest-neighbor, and
next-nearest-neighbor, respectively. The corresponding charge
correlations are 1 for all separations. Meanwhile, the spin
correlations for a checkerboard charge density wave with
alternating doubly occupied and empty sites are all 0, and
the charge correlations are 2, 0, and 2 for on-site, nearest-
neighbor, and next-nearest-neighbor, respectively. Essentially
these results are consistent with a crossover from a primarily
singly occupied and antiferromagnetically correlated state at
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FIG. 4. (Color online) Spin-spin correlation functions as a func-
tion of V (a) at half filling and (b) at quarter filling. Density-density
correlation functions as a function of V (c) at half filling and (d) at
quarter filling. t = 1, � = 12, and U = 8.

V = 0 to a state with strong charge-density correlations at
large V . Note that the inflection point in these curves is at
U ∼ 4V . The simultaneous washing out of the narrow, kinetic-
energy-driven anomaly and the suppression of nonlocal spin
correlations are consistent with the close association between
these as highlighted in Ref. 21.

7. U dependence at nonzero V

Figure 5 shows a series of DOS results at fixed V and
increasing U . The corresponding points on the phase diagram
are indicated in the inset. Here again we see a crossover from
behavior consistent with the atomic limit when U < 4V to
features uniquely associated with the presence of hopping
when U > 4V .

For the two lowest U values there is a very broad
suppression of the DOS centered at the Fermi level. This
is consistent with the picture discussed above of domains
of checkerboard CDW order. Again, the doubly occupied
sites in these domains contribute to a plateau in the DOS
of width � centered at U − μ, while the singly occupied sites
generate a corresponding plateau centered at 8V − μ. Both
plateaus slant downward toward the Fermi level due to the
tendency for high-potential sites to be empty and low-potential
sites to be full in the ground state. In the case of U = 0,
perfect charge ordering would result in a very narrow gap,
8V − U − � = 0.8. The presence of domain boundaries in a
small number of disorder configurations would fill this in. As
U is increased, the gap 8V − U − � closes and in addition the
energy cost of domain boundaries is lowered. For both these
reasons, the ZBA is weakened.

For U = 4 and 6, the energy range of the DOS suppression
is sharply reduced. This reduction in the width of the ZBA
is not associated with hopping t , as it occurs in the atomic
limit.26 An example is seen in Fig. 2(d): The curve in Fig. 2(d)
shows a ZBA which has roughly the same width as those in
the U = 4 and U = 6 panels of Fig. 5.
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FIG. 5. (Color online) Evolution of the DOS with U at half filling
for t = 1, � = 12, and V = 1.6. The inset shows the location of each
parameter set in the clean phase diagram.

At U = 8, the on-site interaction is greater than 4V and
the kinetic-energy-driven ZBA unique to strongly correlated
systems emerges. This ZBA persists through U = 12 with a
consistent energy scale t̃ , as discussed above.

Finally, at U = 16, the Mott gap opens. When V = 0, the
Mott gap opens at U ∼ �. The addition of nonlocal interac-
tions suppresses single occupancy, delaying the formation of
the Mott gap and extending the range of the strong-coupling
ZBA. Unlike the Mott gap, the strong-coupling ZBA is not
limited to half filling, and we now turn our attention to other
dopings.

B. Away from half filling

1. Doping dependence

Figure 6 shows the dependence of the DOS on doping for
� = 12, U = 8, and V = 1.6. The strong similarities between
the curves is consistent with the picture that for U > 4V
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FIG. 6. (Color online) Evolution of the DOS with filling for t = 1,
� = 12, U = 8, and V = 1.6. The inset shows curves shifted to
coincide at ω = 0.
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FIG. 7. (Color online) DOS versus frequency at quarter filling
(n = 1/2) for t = 1, � = 12, U = 8, and V values as indicated.

there is a kinetic-energy-driven ZBA proportional to t̃ . With t

and V both held constant, this strong-coupling ZBA remains
unchanged. The deviation, especially below the Fermi level,
of the n = 1/4 curve is related to an important change in the
atomic-limit DOS: For V = 0 and in the atomic limit, above
quarter filling there are doubly occupied sites and below there
are none. The Fermi level moves from inside the central plateau
in Fig. 2(a) to its left edge. As discussed above, similar energies
of doubly occupied and singly occupied states on neighboring
sites are central to the emergence of the kinetic-energy-driven
ZBA. While the presence of hopping smooths this transition,
by n = 1/4 doping the necessary conditions for a linear
dependence on t̃ are absent.

2. V dependence at 1/4 filling

Figure 7 shows the evolution of the DOS with V at quarter
filling. Panels (c) and (d) of Fig. 4 show the same mean-field
rescaling of the DOS discussed for the half-filling case in
Sec. III A 4. As at half filling, the rescaling works well for the
V = 0.8 case and also at very low energies for V = 1.6.

What is most striking about Fig. 7, however, is the behavior
at large V . The spin and charge correlations at quarter filling,
shown in Figs. 4(b) and 4(d), suggest a crossover similar
to the one at half filling, although much weaker: from AF
correlated spins (and no CDW correlations) at low V to CDW
correlations (and no AF spin correlations) at large V . However,
whereas at half filling (Fig. 1) these changes in correlations
are matched by a suppression of the kinetic-energy-driven
ZBA and the emergence of atomic-limit behavior, at quarter
filling (Fig. 7) the form of the ZBA does not change when
4V > U . Lower filling reduces the competition between
nearest-neighbor interactions and single occupancy. While U

reduces double occupancy and V suppresses occupation of
neighboring sites, both can be accommodated by a charge
ordered state with alternating singly occupied and empty
states. Because of the importance of singly occupied sites to
the formation of the kinetic-energy-driven ZBA, lower doping
may allow it to persist to higher V values. It is noticeable,
however, that persistence of behavior distinct from the atomic
limit is not confined to the region around the Fermi level. A
number of other features seen at large V are inconsistent with
atomic-limit behavior: The on-site charge correlations increase
with V , indicating the presence of double occupancy which

is not expected in the atomic limit. Also, the DOS remains
essentially unchanged by V below the Fermi level, with no
sign of the broad DOS suppression expected in the atomic
limit. Although strong interactions reduce the importance of
kinetic energy in a system, shifting it toward the atomic limit,
lower electron concentration reduces this effect.

IV. CONCLUSION

In conclusion, building on earlier work exploring the ZBA
in the AHM and its unique strong-coupling features, here
we ask how nonlocal interactions influence this anomaly.
We find that, at small values of V and at low filling, there
is no qualitative change in the anomaly, only a gradual
renormalization of the hopping amplitude which sets its width.
At larger values of V and close to half filling, however, there is
a crossover to DOS features which are independent of hopping.
As charge correlations grow, the energy scale of the kinetic-
energy-driven ZBA gives way to the higher energy scale of the
nonlocal interaction. The suggestion is that different strongly
correlated materials with disorder may display very different
behaviors depending on where their particular parameters
place them in this phase space. Moreover, it might be possible
to observe such a crossover in a single material by, for example,
applying pressure. Increased pressure could be expected both
to increase the hopping amplitude and also to reduce the
nonlocal interaction through increased screening, driving the
system from the atomic limit toward a regime in which the
kinetic-energy-driven zero-bias anomaly would appear.

Experimental studies of the DOS in doped transition metal
oxides have been complicated by issues such as distinguishing
bulk versus surface properties and subtraction of the barrier
contribution in tunneling measurements. Multiple studies have
observed Altshuler-Aronov3 behavior in weakly disordered
metallic systems.6,27,28 In particular, Mazur et al.28 showed that
the spectral weight removed from the Fermi level is not shifted
far, but rather moves just outside the ZBA. Experimental
work in the strongly disordered insulating regime6,29 has
been more difficult to interpret as the data do not follow
either the Altshuler-Aronov3 or the Efros-Shklovskii2 picture.
Nonetheless, there continues to be strong interest in untangling
the effects of disorder and interactions in transition metal
oxides.30 We hope that our results will provide a new
framework for interpreting data in this regime. In particular,
we note that the transfer of spectral weight well away from the
Fermi level is a characteristic feature of strongly correlated
systems.
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