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Multiplets in a ligand field are treated within total-energy density-functional calculations by imposing density-
matrix constraints on the d-orbital occupation numbers consistent with the local site and state symmetries.
We demonstrate the utility of this approach for the case of isolated Fe phthalocyanine (FePc) molecules with
overall D4h symmetry: We find three stationary states of 3Eg , 3A2g , and 3B2g symmetries of the Fe2+ ion, and
total-energy calculations clearly demonstrate that the ground state is 3A2g . By contrast, a columnar stacking of
the FePc molecules (α-FePc) is found to change the ground state to 3Eg due to hybridization between adjacent
molecules.
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I. INTRODUCTION

State-of-the-art ab initio electronic structure calculations
based on density-functional theory (DFT) have been recog-
nized as a powerful tool to explore the ground-state electronic
structure. However, there are systems, such as transition-metal-
based complexes and molecules, where the multiplet structure
is essential for understanding the electronic structure. Because
of the inherent multideterminant nature of the general atomic
multiplet problem,1 a general solution remains a challenging
issue. Even in the presence of the lower symmetry caused by
a ligand (or crystal) field, which may lift the atomic multiplet
degeneracies, DFT calculations often cannot adequately treat
the experimentally observed multiplet structures and thus fail
to find the true ground state or the lowest state within a given
ligand (or crystal) symmetry. This difficulty is intrinsically
related to the fact that the charge (and spin) density belongs
to the completely symmetric representation of a group, but the
various multiplets (and their orbital occupations) transform
according to different irreducible representations; i.e., the
symmetry of the charge (spin) densities is not sufficient to
distinguish among different multiplets since all the multiplets
generate densities of the same symmetry. In order to overcome
such difficulties, it is desirable to find an approach within
DFT [local-density approximation or generalized gradient
approximation (GGA)] calculations to find the lowest state
of a given symmetry.

Proposed approaches for calculating multiplet energies
in a ligand field include, for example, combining the DFT
single-particle wave functions and configuration interaction
(CI).2,3 Such CI calculations, however, are already outside of
a DFT scheme depending on the charge and spin densities
and are computationally expensive because of the need to
construct appropriate (and/or enormous) multi-Slater deter-
minants. Alternatively, in the present paper, we propose a
simple DFT approach to treat multiplets in a ligand field,

consistent with the overall symmetry and the symmetry of the
individual state, by imposing a density-matrix constraint to
control the occupation numbers of electrons in, for example,
the d orbitals. To illustrate our approach, we search for the
ground-state multiplet for Fe phthalocyanine (FePc), a material
with technological and biological applications.4

II. STRUCTURE OF Fe PHTHALOCYANINE

An isolated molecule of FePc has the simple planar
structure shown in Fig. 1(a), where the Fe2+ (d6) ion located
at the center of the molecule has D4h site symmetry. In
condensed form, it shows two polymorphs: a metastable α

form found in polycrystalline powders or in thin films with
ferromagnetic order below 10 K5–9 and a stable paramagnetic
β form10–13 obtained by sublimation growth as a single crystal
or by heating α-FePc at 350◦C. In both forms, the ligand
field splits the d states into three singlets (dxy , dz2 , and
dx2−y2 ) and one doublet (dxz+yz). Ignoring the high-lying
dx2−y2 state that bonds to the four outer N ions, three spin-triplet
multiplets—3Eg (d2

xyd
1
z2d

3
xz+yz), 3B2g (d1

xyd
1
z2d

4
xz+yz), and 3A2g

(d2
xyd

2
z2d

2
xz+yz)—may be constructed, each of which generates

a charge and spin density of D4h symmetry.
Despite extensive experimental and theoretical investi-

gations spanning decades, which multiplet is the ground
state is still debated: Magnetic anisotropy experiments12,15

originally assigned the 3Eg multiplet as the ground state, but
later magnetic susceptibility and magnetic circular dichroism
experiments13,14 favored ground states of either 3B2g or
3A2g symmetry. (There is, however, general consensus that
the ground state has S = 1.) Meanwhile, recent Mössbauer
spectroscopy and x-ray magnetic circular dichroism (XMCD)
experiments8,9 for α-FePc found a 3Eg ground state with a
large orbital moment of 0.53 μB and a large hyperfine field of
66.2 T that is parallel to the magnetic moment.8 Magnetization
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FIG. 1. (Color online) (a) Atomic structure of the Fe phthalo-
cyanine (FePc) molecule; the Fe2+ (d6) ion has D4h symmetry.
(b) Chain structure of α-FePc, characterized by a columnar stacking
of the planar molecules with separation of b = 3.78 Å and a tilt angle
φ = 26.5◦ with respect to the chain axis.

hysteresis experiments, furthermore, indicated that the easy
axis of magnetization is parallel to the molecule plane, i.e., a
planar magnetic anisotropy.9

Similarly, DFT calculations are still contradictory: recent
pseudopotential and full-potential linearized augmented plane-
wave (FLAPW) calculations16–18 within the GGA support the
3Eg ground state, in which qualitative agreement with experi-
mental observations is obtained for α-FePc,9 but the 3A2g and
3B2g ground states have also been found.19–21 Unfortunately,
up to now there have not been direct comparisons of the total
energies of the various multiplets within a DFT scheme. Thus,
determining the ground-state multiplet of the FePc molecule
remains unsolved from both the experimental and theoretical
points of view.

III. MODEL AND METHOD

To model a single FePc molecule with D4h symmetry, as
shown in Fig. 1(a), we adopt a monolayer slab with infinite
vacuum on both sides, a large in-plane lattice constant of 27 Å,
and the atomic positions given by experiment.22 Calculations
were done by the film-FLAPW method23,24 and used the
GGA25 for exchange correlation. LAPW basis sets with cutoffs
of |k + G| � 3.6–4 a.u.−1 and muffin-tin (MT) sphere radii of
2.3 a.u. for transition metals, 1.2 a.u. for N and C, and 0.8 a.u.
for H were used; lattice harmonics with angular momenta up
to � = 8 for Fe, 6 for N and C, and 4 for H are employed to
expand the charge and spin densities.

Before presenting our strategy to search for given
multiplets, we discuss some aspects of the symmetry in
more detail. In D4h symmetry, the nonspherical densities
arising from the Fe d orbitals can be expanded into three
lattice harmonics: K1(�r) = Y20(�r), K2(�r) = Y40(�r), and
K3(�r) = [Y44(�r) + Y4−4(�r)]/

√
2. Each of the multiplets

is a triplet, i.e., four majority and two minority d

electrons. The majority nonspherical density is the
same for all three multiplets and proportional to
ρ↑ ∼ |ud |2 [(2

√
5/7)K1 − (1/7)K2 + √

5/7K3], where
ud is the radial d orbital. The corresponding minority
densities for the various multiplets differ in the coefficients
of the lattice harmonics: ρ↓(A2g) ∼ |ud |2 [K2 + √

5/7K3],

ρ↓(B2g) ∼ |ud |2 [(2
√

5/7)K1 − (8/7)K2], and ρ↓(Eg) ∼
|ud |2 [(−√

5/7)K1 − (3/7)K2 + √
5/7K3].

Starting with initial nonspherical charge and spin densities
corresponding to a given multiplet does not necessarily lead to
self-consistent results for that multiplet. In fact, using a straight
mixing scheme for the spin density, self-consistent calculations
are found to converge to the 3Eg solution regardless of
the different initial d occupancies, consistent with previous
DFT calculations.16–18 (Using the “standard” starting density
derived from overlapping spherical densities invariably leads
to the 3Eg state.)

In self-consistent calculations, the trajectory of the
charge/spin density from an initial one is complicated and
nonlinear, making definitive statements regarding the self-
consistency process difficult. For the present case of FePc
D4h symmetry, however, the situation is somewhat simplified
since the changes during the self-consistency cycle are mainly
governed by the strong hybridization between the minority-
spin Fe dxz,yz and neighboring N pz orbital that form bonding
and antibonding states. Since the 3Eg state has one electron
in the dxz,yz,↓ orbital, the electron occupies only the bonding
state, which drives a self-consistent solution to the 3Eg state.
By carefully tailoring the mixing scheme, we found that we
were able to obtain a 3A2g solution (no electron in the dxz,yz,↓
orbital). However, we were never able to reach a 3B2g solution
(two electrons in the dxz,yz,↓ orbital), since electrons need
to occupy both the bonding and antibonding states, which
is generally an unfavorable electronic structure. Thus, in
contrast to conventional expectations and practices, the DFT
calculations, even with appropriate initial conditions, are not
guaranteed to treat all multiplets considered and may not—and
often do not—find the true ground state.

To generalize the DFT method to multiplets with given
symmetries, we introduce an appropriate functional with
constraint fields:

E[ρ(r)] = EGGA[ρ(r)] +
∑
mm′

μα
m′m

(
nα

mm′ − Nα
mm′

)
, (1)

where EGGA[ρ(r)] is the usual total-energy functional in the
GGA, nα

mm′ is a density matrix of d orbitals of an atom α, and
Nα

mm′ is an occupation number that should be constrained. The
μα

m′m is a constraint field (Lagrange multiplier parameter)26

that can be viewed as a field to constrain the density matrix,
such that the desired multiplet structure is obtained, similar to
the external magnetic field in fixed moment calculations. By
minimizing Eq. (1), the Kohn-Sham equation can be written
as [

HGGA +
∑
mm′

μα
m′mP̂α

mm′

]
�k,b = ε�k,b, (2)

where P̂α
mm′ is a projection operator onto the mm′ subspace.

The constraint term in the Hamiltonian effectively projects
out the chosen irreducible representation for the overall wave
function. If the constraint fields are zero for a set of nα

mm′ (or
the constraints are satisfied), the solution obviously is also
a solution to the standard unconstrained DFT equations; this
situation is again similar to fixed moment calculations where
the unconstrained solutions are found when the magnetic
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constraint fields are zero (or, equivalently, the minority and
majority Fermi levels are equal).

In the LAPW basis, nα
mm′ is given by the projection of the

wave function onto the Y�m subspace27 as

nα
mm′ =

∑
k,b

fk,b〈�k,b |P̂α
mm′ | �k,b〉, (3)

P̂α
mm′ = ∣∣uα

� Y�m

〉〈
uα

� Y�m′
∣∣ + 1

〈u̇�u̇�〉
∣∣u̇α

� Y�m

〉〈
u̇α

� Y�m′
∣∣, (4)

where k and b refer to a k point in the Brillouin zone and a band
index, respectively. Self-consistent calculations were carried
out using the second-variation scheme; i.e., the diagonalization
of Eq. (2) was carried out in a basis of the eigenfunctions, φk,b,
of HGGA. Full self-consistency was achieved for the density
matrix as well as the charge and spin densities.

In practice, we specify a set of constraint fields, μα
n , along

the directions of the eigenvectors of nα
mm′ consistent with the

site symmetry (e.g., μz2 , μxz = μyz, μx2−y2 , and μxy in the case
of D4h symmetry). Then, the μα

mm′ , that are rotated back from
the μα

n , are introduced in Eq. (2), and the corresponding nα
mm′

are determined self-consistently. The total energy is calculated
using Eq. (1), with Nα

mm′ = nα
mm′ .

Note that the self-consistent solution obtained by first ap-
plying constraint fields and then decreasing them to zero need
not lead to the same solution as an unconstrained calculation.
Although this situation may seem surprising at first, it is rather
common and physically significant: Experimentally, there is
often a difference in magnetization between field-cooled and
zero-field-cooled values, which is of fundamental importance
in the physics of spin glasses. Computationally, multiple
zero-field (unconstrained) magnetic solutions, including the
zero-magnetization/non-magnetic one, often exist; different
solutions can be obtained, for example, by (i) using a
staggered/uniform magnetic field (the magnitude is then
reduced to zero) to pick out AFM/FM order or (ii) varying,
for itinerant electron metamagnets28 and high-spin/low-spin
ferromagnets, the magnitude of the magnetic field before
removing it. Thus, when multiple solutions exist, as is the
case for both multiplets and these specific magnetic examples,
the application of external constraint fields may be helpful,
or sometimes even necessary, in order to obtain the desired
unconstrained solution.

IV. RESULTS AND DISCUSSION

The minority-spin occupations, nxz+yz,↓, and the total-
energy differences, 	E, with respect to variations of the
μxz(yz),↓ for the single FePc molecule are shown in Figs.
2(a) and 2(b), respectively, when the other μn’s are set to
zero. Starting from a superposition of spherical atoms and
with no constraints, i.e., μn = 0 (closed squares in Fig. 2),
yields the multiplet structure shown in Fig. 3(a): the singlet dxy

in the minority-spin states is fully occupied, and the doublet
dxz+yz, located at the top of the valence states, is occupied
by one electron, thus corresponding to the 3Eg state. The
degeneracy in the doublet dxz+yz occupied by a single electron
could be removed by a Jahn-Teller distortion, as pointed out
previously.29 We confirmed that the total energy of the system
that degrades to a D2h symmetry turns out to be lower by
45 meV/molecule than that with the original D4h symmetry.
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FIG. 2. (Color online) (a) Minority-spin dxz+yz occupations,
nxz+yz,↓, in the Fe MT sphere and (b) the total-energy difference, 	E,
with respect to the constraint field, μxz(yz),↓, for the FePc molecule,
where the other μn’s are set to zero. Closed squares indicate the
solution obtained without the constraint field. (c) 	E as a function
of the nxz+yz,↓, where the constraint fields, μn, are set so as to obtain
each multiplet.

When the constraint field μxz(yz),↓ is introduced in the
negative direction (cf. Fig. 2), nxz+yz,↓ increases to ∼1.6
electrons; if μxz(yz),↓ is decreased to zero (zero constraint field)
the system remains in the stationary solution; i.e., the 3B2g

state is a metastable solution to the standard GGA equations.
In this multiplet structure, Fig. 3(b), the doublet dxz+yz in the
minority-spin states is fully occupied while the singlet dxy

shifts up in energy above the valence top, corresponding to
3B2g . The total energy is now lower than that of the 3Eg state
by 43 meV/molecule.

In contrast, when μxz(yz),↓ is introduced in the positive
direction, nxz+yz,↓ decreases almost to zero, at which point
the doublet dxz+yz in the minority-spin states shifts up above
the top of the valence states and the two singlets dxy and dz2

are fully occupied [Fig. 3(c)]. The total energy of this 3A2g

configuration is lower than those of the 3Eg and 3B2g ones
by 97 and 54 meV/molecule, respectively. We thus conclude
that the ground state of the single FePc molecule is the 3A2g

multiplet.
A phase diagram for the multiplets with respect to the

nxz+yz,↓ is summarized in Fig. 2(c), where the constraint
fields μn are set so as to obtain each multiplet solution:
μz2,↓ (μxy,↓) = 0.03 (−0.03) htr for 3Eg , 0.03 (0.03) htr for
3B2g , and −0.03 (0.03) htr for 3A2g . Note that each multiplet
solution appears only in a restricted narrow range in nxz+yz,↓
space. This behavior rationalizes the observed difficulty of
stabilizing, for example, the 3B2g solution: During the standard
self-consistency process, the occupations of the various Fe
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FIG. 3. (Color online) Multiplet structure for (a) 3Eg , (b) 3A2g ,
and (c) 3B2g , obtained as stationary states in self-consistent calcu-
lations with zero constraint field (μn = 0). Bars (in color) represent
weights of d orbitals. Negative and positive energies indicate occupied
and unoccupied orbitals, respectively.

(and N) orbitals vary due to hybridization and Fermi filling
effects; if these variations are too large (which may be less
than ∼0.1 electron), the solution “jumps” from the initial 3B2g

manifold to the 3Eg one. However, once the solution is “close
enough” to the self-consistent one, the constraint field can be
removed and the system will iterate to the metastable solution.
Thus, the imposition of the constraints on the density matrix
provides an approach that permits the calculation of states
that may be difficult to stabilize otherwise, independent of the
initial densities. These results indicate that different solutions
proposed previously16–21 may be sensitive to (or an accidental
result of) calculational details.

Next, we consider the electronic structure of α-FePc in
the chain structure shown in Fig. 1(b).6,7 Note that although
the columnar stacking breaks the D4h symmetry at the Fe
position the constraint fields, as done previously, can still be
imposed. No stationary (μn = 0) solutions for the 3B2g and
3A2g states are found, and the ground state is determined to be
3Eg; the total energy is now lower than those of the 3B2g and
3A2g states by about 200 and 100 meV/molecule, respectively,
when compared to the lowest energies in the constraint
fields.

The calculated band structure along the chain axis and the
partial density of states (DOS) of the Fe d orbitals for the
3Eg state are shown in Fig. 4. Due to hybridization between
the adjacent molecules along the chain axis, the dxz+yz and
dz2 orbitals have large dispersion along the chain axis, and a
small energy gap (0.17 eV) in the minority-spin dxz+yz bands
appears, indicating semiconducting behavior. As seen in the
DOS, the hybridization pushes the bonding dxz+yz bands down
to a lower energy below the top of the valence band, which
causes the ground state to be the 3Eg one.

(a) ytirojaM )b(ytironiM )c(

0

1

E
ne

rg
y 

(e
V

)

z2

xz+yz

–1

E

xy

xz+yz

xy

Γ Z4 2 0 0 2 4
DOSDOS

FIG. 4. (Color online) (a) Calculated band structure along the
chain axis: solid (dashed) lines represent the majority (minority)
bands. (b) Majority- and (c) minority-spin partial density of states
of d orbitals in the 3Eg state. Thick solid (blue), thin solid (green),
thin dashed (red), and thin dotted (orange) lines represent dxz+yz, dxy ,
dz2 , and dx2+y2 states, respectively.

We also carried out magnetic anisotropy calculations for
the chain structure, using the second variational spin-orbit
coupling method and the force theorem,30–32 where the
magnetic anisotropy energy, EMA, is obtained as the energy
eigenvalue difference for the magnetization oriented along
the in-plane and out-of-plane directions with respect to the
molecule plane. The calculations demonstrate that EMA has
a large negative value of 0.6 meV/molecule, indicating that
the magnetization energetically favors pointing in the planar
direction and a large orbital moment of 0.14 μB is induced,
in qualitative agreement with recent XMCD experiments.9

In addition, the calculated hyperfine field due to the Fermi
contact term is found to have a positive value of 13.4 T,
i.e., to be parallel to the magnetic moment, due to a large
positive contribution from the valence s-like electrons. (The
quantitative discrepancy with the Mössbauer experiments8

may be attributed to the underestimation of the orbital moment
in the calculation.)

V. SUMMARY

In summary, we have generalized the DFT total-energy
calculations to treat different multiplets in a ligand field
by incorporating a density-matrix constraint to control the
occupation numbers of electrons in d orbitals. We have
applied this approach to solve a long-standing question
regarding the ground state of FePc: We find three stationary
states, 3Eg , 3A2g , and 3B2g , of the Fe2+ ion in the single
FePc molecule, with total-energy calculations demonstrating
that the ground state is the 3A2g configuration. The columnar
stacking of the FePc molecules in the α-FePc changes the
ground state to 3Eg , due to the hybridization between adjacent
molecules along the chain axis. The magnetic anisotropy
calculations indicate that the magnetization is preferentially
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in-plane and large orbital moments are induced, in agreement
with the recent XMCD experiments.
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