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Evolution of the impurity band in a weakly doped, highly compensated semiconductor
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We study the evolution of the impurity band in a weakly doped semiconductor as a function of the concentration
of dopants, x. We present disorder-averaged results for the density of states of a doped simple cubic lattice and
compare them with the predictions of the coherent potential approximation (CPA). For randomly distributed
impurities the agreement is good, although CPA misses some qualitative features. We find that if electron-electron
interactions can be ignored, as is the case in the highly compensated limit, the impurity band is still a clearly
distinct feature in the spectrum even for dopant concentrations as large as x ∼ 0.10.
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I. INTRODUCTION

Ever since Anderson’s seminal paper,1 the effects of
disorder have been studied in a wide variety of systems.
If the disorder is introduced through the on-site potentials
εi , as is most often the case, the model is defined by their
distribution of probability. The two main classes of models
use (i) a continuous (usually uniform) distribution with some
desired width (in this case, known as Anderson disorder, the
on-site potential varies randomly from site to site), or (ii) a
bimodal distribution, where with probability x the potential is
εi = U , and with probability 1 − x the potential is εi = 0 (up
to an overall trivial energy shift).

This latter model is used as a simple way to study weakly
doped semiconductors, x � 1 being the concentration of
dopants. They are all assumed to be identical, hence their
identical effect on the on-site energies in their vicinity. To
also assume that the impurity potential is local (as opposed to
spread over several sites), that the hopping integrals are not
affected, and that the potential of a cluster of impurities is
simply equal to the sum of individual single-impurity poten-
tials, are all convenient additional approximations. These can
be relaxed, if needed, but it is believed that this simple model
should provide at least a qualitatively adequate description of
the properties of a weakly doped semiconductor, such as the
evolution of its density of states (DOS) with doping.

A complete model of the doped semiconductor must also
state the concentration of charge carriers (electrons or holes,
depending on the nature of the dopant). In the following, we
assume that the material is highly compensated; i.e., it contains
a second type of defect that binds most of the charge carriers
at energies far removed from those of interest. As a result, the
charge carrier concentration is much smaller than x and the
electron-electron interactions can be safely ignored (we briefly
discuss the consequences of this approximation below).

With these approximations, the problem can be studied
in the single-electron limit. If x → 0, one can assume that
there is a single impurity in the system and the problem
can be solved exactly. If the impurity potential is sufficiently
attractive, an impurity state appears below the conduction
band (for simplicity, from now on we assume donor doping)
and is spatially localized in the vicinity of the impurity. As
x increases, due to overlap between different such impurity
states, an impurity band (IB) forms. Its width increases with x,
and eventually one expects it to merge with the conductance

band lying above it. Simultaneously, the states in this IB are
expected to become more and more extended, and ultimately
to regain their bandlike character.

While this phenomenology is universally accepted, little is
known about the actual details, such as at what concentration
xm do the two bands merge, and whether there is some
range of dopings above xm where there is still a distinctive
low-energy feature reminiscent of the IB and whose states
have impurity-like nature, or this disappears as soon as the
merging occurs, etc. Such questions are relevant for many
issues of current interest—one particularly famous example is
the dilute magnetic semiconductor Ga1−xMnxAs, where after
over a decade of studies there is still an ongoing debate as to
whether the holes mediating the magnetism in this material
occupy valence-band-like states or impurity-band-like states
(dopings of interest here are below 10%, although things are
complicated by various material issues).2,3

The lack of such answers is due to the difficulty in
solving this problem numerically, even in the noninteracting
approximation. If one is interested in low dopings x ∼ 0.01,
and if one assumes that a sufficiently large sample has at least
a few hundred impurities, then one needs to deal with systems
with at least 104 or more sites. Moreover, disorder averaging
is required. Since disorder fluctuations in such models can
be substantial, one may need to average many hundreds, if
not thousands, of disorder configurations. In contrast, accurate
numerical results can be obtained for Anderson-type disorder
using smaller samples—and indeed, this latter problem has
been studied numerically in great detail.4

Of course, significant efforts have been focused on propos-
ing accurate analytical approximations for various disorder-
averaged quantities. These range from the very simple-
minded virtual crystal approximation (VCA) to the much
more sophisticated coherent potential approximation (CPA),
with the latter believed to be the most accurate “simple”
approximation (more complicated methods, including various
cluster generalizations of CPA, are available as well). These
approximations have been tested mostly against one another,
or against primarily one-dimensional numerical simulations.
(Good introductions to these topics are given in Refs. 5,6. A
recent review is Ref. 7.) The issue of their accuracy and range
of validity is, therefore, not fully settled.

In this work, we present an extensive set of numerical results
for three-dimensional lattices with x < 10%, which allow
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us to start answering some of these questions. Comparisons
with CPA are also made. These numerical results are possible
due to a recently proposed method of finding lattice Green’s
functions,8 briefly reviewed below.

While here we focus only on the evolution of the DOS
with the impurity concentration x and the impurity potential
U , there are many other issues to be addressed, such as the
nature of these electronic states (whether they are Anderson
localized or extended) and the position of the mobility edge(s)
in the spectrum. We briefly mention some preliminary results
on these issues at the very end; however, a full analysis is
postponed for future work.

The paper is organized as follows: Section II discusses
the numerical solution. Results are reported in Sec. III, and
Sec. IV contains our conclusions. Brief notes on our numerical
implementation of the CPA self-consistency loop are given in
the Appendix.

II. MODEL AND NUMERICAL SOLUTION

As already stated, our Hamiltonian is

H = H0 + V = −t
∑

〈i,j〉
(c†i cj + H.c.) + U

∑

i

pic
†
i ci . (1)

Here, ci is the electron annihilation operator at site i. For
simplicity, we assume a simple cubic lattice; more complicated
cases, such as FCC or BCC lattices, can be treated similarly.8

The hopping is assumed to be nearest neighbor for simplicity,
although generalizations to longer range hopping are also
possible with the same method.9 The on-site potential created
by an impurity is U < 0, and pi = 1 if there is an impurity
at site i, and zero otherwise. Of course, 〈pi〉 = x, where
〈...〉 indicates an average over all disorder configurations.
Hamiltonian (1) ignores electron-electron interactions, which
is reasonable in the highly compensated limit where the
electron concentration is much smaller than x. The spin is
also ignored since it is a trivial degree of freedom.

The needed quantities are the Green’s functions:

G(i,j,ω) = 〈0|ciĜ(ω)c†j |0〉, (2)

where Ĝ(ω) = [ω + iη − H]−1 is the resolvent, with η → 0+.
For simplicity, we set h̄ = 1.

After these Green’s functions are calculated as described
below for a given disorder realization (i.e., a specified set of
values {pi}), we can find the quantity of interest, namely the
disorder-averaged total density of states:

ρ(ω) = − 1

π
Im〈G(i,i,ω)〉 (3)

(the disorder average makes this quantity independent of the
chosen site i). Before describing the numerical method we use
to calculate G(i,j,ω), let us briefly review the CPA. Within this
approximation, the disorder-averaged value of the diagonal
Green’s function is

〈G(i,i,ω)〉 = g0(ω − σ (ω)), (4)

where σ (ω) is a complex quantity that can be roughly thought
of as the disorder-averaged self-energy, and is obtained from

the self-consistency condition:6

σ (ω) = xU + [U − σ (ω)]σ (ω)g0(ω − σ (ω)), (5)

where

g0(ω) = G0(i,i,ω) = 1

N

∑

k

1

ω + iη − εk
(6)

is the diagonal element of the Green’s function G0 of the
clean system (U = 0 limit). The second equality expresses
this as a sum over the Brillouin zone (BZ), which turns into an
integral in the thermodynamic limit when the number of sites
N → ∞, over the k-space propagator of the clean system,
which depends on the free-electron dispersion. For a simple
cubic lattice, εk = −2t

∑3
α=1 cos(kαa), where a is the lattice

constant. Details on how we solve Eq. (5) are in the Appendix.
The traditional approach to finding G(i,j,ω) for a given dis-

order realization is to numerically diagonalize the correspond-
ing Hamiltonian to obtain its eigenvalues and eigenfunctions
H|n〉 = En|n〉, and to use a Lehmann representation to build
up the needed propagators:

G(i,j,ω) =
∑

n

〈0|ci |n〉〈n|c†j |0〉
ω + iη − En

.

As discussed, this approach is time-consuming because of the
large size of the systems that need to be diagonalized. This is
made worse by the need to disorder average.

An improved approach is to use Dyson’s identity Ĝ(ω) =
Ĝ0(ω) + Ĝ0(ω)V Ĝ(ω), to write

G(i,j,ω) = G0(i,j,ω) + U
∑

l

plG0(i,l,ω)G(l,j,ω). (7)

Note that the sum on the right-hand side has contributions
only from the impurity sites l. As a result, this system of linear
equations can be solved in two steps. First, for any values of j

and ω of interest, one finds G(l,j,ω) from Eq. (7), where l runs
over all impurity sites (because of the small x, the resulting
linear system of equations has a rather small size). Once these
values are known, Eq. (7) gives G(i,j,ω) for any other site i.

As a simple example, for a single impurity, say at site 0,
Eq. (7) is G(i,j,ω) = G0(i,j,ω) + UG0(i,0,ω)G(0,j,ω). To
find G(0,j,ω) = G0(0,j,ω)/ [1 − UG0(0,0,ω)] is now trivial,
as it requires us to solve a linear system with a single
equation, for the impurity site. All G(i,j,ω) = G0(i,j,ω) +
UG0(i,0,ω)G0(0,j,ω)/ [1 − UG0(0,0,ω)] are then known. In
particular, we see that an impurity level appears at an energy EI

corresponding to the new pole: Ug0(EI ) = 1. This equation
has a solution outside the continuum, i.e., with EI < −6t , only
if U < −3.96t .

The case with more impurities is an immediate general-
ization. While solving a linear system with xN unknowns is
numerically much more efficient than diagonalizing a matrix
of dimension N , especially for small x values, the hidden
difficulty in this approach is the need to know many Green’s
functions G0(i,j,ω) for the clean system. Expressing these as
Fourier transforms over the Brillouin zone, in analogy to the
second half of Eq. (6), is not very useful since the integrand is
highly oscillating for large distances |i − j |, and moreover
has a line cut for energies in the clean particle spectrum,
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ω ∈ [−6t,6t]. Thus, numerical integration to find G0(i,j,ω) is
inefficient.

An efficient way to calculate such Green’s functions
[which applies to G(i,j,ω) just as well as to G0(i,j,ω)]
was proposed in Ref. 8. We review only its salient points,
and refer the interested reader there for more details. It uses
the identity (ω + iη − H)Ĝ(ω) = 1 to calculate the desired
Green’s functions. For any diagonal matrix element, this gives
(ω + iη − Upi)G(i,i,ω) = −t

∑
i1

G(i,i1,ω). Here, i1 is the
set of nearest-neighbor sites of i. It is actually more convenient
to think of them as the sites at a Manhattan distance M = 1
from the site i (for the simple cubic lattice, the Manhattan
distance between two sites i = (ix,iy,iz),j = (jx,jy,jz) is
defined as M = |ix − jx | + |iy − jy | + |iz − jz|). Because of
the nearest-neighbor hopping, the equation of motion for any
Green’s function G(i,iM,ω), where iM is at a Manhattan
distance M from the original site i, is linked only to Green’s
functions G(i,iM±1,ω). In other words, the infinite set of
equations of motion can be grouped into simple recurrence
relations over the Manhattan distance. This is the first key
observation.

The second key observation is that G(i,iM,ω) → 0 as M →
∞. This is obvious for disordered samples at energies ω where
electronic states are localized. However, it is also true for
extended states, including G0(i,iM,ω) at energies ω in the
band. The reason for this is the artificial “lifetime” 1/η, which
is finite in any numerical calculation since we cannot set η =
0. Because of it, the electron has an exponentially decaying
probability to travel arbitrarily far from its original location
i. [Remember that the real-time G(i,iM,t) is the amplitude of
probability for the electron to move from i to iM within time
t . If this is vanishingly small for a suitably large value of M ,
so are its Fourier transforms G(i,iM,ω).]

As a result, the infinite set of recurrence equations can
be made finite, by setting all G(i,iM,ω) = 0 for M � Mc,
where the cutoff Mc needs to be adjusted so that G(i,i,ω) is
insensitive to its further increase. (Details about our choices
of η and Mc are provided when we discuss our results. We
also note that we use a more suitable way to truncate these
equations, which is detailed in Ref. 8.) The truncated set of
equations can be solved in terms of continued fractions of
matrices, as discussed in Refs. 8,9. Alternatively, it can also be
treated as one very large but very sparse set of linear equations,
and solved with specialized packages such as PARDISO.10,11 Of
course, one could also use this approach to store all needed
values of G0(i,j,ω), and then solve Eq. (7) for many impurity
configurations. All these approaches are significantly more
efficient than brute-force diagonalization and allow us to find
G(i,i,ω) for many disorder realizations in a reasonable amount
of time, using off-the-shelf desktops.

III. RESULTS

We begin with strongly attractive donors: U/t = −6; in
this case the deep impurity level is well below the conduction
band and it should be easy to follow the evolution of the
impurity band with increasing x. Figure 1 shows results for
values of x ranging from 0.01 to 0.11. The top panels show the
disorder-averaged DOS ρ(ω), defined by Eq. (3). We have also
calculated the disorder-averaged DOS at impurity sites ρi(ω),

defined similarly to Eq. (3) but keeping only sites i which
have an impurity; i.e., pi = 1 in each contributing disorder
realization. Similarly, we also calculated a disorder-averaged
DOS at nonimpurity (host) sites ρh(ω), by averaging only over
disorder realizations with pi = 0. As expected,

ρ(ω) = xρi(ω) + (1 − x)ρh(ω).

For convenience, the top and bottom panels also show the DOS
of the clean system, ρ0(ω) = − 1

π
Img0(ω) (dashed line). The

CPA approximation for ρ(ω) is shown in the upper panels (full
line).

In terms of technical details, for this value of η = 0.05t ,
we find results already converged, within the error bars due to
disorder averaging, for a rather modest cutoff Mc = 20. Since
there are 1 + 2

3M(2M2 + 3M + 4) sites within a Manhattan
distance M of site i, this cutoff implies that samples containing
over 11 000 sites (centered around the site i of interest) have
been sampled. The results in Fig. 1 are for 1500 disorder
realizations, each producing its own G(i,i,ω) value. This
already gives reasonably small error bars. [Of course, they are
larger for ρi(ω) because only a fraction x of the configurations
contribute to this average. However, the values of ρi(ω) are
also significantly larger, so this is not a problem.]

As anticipated, for x = 0.01 we see a narrow impurity
band centered around the energy of the isolated impurity level
[in this case, EI ≈ −7.1t ; see Fig. 2(a)], and well separated
from the conduction band lying above it. The overwhelming
contribution to the IB states comes from impurity sites, as
expected at such small x: ρi(ω) 
 ρh(ω) in the IB. There is
a small contribution to IB from ρh(ω) as well, due to the fact
that even though impurity levels are strongly localized for such
deep levels, they do spread over a few sites. The contribution to
the IB seen in the ρh(ω) is from host sites which happen to be
nearest neighbor to an impurity site and therefore have a finite
impurity LDOS. One may argue whether these sites should be
grouped into the “host” or the “impurity” category; however,
we will continue with our original definition. Also, as expected,
only host sites contribute to the DOS in the conduction band;
impurity sites have vanishing DOS here.

As x increases, the IB DOS broadens considerably. Its
maximum height also increases fast with x for small x, but
seems to saturate for x > 0.05. This is most clearly seen by
looking at ρh(ω), although one must remember the factor of x

when considering the contribution from impurity states to the
total DOS.

The results in Fig. 1 also reveal a major surprise: Even
though the IB broadens considerably so that for x = 0.05 its
upper edge is already above ω = −6t , where the lower band
edge of the continuum is originally located, in reality the IB
is not merged with the conduction band even at x = 0.11. The
reason for this is that the lower band edge of the continuum
moves monotonically to higher values with increasing x, and
this proceeds almost as fast as the IB broadens, so the two
features remain distinct. This “migration” to higher energies
of the continuum is very clearly seen from the ρh(ω) plots.
Ignoring small contributions at IB energies (again, from host
sites located in the immediate vicinity of impurity sites), the
main contribution is in the conduction band. Comparison with
the DOS ρ0(ω) of the clean system (dashed line) shows how
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FIG. 1. (Color online) Disorder-averaged density of states ρ(ω) (upper panels), disorder-averaged density of states at impurity sites ρi(ω)
(middle panels), and disorder-averaged density of states at host sites ρh(ω) (bottom panels) for various concentrations x = 0.01–0.11, for
strongly attractive donors with U = −6,t = 1. The dashed lines show the DOS in the clean system. Full lines are the CPA predictions for ρ(ω).
Where not shown, error bars are smaller than the size of the symbols. Other parameters are η = 0.05, Mc = 20 and each average is over 1500
disorder realizations. See text for more details.

the continuum is “eroded” and how its band edge moves to
higher energies with increasing x.

In itself, this “erosion” of the conduction band is not
unexpected; after all, the states in the IB are pulled out of the
original conduction band states. Put another way, the DOS is
normalized,

∫ ∞
−∞ dωρ0(ω) = ∫ ∞

−∞ dωρ(ω) = 1, irrespective of
the values of x and U . The low-energy DOS inside the IB must
therefore come at the expense of missing DOS from higher
energies. This fact has been used, for example, to explain
magnetic circular dichroism in weakly doped (Ga,Mn)As.3,12

The surprise is that the bottom of the conduction band is fully
depleted almost at the same speed at which the IB spreads, so
that the two features are still separated at x = 0.11.

This separation is clearly seen in the CPA results. These
reproduce very well the higher energy DOS inside the band
[coming primarily from ρh(ω)] and its evolution with x. For
the IB, on the other hand, CPA predicts a contribution with
roughly the correct width and overall spectral weight, but the
CPA DOS is a smooth broad peak whereas the exact results
have lots of structure.

The peaks and valleys appearing in the IB DOS are not
random “structure” that could be blamed on lack of sufficient
disorder averaging. One can clearly see that the peaks appear at
roughly the same energies in all the plots, and simply become
more prominent and broader with increasing x. This suggests
that they must be intrinsic features of the model. Their origin
is easily understood as being related to the electronic structure
of small impurity clusters. This is demonstrated in Fig. 2
where we show the LDOS measured at an impurity site if
that impurity is isolated (dark full line), or part of a cluster of
two nn (light full line), two nnn (dark dashed line), or three
nn (light dashed line) impurities. For clusters of two nearby
impurities, the degeneracy between their impurity levels is
lifted and we see two new levels, corresponding to bonding
and antibonding states. The split between the two levels
decreases as the distance between the impurities increases,
as expected. In particular, for a cluster of 2 nn impurities we

see peaks around −8t and −6t , which explain the appearance
of prominent peaks in the finite x DOS at these energies as
coming from such clusters. The peaks associated with clusters
of 2 nnn impurities (especially the one at higher energies) are
also seen at smaller x but they merge into the broader central
peak as x increases and clusters with various relative distances
are sampled. Peaks below −8t cannot come from clusters of
2 impurities; instead they are associated with clusters of 3 or
more impurities. Some detective work can uncover the origin
of all these peaks.

Obviously, one-site CPA cannot describe such structure
associated with clusters of impurities; this explains the
smoothness of the CPA DOS in the impurity band. Cluster
generalizations of CPA should, presumably, be able to remedy

-9 -8 -7 -6 -5
ω
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4

5

ρ i(ω
)

isolated impurity
2 nn impurities
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FIG. 2. (Color online) Local density of states for samples with
a single impurity, with clusters of two nearest-neighbor (nn) or two
next-nearest-neighbor (nnn) impurities, or a cluster of 3 nn impurities.
In all cases the LDOS is measured at one of the impurity sites.
Parameters are U = −6,t = 1,η = 0.05.
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this situation. Apart from this, however, CPA captures quite
nicely the evolution of the IB and neatly illustrates how it
slowly grows and approaches the (remnants) of the conduction
band, and that the two are still not merged at x = 0.11. We can
generate results for larger x to see when the merging occurs,
but for x > 0.10 we are no longer in the weak-doping regime
and it is more and more questionable whether our simple model
is appropriate to describe such systems, which are very likely
to have large impurity clusters.

The absence of merging even for x ∼ 0.10 could be simply
due to the fact that we considered a case with very deep
impurity levels. One would expect that for shallower impurity
levels, where the IB forms much closer to the conduction band,
this merging would occur at lower x. We test this expectation
by generating data similar to that of Fig. 1 but for U = −5t and
−4.5t (as discussed above, a bound impurity level only appears
for U < −3.96t). We also decrease η = 0.025 to better resolve
features, and accordingly increase Mc = 25 (over 22 000 sites
are now included in the calculation).

The corresponding results are shown in Figs. 3 and 4.
Overall, we see similar behavior with that of Fig. 1; however,
there are some notable differences. Consider first the x = 0.01
results. As expected, as U becomes weaker and the impurity
energy EI moves closer to the band edge, so does the resulting
IB. For the U = −5 case, one can still argue (with some
help from the CPA results) that the IB and the conduction
band are separated for x = 0.01. For the shallower level,
for U = −4.5, they seem to already be merged. Another
difference is the substantial contribution of ρh(ω) to the IB
DOS, particularly in Fig. 4. This is due to the fact that wave
functions of the shallower levels are much more spread out
(the characteristic length scale which governs the exponential
decay of these bound wave functions diverges as the binding
energy vanishes). As such, many more “host” sites in the
vicinity of an impurity have a finite LDOS at the impurity
energy, and their signature is much more visible in ρh(ω) for
all x, roughly mirroring (on a reduced scale) ρi(ω) at these
energies.

With increasing x, in both cases the IB broadens and
exhibits the characteristic peak patterns discussed for the
U = −6t case, associated with various small clusters. Apart

from these, the agreement with CPA remains very acceptable.
Based on these results, we can conclude that, for U = −5t ,
the IB merges with the continuum for x ∼ 0.02, whereas for
U = −4.5t case, the IB is already merged with the conduction
band at x = 0.01. However, after the merging occurs, for all
x < 0.10 we can still easily identify a feature in the DOS which
is clearly related to the IB and due to contributions primarily
from the impurity sites and their immediate neighbors. Given
the evolution trends in our results, we expect this to continue
to be true at even higher x. There is no evidence that the
overall DOS is becoming smooth and featureless at higher x;
instead this rather distinct IB-related low-energy feature grows
roughly linearly with x. However, it is probably better to have
more realistic models to study larger x values, outside the
weakly doped regime.

Taken at face value, these results suggest that in any weakly
doped semiconductor (x < 0.10) that is reasonably described
by this simple model, the occupied low-energy states are
impurity-band-like, whether an impurity band is explicitly
separated from the conduction band or the two are merged. One
important caveat to keep in mind is that this is valid for highly
compensated samples, where electron-electron interactions
can be ignored due to the small number of electrons available
to populate these states. For weakly or even uncompensated
systems, where the number of available electrons becomes
comparable to the number of impurities, this approximation
fails. In this limit one cannot ignore the screening that an
electron trapped in the vicinity of one impurity provides for
that impurity’s potential, insofar as all other electrons are
concerned.

How to properly treat both disorder and electron-electron
interactions is, of course, a major challenge. If treating inter-
actions within the Hartree-Fock approximation is reasonable,
these techniques based on calculating single-electron Green’s
functions could be used to find the spectra for any mean-field
potential profile, and then the resulting DOS to calculate
the new expectation values for the mean-field potential, to
complete the self-consistency loop. If interactions are strong,
then Hartree-Fock fails. (In most real materials an impurity
does not bind two electrons, or if it does, this state has a very
weak binding energy. Electron-electron repulsion is, therefore,
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FIG. 3. (Color online) Same as in Fig. 1, for t = 1,U = −5,η = 0.025, Mc = 25 and averages over 2000 disorder realizations.
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FIG. 4. (Color online) Same as in Fig. 1, for t = 1,U = −4.5,η = 0.025, Mc = 25 and averages over 2000 disorder realizations.

on a scale comparable or larger than the binding energy of a
single electron.) Exact results can be obtained in this case using
various numerical methods such as quantum Monte Carlo (for
examples, see Refs. 13,14), however usually for very small
systems. In any event, proper inclusion of the screening effects,
which is necessary if the sample is not highly compensated,
may significantly change the results.

A second caveat is linked to the fact that all these results
assume no correlations whatsoever between the location of
impurities; i.e., all disorder realizations are equally likely. The
other extreme limit would be to place the impurities on a fully
ordered superlattice inside the host semiconductor. This is the
noninteracting, lattice analog of Mott’s problem of a lattice
of hydrogen atoms as a simplified model to study the metal-
insulator transition in a doped system.15,16 For commensurate
values of x, this is easily done. In particular, we focus on
concentrations x = 1/n3 for n an integer, where we can order
the impurities on cubic superlattices of constant na. For n � 3,
this gives x � 1/33 = 0.037, in the weakly doped regime of
interest.

In Fig. 5 we show the evolution of the impurity DOS ρi(ω)
with the cutoff Mc, for such a superlattice. We see a large IB,
separated through a significant gap from the next feature in the
spectrum, even though in the fully disordered case, the IB is
already merged with the conduction band for these parameters.

Since the impurities are now perfectly ordered, the eigen-
functions must be Bloch states, however in the 27 times smaller
Brillouin zone associated with this large supercell. Because of
the considerable folding of the BZ, we expect the original
band to split into many subbands. Indeed, this is what we
see (only the lower 2 such subbands are shown in Fig. 5).
Because all eigenstates are now extended, larger values of
Mc may be needed before convergence is reached. Indeed,
this is demonstrated by Fig. 5. The IB is the feature most
sensitive to the value of Mc; the other subbands are already well
converged even for Mc ∼ 25. This is not surprising since Mc

practically defines the size of the system, and therefore controls
the finite-size-like fluctuations of the IB DOS. We see that the
width of the IB is well reproduced even for Mc = 25, and that,

as Mc increases, the DOS closer to the band edges converges
faster than that near the center of the band. This behavior is
quite typical for this method.8 While for Mc = 50–60 results
at the center of the IB are still not fully converged, they are
sufficiently representative that we can stop at such values of
the cutoff.

Figure 6 shows the evolution of the local DOS at any
impurity site, ρi(ω), with U and x. The left panels are for a
fixed x = 1/33 and varying U . As U becomes more negative,
the IB moves to lower energies and becomes narrower. This
is expected. The IB is centered roughly at the single-impurity
energy EI , which moves down as U becomes more negative.
For an ordered superlattice, the IB bandwidth is proportional
to the effective hopping between nn impurity levels. This
varies roughly like exp(−R/aB ),17 where R is the distance
between neighboring impurities (here kept constant) and aB is
the analog of the Bohr radius for the isolated impurity wave
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FIG. 5. (Color online) Local density of states at an impurity site
ρi(ω) for an ordered cubic superlattice of impurities, for various
cutoffs Mc. Parameters are x = 1/27,U = −4.5,t = 1,η = 0.025.
Curves are shifted to ease the comparison.

235130-6



EVOLUTION OF THE IMPURITY BAND IN A WEAKLY . . . PHYSICAL REVIEW B 85, 235130 (2012)

0

1

2
ρ i(ω

)

0

1

2

ρ i(ω
)

0

1

ρ i(ω
)

0

1

ρ i(ω
)

0

1

ρ i(ω
)

0

1

ρ i(ω
)

-8 -7 -6 -5 -4
ω

0

1

ρ i(ω
)

0

1

2
ρ i(ω

)

0

1

2

ρ i(ω
)

0

1

2

ρ i(ω
)

0

1

2

ρ i(ω
)

-7 -6 -5 -4
ω

0

1

2

ρ i(ω
)

U=-3.5

U=-4.0

U=-4.5

U=-5.0

U=-5.5

U=-6.0 x=1/3
3

x=1/4
3

x=1/5
3

x=1/6
3

x=1/7
3

impurity
isolated
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ordered cubic superlattice of impurities. Left panels: x = 1/33 and
various U . Right panels: U = −4.5 and various x. Other parameters
are t = 1,η = 0.025,Mc = 50.

function. Since aB decreases as U becomes more negative and
the impurity wave function is more localized, the narrowing
of the IB is expected. The upper subbands also move towards
lower energies as U becomes more negative, however much
more slowly. In the lower two panels, one can see the onset of
the third subband.

The interesting observation here is that the IB is still distinct
from the upper subbands (i.e., no merging has yet occurred)
even for U = −3.5t . At first sight this is rather surprising since
impurity potentials with U > −3.96t are too weak to bound
a single-impurity level, so the existence of an IB at these
values is not a priori expected. In the superlattice framework,
however, the gap between the IB and the next subband depends
only on the hybridization between states at the folded BZ
surface, controlled by U . There is no reason for this to change
discontinuously with U , and indeed the evolution of ρi(ω) is
smooth through the Uc = −3.96 value.

The right panels show ρi(ω) for a fixed U = −4.5 and
varying superlattice constants. The top panel is for an isolated
impurity (equivalent to a superlattice x = 1/n3 with n → ∞).
It shows the impurity level at an energy EI just below the
continuum band edge at ω = −6. The two features are not
fully separated because of the finite value of η, although the
onset of the continuum is quite clearly visible. As n decreases,
the IB stays roughly at the same energy EI , as expected, and
becomes broader, because the effective nn hopping increases
as Ra decreases (here aB is kept constant). We can also see
the evolution of the higher subbands. For a given n, the BZ is
folded down n3 times and one expects up to n3 subbands to
replace the original band (there can be fewer subbands since

full gaps do not necessarily open up at each crossing of the
folded BZ surface). This expected increase in the number of
subbands with increasing n is apparent. For n = 6,7, only a
few lower subbands can be resolved; the upper ones merge
into a continuum (again, one must also remember the finite
broadening η). As n → ∞, the number of subbands diverges
but the gaps between them become extremely small so that all
of them, except the IB, merge into the expected conduction
band.

These results show that whether the IB is distinct from or
is merged with the conduction band depends not only on U

and x, but also on the degree of disorder of the impurities.
If the impurities are perfectly ordered, the existence of an IB
separated through a large gap from the higher features is much
more likely than in a fully disordered case.

Of course, we can also consider intermediate levels of
disorder, which should interpolate between these two extreme
cases. One way to achieve this is to allow each impurity to
be distributed with some probability around its superlattice
location. For instance, assume that it is equally likely for
any impurity to be at its superlattice site or any of its nn
locations; such a situation allows for some degree of disorder,
while still maintaining a rather uniform distribution of the
impurities, with roughly one per superlattice unit cell. Then,
one can systematically increase the region where the impurity
is allowed to be, thus increasing the amount of disorder in the
system.

Results for such intermediate disorder configurations are
shown in Fig. 7, for cutoffs of 1 and 2, respectively, in the
Manhattan distance at which an impurity can be located with
respect to its superlattice sites (all allowed sites are equally
probable). When compared with the perfect superlattice case
(full line), we see the IB first broaden and then narrow
somewhat as the disorder increases, although additional lower
energy peaks associated with clusters appear in the latter case.
This type of behavior has been observed for other values
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FIG. 7. (Color online) Local density of states at an impurity
site, ρi(ω), when impurities are equally likely to be within a
Manhattan distance 1 (light squares) or 2 (dark circles) of their
superlattice locations. For these points, Mc = 40, and we averaged
over 500 disorder realizations. For comparison, the full line shows the
superlattice LDOS. Parameters are t = 1,U = −4.5,η = 0.025,x =
1/33.
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FIG. 8. (Color online) Estimated cutoff O for the minimum
distance allowed between two impurities for which the IB merges
with the continuum, vs x and |U |.

of U as well (not shown). The disorder has a larger effect
on the higher energy features. The higher subband becomes
very broad as soon as disorder is allowed, and its lower edge
approaches the IB with increasing disorder. We estimate that
for M = 2, the IB is already very close to merging with the
continuum located above it.

Another, somewhat related way to vary the amount of
disorder is to choose random positions for impurities but
subject to the constraint that the Manhattan distance between
any two impurities is equal or larger than a cutoff O. If O = 1,
this allows any totally random disorder distribution, but as
O increases the impurities are spread more homogeneously,
however without an implied underlying superlattice structure.
We have studied many averaged DOS for configurations with
such disorder and estimated the value of O where the merging
between the IB and the conduction band occurs. The results
are shown in Fig. 8, as a function of x and |U |. Since whether
merging has occurred or not is, to some extent, a subjective
call, this data should be taken as pointing to the qualitative
behavior with degree of disorder, and not so much as a definite
quantitative criterion for merging.

The results in Fig. 8 show that for large |U |, where the
IB forms well below the conduction band, one needs a large
amount of disorder with O → 1 before the considerable gap
fills up. By contrast, as U decreases and the IB starts closer
to (or even within) the conduction band, even for fairly
homogeneous disorder configurations with a large minimum
distance O between any two impurities, the merging has
already occurred.

IV. CONCLUSIONS

To summarize, we have investigated here the formation
of the impurity band in a weakly doped semiconductor, as-

suming a highly compensated system where electron-electron
interactions can be neglected. This set of large-scale numerical
simulations for a lattice model is made possible by an approach
of dealing with lattice Green’s functions. We find that if
we consider completely random disorder configurations, the
concentration x where the IB merges with the continuum
above it depends on U : The more negative U , the deeper the
impurity levels, the higher x must be before merging occurs.
CPA describes quite well such situations, except for some
structure associated with small clusters. For fixed x and U , the
degree of disorder of the impurities controls whether the IB is
a distinct feature or not. Generally, configurations with more
homogeneously distributed impurities tend to have an IB sepa-
rated from the conduction band. This can be understood in the
extreme limit of an ordered superlattice, where one generically
expects a gap to open between consecutive subbands because
of the BZ folding.

One of the surprises revealed by this study is that for this
model and with these approximations, a low-energy feature
reminiscent of the IB is clearly visible for any weakly doping
concentration x < 0.10, even if the merging has occurred at a
much lower x value. The corresponding electronic states have
primarily an impurity-like nature, and therefore one expects
the behavior in such materials to be very much dominated by
impurity-type physics, even if a fully separated IB no longer
exists.

As already discussed, we completely ignore screening
processes; this should be a reasonable approximation in highly
compensated samples. However, for weakly compensated and
uncompensated samples such processes cannot be ignored
and the behavior of the system may be strongly affected
by them. Our results may serve as a starting point to
understand the precise role of such screening, by comparing
them against results where screening processes are taken
into consideration. Our results also serve as a benchmark for
various approximations dealing with disorder, going beyond
the CPA.

Finally, let us comment on the nature (localized or
extended) of the states in the IB. In principle, our data
can be used to investigate this, since we can easily make
histograms of the LDOS values ρ(i,ω) = − 1

π
ImG(i,i,ω) (here

we have only shown the corresponding averages and standard
deviations). As generally expected, we find Gaussian-type
distributions at energies high into the conduction band, typical
of extended states. By contrast, at energies within the IB
and for highly disordered samples, the distributions tend
towards the log-normal distribution typical of localized states.
However, a complete analysis seems to require size-dependent
results (for a clear discussion of these issues, see Ref. 18
and references therein). While our cutoff Mc plays, to some
extent, the role of fixing the system size, the link between the
two is not so direct and more work is needed to settle this
issue.
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APPENDIX: NUMERICAL SOLUTION FOR CPA

CPA requires a self-consistent solution to Eq. (5), and the
usual way to obtain it is by iterations. It is, however, not a priori
obvious what is the best way to write Eq. (5) so that the itera-
tions reach convergence most efficiently. We found three differ-
ent formulations which work well in different energy ranges.

For energies below the IB, we find that if we start with the
guess σ (ω) = xU and use it on the right-hand side of Eq. (5) to
obtain the next iteration, etc., the process converges smoothly
and reasonably fast to an acceptable self-consistent solution.
Technically, we defined self-consistency to be reached when
the absolute value of the difference between consecutive values
of σ (ω) is below 0.01η (η is the small energy scale in this
problem).

However, using this approach for higher energies either
leads to an unphysical self-consistent solution (for example,
one which gives unphysical negative DOS), or does not
converge in a reasonable interval of time. We found that
for energies within the IB, convergence to a physical self-
consistent solution is fast if we rewrite Eq. (5) as

σ (ω) = xU − [σ (ω)]2g0(ω − σ (ω))
1 − Ug0(ω − σ (ω))

and start with the guess σ (ω) = xU/[1 − Ug0(ω − xU )].

Finally, for energies above the IB, fast convergence to a
physical self-consistent solution was achieved if we rewrote
Eq. (5) as

σ (ω)

= −1+Ug0(ω−σ )−
√

[1−Ug0(ω−σ )]2 + 4xUg0(ω−σ )

2g0(ω−σ )

[this comes from thinking of Eq. (5) as a quadratic equation
in σ—ignoring the g0(ω − σ ) complication—and picking the
root which vanishes at these energies when x → 0]. The initial
guess here was σ = 0.

The different solutions overlap in the common intervals
where two of them work and combining all three of them
results in a smooth function, giving us some confidence in this
approach. The reasonable agreement with the exact results
also suggests that we have likely found the correct CPA
solutions.

In any event, one can certainly find self-consistent CPA
solutions which are unphysical. Moreover, it is not a priori
obvious that there is a unique self-consistent physical solution,
although we only found one such solution in the cases we
investigated. Thus, some care is needed when working with
this approximation.
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