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Valence-band satellite in ferromagnetic nickel: LDA + DMFT study with exact diagonalization
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The valence-band spectrum of the ferromagnetic nickel is calculated using the LDA + DMFT method. The
auxiliary impurity model emerging in the course of the calculations is discretized and solved with the exact
diagonalization, or, more precisely, with the Lanczos method. Particular emphasis is given to spin dependence of
the valence-band satellite that is observed around 6 eV below the Fermi level. The calculated satellite is strongly
spin polarized in agreement with experimental findings.
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I. INTRODUCTION

The electronic structure of transition metals has been
intensively studied for a number of decades. Notwithstanding,
certain aspects of the electron behavior in these materials are
still not completely understood. Comparison of experimental
findings with one-electron band theories have indicated that
a more thorough treatment of quantum many-body effects is
necessary to accurately describe the physical reality.

A prototypical metal displaying pronounced electron cor-
relations is the ferromagnetic nickel: its one-particle spectrum
obtained using the local-density approximation (LDA) to
the density-functional theory (DFT) noticeably departs from
the spectra measured in photoemission experiments. The
calculated 3d bandwidth as well as the exchange splitting are
too large.1,2 Moreover, the LDA completely misses the satellite
feature located at approximately 6 eV below the Fermi level.3–5

This satellite was originally attributed to plasmon excitations,4

but an alternative view was soon proposed,6,7 according to
which the satellite is a result of a correlated state of two 3d

holes localized in a single atom. The latter picture is supported
by a resonant enhancement of the satellite that is observed
when a second scattering channel involving 3p electrons and
ending in the same two-hole final state becomes active.8–10 The
link between the satellite and the localized two-hole states can
be explicitly visualized in simplified finite-sized models that
allow for an exact many-body solution.11,12

A quantitative description of the electron correlations in
nickel can be achieved by incorporating a dynamical self-
energy into the LDA or Hartree-Fock band structure.13–15

Usually, the self-energy is assumed local, that is, wave-
vector independent. The most sophisticated local self-energy
is provided by the dynamical-mean-field theory (DMFT)16

that maps the problem of interacting lattice electrons onto an
impurity model where the interactions are retained only at
a single lattice site. The combination of LDA and DMFT
(the so-called LDA + DMFT method) was applied to the
electronic structure of nickel several times in the past, using
different methods to solve the auxiliary impurity model.17–21

A reasonable description was achieved employing the Hirsch-
Fye quantum Monte Carlo (QMC) method as the impurity
solver.17 The QMC methods have many merits. In particular,
they are consistently accurate regardless of the strength of

correlations in the system. But they have weaknesses too.
The QMC calculations of the one-particle spectral functions
involve a numerical continuation from the imaginary time to
the real frequencies, a procedure with a limited resolution
especially at higher binding energies. Additionally, the QMC
algorithm used in Ref. 17 is limited to a diagonal-only
Coulomb interaction. This truncated interaction breaks a
subset of symmetries characteristic for the full Coulomb
operator, which can lead to undesirable side effects.

In this paper we solve the auxiliary impurity model of
the LDA + DMFT by means of the Lanczos method. This
strategy involves a discretization of the impurity model, which
represents an obvious limitation on the achievable accuracy.
The sources of errors in this approach are, however, very
different from those in the QMC method and the two impurity
solvers can thus offer complementary information. Using the
Lanczos method, the one-particle Green’s function can be
evaluated directly anywhere in the complex plane without
resorting to any extrapolation.

II. METHOD

We start from the bare electronic structure of Ni expressed
in terms of a tight-binding LMTO model22 containing 4s, 3d,
and 4p electronic states. The one-electron Hamiltonian Ĥ (k)
is obtained as a solution of the local-density approximation and
the correlations beyond this approximation are accounted for
by a local self-energy �̂ acting in the subspace of the d orbitals.
The self-energy is spin polarized, whereas the Hamiltonian
Ĥ (k) is spin independent.

The self-energy �̂ is constructed with the aid of an
impurity model defined by a Hamiltonian Ĥimp = Ĥ (0)

imp + Û

that describes a single d shell hybridized with a sea of auxiliary
conduction electrons. These auxiliary electrons, often referred
to as the bath, model the environment around the d shell in
the actual nickel lattice. The Coulomb interaction Û acts only
among the d orbitals and the one-particle part Ĥ (0)

imp has the
form

Ĥ (0)
imp =

∑
mσ

εmσ d̂†
mσ d̂mσ +

∑
kmσ

εkmσ ĉ
†
kmσ ĉkmσ

+
∑
kmσ

Vkmσ (d̂†
mσ ĉkmσ + ĉ

†
kmσ d̂mσ ), (1)
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where d̂
†
mσ creates an electron in the d shell and ĉ

†
kmσ creates

a conduction electron in the bath. The index m runs over eg =
{x2 − y2,z2} and t2g = {xy,xz,yz} states, and σ ∈ {↑ ,↓}
labels spin projections. The hybridization parameters Vkmσ

couple only those impurity and bath levels that carry the
same indices m and σ , and hence the cubic symmetry and
the electron spins are preserved.

Provided we can solve the interacting impurity model, the
self-energy �̂ is obtained as

�̂ = Ĝ−1
imp

[
Ĥ (0)

imp

] − Ĝ−1
imp[Ĥimp], (2a)

where Ĝimp[Ĥ ] represents the Green’s function matrix in the d-
orbital subspace evaluated for a general impurity Hamiltonian
Ĥ . The matrix Ĝimp[Ĥ (0)

imp], which we will denote as Ĝ for
short, is usually referred to as the bath Green’s function. The
link between the original lattice electrons and the parameters
entering the Hamiltonian Ĥ (0)

imp is provided by the condition

Ĝimp[Ĥimp] = Ĝ[Ĥ (k),�̂] (2b)

that equates Ĝimp to the local d-orbital Green’s function Ĝ

evaluated in the lattice. The right-hand side of Eq. (2b) can be
expressed as a momentum sum over the first Brillouin zone

Ĝ(z) = 1

N

∑
k

[(z + μ)Î − Ĥ (k) − �̂(z)]−1, (3)

where Î stands for the identity operator and the chemical
potential μ is chosen such that the 4s-3d-4p space holds ten
electrons per Ni atom.

Equations (2) define the dynamical-mean-field approxima-
tion. They are iteratively solved for �̂ and Ĥ (0)

imp while Ĥ (k)

and Û act as inputs. The most involved part of these iterations
is the solution of the multi-orbital impurity model, for which
we employ the following approximation: we discretize the
impurity Hamiltonian Ĥimp and then solve the resulting finite-
sized cluster Ĥc essentially exactly by means of the Lanczos
method. This strategy was successfully applied to the DMFT
equations for the repulsive16,23 and attractive24 single-band
Hubbard models as well as for realistic multiband problems.25

The discretization Ĥimp → Ĥc amounts to a replacement of
the infinite sums (integrals) over k in Eq. (1) with short finite
sums

∑Nk

k=1. If not explicitly stated otherwise, we use Nk = 2,
in other words, each impurity orbital is coupled to two bath
orbitals.

The parameters of the discretized Hamiltonian (εmσ , εkmσ ,
and Vkmσ ) are expressed as functions of Ĥ (k) and �̂ with the
aid of the relation

Ĝ−1
c ≡ Ĝ−1

imp

[
Ĥ (0)

c

] ≈ Ĝ−1[Ĥ (k),�̂] + �̂ = Ĝ−1, (4)

which is just a rearranged form of Eqs. (2). It is, of course,
necessary to specify in what sense the discrete bath Green’s
function Ĝc approximates the continuous function Ĝ, that is, to
define the precise meaning of the symbol ≈ in Eq. (4).

It has become customary to minimize some distance
between Ĝc(z) and Ĝ(z) defined on the Matsubara frequencies
z = iωn. A particularly convenient choice is the least-squares

fit16,23–25

min
εmσ ,εkmσ ,

Vkmσ

∑
n

∣∣∣∣ 1

Gc
mσ (iωn)

− 1

Gmσ (iωn)

∣∣∣∣2

(5)

for each m and σ . Initially we used this method of bath
discretization, but we ran into unexpected difficulties. We
have observed that Eq. (5) often places some of the bath
energies εkmσ quite far from the Fermi level due to a large
high-frequency tail of the function to be fitted. That by itself
would not be an issue if it did not lead to an unphysical
stabilization of a nonmagnetic solution for Nk = 2; only
calculations utilizing a small bath (Nk = 1) converge to a
ferromagnetic ground state. Despite a number of attempts,
we have not succeeded in finding a suitable modification of
the fitting function [Eq. (5)] that would reliably eliminate the
nonmagnetic solution in the case of larger baths. Surely the
nonmagnetic ground state would go away for large enough
Nk without any change to Eq. (5), but that route is not feasible
due to large computational demands. The problem is discussed
further in the Appendix.

The impossibility of improving the description of the
bath by doubling the number of bath orbitals has led us to
reconsider the bath discretization strategy. We have replaced
Eq. (5) with an alternative approach, namely, with the
requirement of coincidence of the high-frequency asymptotics
of Ĝc(z) and Ĝ(z).16,26 This method builds on the following
algebra: The cluster Green’s function Ĝc(z) can be written in
an explicit form27

Gc
mσ (z) =

(
z − εmσ −

∑
k

V 2
kmσ

z − εkmσ

)−1

(6)

whose expansion in powers of 1/z reads as

Gc
mσ (z) = 1

z
+ εmσ

z2
+ ε2

mσ + ∑
k V 2

kmσ

z3

+ ε3
mσ + ∑

k V 2
kmσ (εkmσ + 2εmσ )

z4
+ · · · . (7)

The continuous Green’s function Ĝ(z) can be expressed in
terms of the density of states g(z), and the coefficients of the
expansion in powers of 1/z are then given as moments of this
density of states,

Gmσ (z) =
∫

gmσ (ε)

z − ε
dε =

∞∑
n=1

1

zn

∫
εn−1gmσ (ε) dε︸ ︷︷ ︸

Mn−1

. (8)

In the case of Nk = 2 we have five parameters in H (0)
c that carry

the same indices m and σ , and thus we can match Eqs. (7) and
(8) term by term up to 1/z6. For Nk = 1, the match is possible
up to 1/z4 and the final expressions for the Hamiltonian
parameters are quite simple and intuitive. They read as

εmσ = M1, (9a)

V 2
kmσ = M̃2, (9b)

εkmσ = εmσ + M̃3/M̃2, (9c)
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where M1 is the “center of mass” of gmσ and M̃n are the central
moments of gmσ ,

M̃n =
∫

(ε − M1)ngmσ (ε) dε . (10)

The hybridization amplitude Vkmσ is given by the second
central moment M̃2 that characterizes the width of gmσ which
in turn measures the impurity-bath hopping.

The discretization method defined by Eqs. (7) and (8) is
susceptible to the same nonmagnetic solution just as Eq. (5)
was, but this time there is a straightforward remedy in the form
of a modified definition of the moments Mn,

Mn =
∫ εu

εl
εngmσ (ε) dε∫ εu

εl
gmσ (ε) dε

. (11)

The lower cutoff εl is a purely technical matter; it is set to
εl = −9 eV, that is, below the 4s band. The upper cutoff εu

avoids the unphysical solution by not allowing the bath orbitals
to drift to too high energies.

The last component of the cluster Hamiltonian Ĥc that we
have not discussed yet is the Coulomb interaction in the d

shell. We use the spherically symmetric form

Û = 1

2

∑
mm′m′′
m′′′σσ ′

Umm′m′′m′′′ d̂†
mσ d̂

†
m′σ ′ d̂m′′′σ ′ d̂m′′σ

−UH

∑
mσ

d̂†
mσ d̂mσ , (12)

where the matrix Umm′m′′m′′′ is parametrized by the Slater
integrals F0 = 2 eV, F2 = 8.2 eV, and F4 = 5.2 eV. These
numerical values correspond to Coulomb U = 2 eV and
exchange J = 0.95 eV. The term proportional to UH represents
a rigid shift of the impurity levels downward, εmσ → εmσ −
UH, and accounts for the fact that the d–d Coulomb interactions
are already partially included in the LDA Hamiltonian Ĥ (k)
in the form of a static mean field. Several formulas have been
proposed to express the Hartree-like double-counting potential
UH in terms of the occupation numbers of the d orbitals,28–30

but we treat UH as a free parameter similarly to Ref. 31 since
neither of the standard choices leads to satisfactory results.

The need for “undressing” the LDA quasiparticles is one of
the reasons why we prefer to build the many-body description
on the top of the spin-restricted LDA band structure. If we
started from spin-polarized bands, the Hartree potential UH

would be polarized too, which would add complexity to the
problem. The double counting would have to be spin dependent
also in the LDA + DMFT implementations that take into
account the feedback of the self-energy on Ĥ (k).32,33

Once the cluster Hamiltonian Ĥc is fully specified, the one-
particle Green’s function Ĝc ≡ Ĝimp[Ĥc] can be calculated.
We employ the band Lanczos method34,35 that allows for
a simultaneous evaluation of all relevant matrix elements
at once. Off-diagonal elements are directly accessible too,
although this functionality is not used in the application at
hand. For the purpose of the Lanczos method, Ĝc is written
as36

Gc
mσ (z) = 1

Z
[G>

mσ (z) + G<
mσ (z)], (13)

where the two parts are

G>
mσ (z) =

∑
ψ

e−βEψ 〈ψ |d̂mσ (z + Eψ − Ĥc)−1d̂†
mσ |ψ〉,

G<
mσ (z) =

∑
ψ

e−βEψ 〈ψ |d̂†
mσ (z − Eψ + Ĥc)−1d̂mσ |ψ〉.

The sums over the many-body eigenstates |ψ〉, Ĥc|ψ〉 =
Eψ |ψ〉, represent grand-canonical averages with the chemical
potential equal zero, and Z = ∑

ψ e−βEψ stands for the corre-
sponding partition function. The calculations are performed at
low temperature kBT = 1/β = 0.01 eV so that only the ground
state contributes to the sum over ψ most of the time. The
eigenstate-eigenvalue pairs including all their degeneracies
are found using the implicitly restarted Lanczos method as
implemented in the ARPACK software package.37

III. RESULTS AND DISCUSSION

A. Ground-state properties

First we examine selected characteristics of the ground state
and use them to estimate the double-counting potential UH.
Figure 1 shows the number of electrons in the d orbitals
nd = nd↑ + nd↓ and the spin polarization of these orbitals
md = nd↑ − nd↓. The quantities calculated in the lattice and in
the discretized impurity model are plotted side by side. They
differ despite the DMFT iterations being converged in the
sense that the cluster Hamiltonian Hc no longer changed in the
successive steps. The differences would vanish if we solved
the full continuous impurity model since Eq. (2b) would be
exactly fulfilled in that case.

It turns out that nd and md depend only weakly on the
double-counting potential UH when the latter is larger than
approximately 14.5 eV. Below 14.5 eV the trend changes and
the cluster quantities depart substantially from their lattice
counterparts. Based on this observation we consider UH below
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m
d

UH (eV)

experiment

FIG. 1. (Color online) The occupation of the d orbitals nd (top)
and the spin polarization md (bottom) plotted as functions of the
double-counting potential UH. Empty symbols correspond to the
cluster Green’s function Ĝc, full symbols to the lattice Green’s
function Ĝ.
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14.5 eV as inappropriate. We note in passing that the double
counting in the so-called fully localized limit29,30 U

(FLL)
H =

U (nd − 1/2) − J (nd − 1)/2 equals 13.2 eV for nd = 9 and
it is thus more than 1 eV too small to be applicable in our
case. The so-called around mean-field form28 of UH provides
an even smaller value.

The experimentally determined magnetization of the fcc
nickel is approximately 0.6 μB per atom.38 Our calculations
slightly underestimate the magnetization even though the
cluster solution, from which the spin-dependent self-energy
is extracted, displays the maximal polarization characterized
by md = 5 − nd↓.

The number of d electrons cannot be unambiguously
defined in a solid and as such it does not represent a particularly
useful measure of quality of our ground state. The d-band
filling in nickel is often estimated as 9.4 per atom based on
the measured magnetic moment and the assumption of the
maximal d-shell polarization,39 but reliability of this estimate
is limited.

B. Valence-band spectrum

The d-orbital spectral function Im
∑

m[Gmσ (E − i0)]/π
represents a simple model for the angle-integrated photoe-
mission intensity. We find that the spectra corresponding to
the double-counting potential UH in the range 15.0 ± 0.5 eV
are only barely distinguishable, the result shown in Fig. 2

−12 −10 −8 −6 −4 −2  0  2

ex
pe

ri
m

en
ta

l X
P

S

E (eV)

d-
or

bi
ta

l s
pe

ct
ra

l f
un

ct
io

n

8

9

n d
 (

)

FIG. 2. (Color online) Spin-resolved d-orbital spectral function
of bulk Ni obtained with UH = 15 eV (middle panel) in comparison
with the valence-band x-ray photoemission spectrum (XPS) from
Ref. 40 (bottom panel; the non-d background was approximately
removed by shifting the spectra in the vertical direction so that they
approach zero at high binding energies). The top panel shows the
d-orbital occupation nd (φ) in each of the first 5000 many-body final
states |φ〉 evaluated in the discretized impurity model.

was obtained with UH = 15 eV. The calculated spectrum is
relatively disappointing: the width of the main band (≈4.5 eV)
as well as the exchange splitting are nearly identical to those
obtained with the spin-polarized LDA and thus share the same
poor agreement with experiments. The symmetry-resolved
exchange splitting at the Fermi level is given directly by the
self-energy and reads as

�eg↑(EF) − �eg↓(EF) ≈ 0.3 eV, (14a)

�t2g↑(EF) − �t2g↓(EF) ≈ 0.8 eV. (14b)

The d states near the Fermi level have predominantly the t2g

character, which results in the apparent exchange splitting
of 0.6 eV that is visible as a shift between the top of the
valence bands for the minority and majority spins (indicated
with arrows in Fig. 2).

For a smaller bath, Nk = 1, we have also performed a series
of calculations that utilized Eq. (5), instead of Eqs. (7) and (8),
to discretize the impurity model. A representative result is
shown in Fig. 3. The renormalization of the main band and
the exchange splitting are more reasonable than they were
in Fig. 2; the band width is approximately 3 eV and the
exchange spitting is about 0.3 eV, both of which are close
to the photoemission experiments.1,2 Apparently the fitting
at the Matsubara frequencies iωn is more sensitive to the
behavior near the Fermi level than the method of moments
[Eqs. (7) and (8)] and hence it results in a finer description of
the low-energy spectral features. Notwithstanding, we cannot
rely on the fitting at iωn because doubling the size of the bath
to Nk = 2, which should improve the results, leads instead to
an unphysical nonmagnetic solution as discussed in Sec. II.
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FIG. 3. (Color online) Spin-resolved d-orbital spectral function
of bulk Ni that was obtained with the bath discretized using the least-
squares fit at the Matsubara frequencies (bottom panel). The auxiliary
impurity model contains only one bath orbital per each impurity
orbital (Nk = 1). The atomic d9 → d8 transitions are displayed at
an arbitrary scale and position for comparison with the shape of the
satellite. The upper panel shows the d-orbital occupation nd (φ) in the
final states |φ〉 evaluated in the discretized impurity model.
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C. Valence-band satellite

We identify the spectral features found below approxi-
mately −4.5 eV as the “6 eV satellite.” It is strongly spin
polarized in agreement with spin-resolved photoemission
experiments.40 For the results presented in Fig. 2, the energy-
integrated satellite intensity is about three times larger for the
majority spins than for the minority spins. Furthermore, the
minority-spin states are located at reduced binding energies,
which was also observed experimentally.41 These two prop-
erties support the identification of the valence-band satellite
with localized atomic-like transitions from the spin-polarized
d9 initial state (five majority spins and four minority spins)
to the d8 final states, that is, to states with two localized 3d

holes.9,42 An illustration of the atomic d8 final-state multiplets
is added to Fig. 3 for comparison. The singlet final states 1D,
1G, and 1S exhibit a complete majority-spin polarization and lie
deeper, the triplet states 3F and 3P carry a partial polarization
in the opposite direction (66% of spin-down intensity and 33%
of spin-up intensity43) and lie shallower.

In order to analyze the electronic states responsible for
the satellite in more detail, we have evaluated the d-orbital
occupation nd (φ) = ∑

mσ 〈φ|d̂†
mσ d̂mσ |φ〉 in the final states

|φ〉 of the photoemission process that enter the Lehmann
representation of the impurity Green’s function as

G<
mσ (z) =

∑
ψφ

e−βEψ
〈ψ |d̂†

mσ |φ〉〈φ|d̂mσ |ψ〉
z − Eψ + Eφ

. (15)

Thus calculated nd (φ) is aligned with the spectral functions in
Figs. 2 and 3. In Fig. 3 (smaller bath) the satellite indeed
corresponds to states with nd (φ) ≈ 8, but the same is not
quite true in the case of Fig. 2 (larger bath). Although
nd (φ) decreases as the binding energy increases in Fig. 2 as
well, it is still considerably larger than eight in the satellite
region where contributions from states with nd (φ) � 8.5 are
not an exception. This enhancement of nd (φ) is due to the
impurity-bath hybridization: there are no bath levels with εkmσ

near the satellite in the smaller bath, whereas there are such
bath levels in the larger bath. The extra hybridization causes a
partial delocalization of at least one of the 3d holes, which is
accompanied by the increased nd (φ).

As mentioned in Sec. III B, our results are rather insensitive
to a particular choice of the potential UH as long as it exceeds
a threshold of approximately 14.5 eV. For smaller UH, the
impurity orbitals in the cluster start to depopulate, which is
accompanied by an increased intensity of the satellite. The
same effect was observed in experiments on alloys of Ni with
electropositive metals.44,45

IV. CONCLUSIONS

We have investigated the valence-band spectra of the
ferromagnetic nickel within the LDA + DMFT framework.
The auxiliary impurity model was discretized and then solved
using the Lanczos method. The valence-band satellite and its
spin dependence were reproduced in good agreement with
spin-resolved photoemission experiments. The many-body
renormalization of the 3d bands as well as the exchange
splitting were found to be sensitive to the details of the bath
discretization, which indicates that ten orbitals are probably

not enough to approximate the bath of conduction electrons
to a satisfactory accuracy. The diagonalization method as
employed in this paper is adequate for recovering features
of atomic origin located at high binding energies but it is
apparently too crude to consistently capture the expected
modification of the Fermi-liquid parameters at low binding
energies.
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APPENDIX: MAGNETISM IN THE FINITE CLUSTER

Here we take a closer look at the issues that forced us
to turn away from the standard bath-discretization strategy
[Eq. (5)], and that necessitated the introduction of the cutoffs
in Eq. (11). To illustrate the problem we use a simpler impurity
model than we employed in Sec. III—we reduce the cluster
to contain only one bath orbital per each impurity orbital,
Nk = 1, and we assume spherical instead of cubic symmetry.
Furthermore, we implement the Hamiltonian parameters used
in Ref. 12, which gives us the opportunity to relate our
calculations to this earlier study of electron correlations in
nickel. The Slater integrals are F0 = 3.5 eV, F2 = 9.79 eV,
and F4 = 6.08 eV, and the impurity-bath hopping is Vkmσ =
0.7 eV. The bath-level position εkmσ ≡ εb is treated as a free
parameter and the double-counting potential UH is determined
such that there are always nine electrons in the impurity d

orbitals. The temperature is kBT = 0.01 eV as before.
The spin polarization is induced by a small magnetic field

B coupled to the impurity spins. The coupling is described by
an extra term in the cluster Hamiltonian,

Ĥ (B)
c = B

2

∑
m

(d̂†
m↑d̂m↑ − d̂

†
m↓d̂m↓).

The resulting polarization is plotted in Fig. 4 as a function
of the bath position εb scanned across the Fermi level.
The total number of electrons in the cluster is shown as
well.

When the bath orbitals are sufficiently deep below the Fermi
level, the bath is nearly full and a local magnetic moment is
formed on the impurity. As the bath orbitals move up toward
the Fermi level, the bath relatively quickly depopulates until it
holds only a single electron. This electron, together with the
other nine sitting in the impurity orbitals, forms a nonmagnetic
d10 closed shell. This state then remains stable even when
the bath is raised relatively high above the Fermi level. Only
for εb > 2.4Vkmσ ≈ 1.7 eV the bath starts releasing the last
electron and a magnetic ground state is restored. The larger
cluster corresponding to Nk = 2 shows an analogous behavior,
only the nonmagnetic solution occurs for 20 electrons in the
cluster as there is an extra fully occupied shell of bath orbitals
located deeper below the Fermi level.
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FIG. 4. (Color online) Spin polarization of the d shell md (top)
and the total number of electrons in the whole cluster ntot (bottom) as
functions of the bath-level position εb.

It is clear that the nonmagnetic solution does not correctly
describe the d shell and its environment in the ferromagnetic
nickel. Elevating the bath orbitals high above the Fermi level
in order to support a magnetic ground state does not look as a
plausible remedy, which leaves us with the configuration where
the bath states are nearly fully occupied and thereby model
the nearly full d orbitals of the nickel atoms surrounding the
“impurity” site. To prevent the cluster Hamiltonian to enter the
nonrealistic regimes in the course of the DMFT iterations, we
have introduced the upper cutoff εu in the integrals in Eq. (11).
This cutoff does not allow the bath orbitals to drift too high
and to lock into the nonmagnetic solution.

It is instructive to compare the spectral functions corre-
sponding to the different cluster ground states. The top panel
of Fig. 5 shows the spectrum obtained when the bath orbitals
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FIG. 5. (Color online) Spin-resolved d-orbital spectral function
of a cluster with parameters taken from Ref. 12. A nonmagnetic
state (εb = 0 eV, top panel) is compared to a magnetic solution (εb =
−0.4 eV, bottom panel). The “envelopes” are calculated with a large
Lorentz broadening of 0.5 eV.

are placed right at the Fermi level εb = 0. The local moment
induced by the external magnetic field is negligible in this case
and the spectral function is nearly symmetric. The spectrum
is practically identical to the result presented in Ref. 12 as it
should be since we used the same parameters.

The spectrum corresponding to the bath orbitals lowered
to −0.4 eV is plotted in the bottom panel of Fig. 5.
The 6 eV satellite now has a shape similar to our DMFT
solution as well as to the experimental data: the minority-spin
component is less intense and is located at smaller binding
energies.
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