
PHYSICAL REVIEW B 85, 235126 (2012)

Optimized effective potential using the Hylleraas variational method
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In electronic structure calculations the optimized effective potential (OEP) is a method that treats exchange
interactions exactly using a local potential within density-functional theory. In the exchange-only case, this is
commonly called exact exchange. We present a method using density-functional perturbation theory combined
with the Hylleraas variational method for finding the OEP by direct minimization, which avoids any sum over
unoccupied states. The method has been implemented within the plane-wave, pseudopotential formalism. Band
structures for zinc-blende semiconductors Si, Ge, C, GaAs, CdTe, and ZnSe; wurtzite semiconductors InN,
GaN, and ZnO; and the rocksalt insulators CaO and NaCl have been calculated using the OEP and compared
to calculations using the local-density approximation (LDA), a selection of generalized gradient approximations
(GGAs) and Hartree-Fock (HF) functionals. The band gaps found with the OEP improve on the calculated results
for the LDA, GGAs, or HF, with calculated values of 1.16 eV for Si, 3.32 eV for GaN, and 3.48 eV for ZnO. The
OEP energies of semicore d states are also greatly improved compared to LDA.
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I. INTRODUCTION

Density-functional theory (DFT) is one of the great
successes in tackling the many-electron problem.1–3 Density-
dependent exchange-correlation potentials, such as the local-
density approximation (LDA) or generalized gradient approx-
imations (GGAs), are useful and surprisingly accurate for
many properties of materials despite the known deficiencies of
these functionals. Generally, the LDA slightly underestimates
lattice constants, while GGAs slightly overestimate them, and
both underestimate single-particle band gaps in solids.4–7 The
exchange energy can be calculated exactly using the nonlocal
Hartree-Fock (HF) formalism, rather than being approximated
as part of the LDA or GGA. However, pure HF grossly
overestimates band gaps in solids and is considerably more
expensive computationally because of the fully nonlocal nature
of the exchange operator.

The central theorem of density-functional theory1 demon-
strates that a local potential V (r) is sufficient to completely
define a many-electron system in the ground state (GS). A
local potential that includes the effect of the exact exchange
interaction was first proposed by Sharp and Horton8 and solved
nearly a quarter of a century later by Talman and Shadwick.9

This potential is known as the optimized effective potential
(OEP), because a local potential is created to optimally
represent the nonlocal HF exchange potential. The total energy
of the OEP system is variational with the potential in the
same way the LDA or GGA total energy is variational in the
electronic density. This allows the construction of equations
to describe the potential within a Kohn-Sham (KS) DFT
formalism. The resultant single-particle excitation energies
agree much better with experiment than those calculated using
the LDA, GGAs, and HF.3

The improved OEP description of excited states is a
consequence of the freedom from the self-interaction error
of both occupied and unoccupied Kohn-Sham states.10 Within
the LDA and GGAs the potential experienced by all states

includes some degree of self-interaction.11 In HF the exchange
term cancels the self-interaction error in the occupied states,
but no such cancellation is present for the unoccupied states.
This results in too small an electronic band gap using the LDA
and GGAs and too large a one in HF.12–14

There is a distinction between the fundamental band gap
of a material and the corresponding Kohn-Sham gap. The
Kohn-Sham gap (EKS

g ) is defined as the difference between
the eigenvalues of the highest occupied orbital and the lowest
unoccupied orbital:

EKS
g = εN+1 − εN, (1)

where εi is the eigenvalue of the ith orbital and N is the total
number of electrons in the system. Whereas the fundamental
band gap (Eg) is defined as the difference in the ionization
potential and the electron affinity,

Eg = I − A = E(N + 1) − 2E(N ) + E(N − 1), (2)

where I is the ionization potential, A is the electron affinity
and E(N ) is the total energy of an N -electron system. The two
are related by

Eg = EKS
g + �xc, (3)

where �xc is the derivative discontinuity in XC (exchange-
correlation) energy with respect to particle number.6,7,15 This
constant is the energy associated with a change in the
exchange-correlation potential when an infinitesimal charge
is added to an N -electron system. While a comparison
between the Kohn-Sham and fundamental band gaps would
be instructive, the value of the derivative discontinuity is
unknown for most real materials (see, however, Godby et al.16

and Stadele et al.17,18).
In finite systems, the exchange potential should decay as

−1/r in the long-range limit for all states. In the OEP this
decay occurs for all states irrespective of occupancy. In HF the
nonlocal potential for occupied states behaves correctly but
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for the empty states decays exponentially, and in the LDA/
GGA the potential for all states decays exponentially.19

Furthermore, the orbitals in the OEP each correctly decay with
an individual exponent, whereas in HF all occupied orbitals
decay with the same exponent.3,10,12–14

The OEP is potentially as versatile as LDA/GGA and HF
methods. It could be used instead of HF as a foundation for
orbital-dependent potentials (so-called hybrid functionals).3

Furthermore once the local potential has been obtained, the
calculation of system properties is faster than HF based
methods, as the computationally expensive application of the
exchange operator is avoided.

While the OEP correctly describes many system properties
(see Grabo et al.12), it is not as widely used as the LDA, GGA,
and HF-hybrid based methods. This can be attributed in part
to the lack of comparably efficient and robust computational
schemes to evaluate it. In most formulations of the OEP method
a sum over all excited states is required and truncation to a finite
sum yields a slowly convergent series. Furthermore an accurate
description of these high-energy states requires large basis sets
at high computational expense if a local basis description is
used. Despite these deficiencies, some calculations have been
done in solids, within the linear muffin-tin orbital (LMTO)
basis set20–22 and the full potential linearized augmented
plane-wave (FPLAPW) method,23 as well as in plane-wave
pseudopotential implementations.17,18,24–27 The agreement of
the calculated results in the above-mentioned previous work
with experiment can be very good (see Ref. 10). However,
most applications have been to semiconductors. For wide-gap
insulating systems the performance of the OEP can be poor,
notably for noble-gas solids.27 See Ref. 10 for full details and
further discussion of the OEP method and its results.

The extremely demanding task of calculating the full OEP
can be reduced by using the mean-field approximation of
Krieger, Li, and Iafrate28 (well known as the KLI approxi-
mation), and even in this less precise formalism impressively
accurate results have been obtained.24–27,29

The principal aim of this work is to derive and demonstrate a
variational method of calculating the full exchange-only OEP
without the need for a sum over all unoccupied states of a
system. To this end, our method for the calculation of the OEP
is formulated using density-functional perturbation theory and
the Hylleraas variational principle. As in the case of phonon or
electric-field perturbations, only occupied Kohn-Sham orbitals
are explicitly included. This method is then applied to a range
of semiconductors and insulators.

II. THEORY

A. Optimized effective potential

We first summarize the OEP before deriving a variational
implementation within the density-functional perturbation
formalism. For the remainder of this article we consider only
the exchange-only OEP (exact exchange) and will simply
use the term OEP from here on. A starting point for finding
the local exchange-only OEP is the nonlocal Hartree-Fock
equation

[
T̂ (r) + V̂ext(r) + V̂H(r) + V̂ σ

X (r)
]
φσ

i (r) = εσ
i φσ

i (r), (4)

where T̂ (r) is the kinetic energy, V̂ext(r) is the external
potential, V̂H(r) is the Hartree potential, V̂X(r) is the HF
exchange potential, i indexes the electronic states, σ is the spin
index, and φσ

i (r) is the ith orbital with spin σ . The Kohn-Sham
(KS) equation1,2 that incorporates the OEP is given by

[T̂ (r) + V̂ext(r) + V̂ σ (r)]φσ
i (r) = εσ

i φσ
i (r), (5)

where V̂ σ is the effective potential fulfilling the role of both
the Hartree and exchange potentials. The usual derivation
of the OEP uses a chain rule expansion of the derivative of
the exchange-correlation energy with respect to the density,12

however here a treatment inspired by perturbation theory is
used.

For a potential which differs from the ground-state (GS)
potential by an amount δV σ (r) such that V σ (r) → V σ (r) +
δV σ (r) the GS KS orbitals change by

φσ
i (r) → φσ

i (r) +
∫

dxδV σ (x)
δφσ

i (r)

δV σ (x)
, (6)

where from first-order perturbation theory30 the last term of
the above equation becomes

δφσ
i (r)

δV σ (x)
= −

Nσ∑
j=1

φσ
j (r)φσ∗

j (x)

εσ
j − εσ

i

φσ
i (x)

−
∞∑

a=Nσ +1

φσ
a (r)φσ∗

a (x)

εσ
a − εσ

i

φσ
i (x). (7)

The change in the effective potential also gives a first-order
change in the total energy, thus

�E[V σ ] =
∫

dxδV σ (x)
δE[V σ ]

δV σ (x)
. (8)

The OEP energy E[V σ ] is given by the Hartree-Fock
functional evaluated using the Kohn-Sham OEP orbitals.
Using the chain rule and the perturbation of the orbitals,
the derivative of the energy with respect to the potential is
given by

δE[V σ ]

δV σ (x)
=

∫
dr

Nσ∑
i=1

δE[V σ ]

δφσ
i (r)

δφσ
i (r)

δV σ (x)
+ H.c. (9)

By applying the Hellmann-Feynman theorem (for brevity the
explicit r dependence of the potentials has been omitted),

δE[V σ ]

δφσ
i (r)

= [
T̂ + V̂ext + V̂H + V̂ σ

X

]
φσ∗

i (r), (10)

and substituting Eqs. (7) and (10) into Eq. (9), we obtain

δE[V σ ]

δV σ (x)
= −

∫
dr

Nσ∑
i=1

∞∑
a=Nσ +1

φσ
a (r)φσ∗

a (x)φσ
i (x)

εσ
a − εσ

i

× [
T̂ + V̂ext + V̂H + V̂ σ

X

]
φσ∗

i (r) + H.c. (11)
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By substitution of the Kohn-Sham equation [Eq. (5)] the above
can be written as31

δE[V σ ]

δV σ (x)
=−

Nσ∑
i=1

∞∑
a=Nσ +1

×
[〈

φσ
i

∣∣V̂H + V̂ σ
X − V̂ σ

∣∣φσ
a

〉
εσ
a − εσ

i

φσ∗
a (x)φσ

i (x)

]
+ H.c.,

(12)

which is known as the OEP equation and was first derived
by Sharp and Horton.8 Here it is important to note that the
requirement to sum over all unoccupied states presents a
challenge for convergence of the system properties. A very
large number of unoccupied orbitals must be included to ensure
adequate convergence, and consequently the calculation is
extremely demanding.32 The truncation of the infinite sum has
also been the subject of concerns about the analytic properties
of the solutions.33

B. Applying the Hylleraas variational principle

We present the following formalism to evaluate the OEP,
which avoids an explicit sum over states by borrowing
ideas from density-functional perturbation theory30,34 using
the Hylleraas variational method. The effective potential
is obtained by variational minimization of E[V σ (r)]. The
minimization direction for the potential is defined by the
functional derivative of the energy with respect to the effective
potential:

V σ (r) → V σ (r) − λ
δE[V σ ]

δV σ (r)
. (13)

The functional derivative of the energy can alternatively be
written as

δE[V σ ]

δV σ (x)
=

Nσ∑
i=1

φσ
i (x)

[
φ̃σ

i (x)
]∗ + H.c., (14)

where

φ̃σ
i (x) = −

∞∑
a=Nσ +1

φσ
a (x)

〈
φσ

a

∣∣V̂H + V̂ σ
X − V̂ σ

∣∣φσ
i

〉
εσ
a − εσ

i

(15)

and φ̃σ
i (x) is the first-order correction to an unperturbed orbital

φσ
i (x). These first-order corrections to the orbitals were named

“orbital shifts” by Kümmel and Perdew.13,35

An alternative method of calculating φ̃σ
i (x) without explic-

itly including any unoccupied states is to use the the Hylleraas
variational principle.36 We define a second-order variational
functional

Gσ
i

[
φ̃σ

i

] = 〈
φ̃σ

i

∣∣(T̂ + V̂ext + V̂ σ − εσ
i

)∣∣φ̃σ
i

〉
+ 〈

φ̃σ
i

∣∣(V̂H + V̂ σ
X − V̂ σ − ε̃σ

i

)∣∣φσ
i

〉
+ 〈

φσ
i

∣∣(V̂H + V̂ σ
X − V̂ σ − ε̃σ

i

)∣∣φ̃σ
i

〉
, (16)

where ε̃σ
i is the first-order correction to the eigenvalues.

Gσ
i [φ̃σ

i ] is also variational with respect to φ̃σ
i under the

constraint 〈
φσ

i

∣∣φ̃σ
i

〉 + 〈
φ̃σ

i

∣∣φσ
i

〉 = 0, (17)

and using the Hylleraas variational principle it can be shown
that the orbital shifts which minimize the second-order func-
tional also satisfy Eq. (15). By substitution of the projection
operator

Pc = Î −
Nσ∑
j=1

∣∣φσ
j

〉〈
φσ

j

∣∣ =
∞∑

a=Nσ +1

∣∣φσ
a

〉〈
φσ

a

∣∣, (18)

Eq. (16) may be rewritten

Gσ
i

[
φ̃σ

i

] = 〈
φ̃σ

i

∣∣(T̂ + V̂ext + V̂ σ − εσ
i

)∣∣φ̃σ
i

〉
+ 〈

φ̃σ
i

∣∣
⎛
⎝Î −

Nσ∑
j �=i

∣∣φσ
j

〉〈
φσ

j

∣∣
⎞
⎠(

V̂H + V̂ σ
X − V̂ σ

)∣∣φσ
i

〉

+ 〈
φσ

i

∣∣(V̂H + V̂ σ
X − V̂ σ

)⎛⎝Î −
Nσ∑
j �=i

∣∣φσ
j

〉〈
φσ

j

∣∣
⎞
⎠∣∣φ̃σ

i

〉
.

(19)

The exact first-order correction to the orbitals φ̃σ
i that

minimizes Gσ
i [φ̃σ

i ] can also be found using the Sternheimer-
like equation37(

T̂ + V̂ext + V̂ σ − εσ
i

)∣∣φ̃σ
i

〉
+

(
Î −

Nσ∑
j=1

∣∣φσ
j

〉〈
φσ

j

∣∣)(
V̂H + V̂ σ

X − V̂ σ
)∣∣φσ

i

〉 = 0. (20)

Equation (20) can be solved using iterative methods.34

Replacing the infinite sum over states in Eq. (15) with an
iterative procedure and considering only the occupied Kohn-
Sham subspace avoids the severe convergence difficulties
of the former method. Instead of determining how many
additional states to include in Eq. (15), at a computational
cost increasing with their number, the convergence problem is
transformed to one of determining how many iterative cycles
are required. Consequently a reliable solution may be achieved
at considerably lower expense than summing Eq. (15) directly.

By combining Eqs. (14) and (20), the OEP can be found
variationally while the first-order correction to the orbitals is
obtained by solving the Sternheimer equation directly.

Equations (14) and (20) are similar to those given by
Kümmel and Perdew.13,35 Our method differs from theirs
by exploiting the variational character of E[V σ ] using the
explicit gradient of Eq. (14) to perform a direct minimization.
Their method involves a self-consistency cycle with an
update procedure for vXC using a KLI-like expression and
involving a division by the density. Our direct minimization is
conceptually simpler and, because of the variational principle,
is likely to be more numerically robust.

III. IMPLEMENTATION AND CONVERGENCE

Our procedure for finding the OEP is to solve a double-
nested loop of minimizations. A flow diagram illustrating the
full procedure is shown in Fig. 1. The inner of the two loops
represents the solution of the Sternheimer equation [Eq. (20)]
to find the first-order correction to the orbitals. The method
is derived from the Baroni Green’s-function solver technique,
employing a conjugate gradient minimization scheme to find
φ̃σ

i (r) in a fixed potential V σ (r).34,38,39
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FIG. 1. Flow diagram showing procedure for finding the OEP.

Using the first-order correction to the orbitals and the or-
bitals themselves, the derivative of the total energy with respect
to the potential can be found from Eq. (14). This gradient is
used in the direction-set methods to variationally optimize
the potential, and its magnitude (residual norm) provides an
indication of the level of convergence of the effective potential.
The variation of the potential is accomplished via either one
of two methods; the first is a conjugate gradient scheme;40

the second method is a modified steepest-descent method,
known as the Barzilai-Borwein (BB) method, which requires
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FIG. 2. Convergence of total Kohn-Sham energy for the OEP
against the number of steps. The solid line is the Barzilai-Borwein
minimizer and the dashed line is for the conjugate gradient minimizer.
Inset: energy residual on a log-linear scale.

knowledge of the gradient at the current point and previous
point only.41

After each step of varying the effective potential, Kohn-
Sham orbitals in this new, fixed potential are found non-self-
consistently. When the gradient and difference in total OEP
Kohn-Sham energy per step are smaller than a predetermined
threshold, the calculation is considered to be converged.

The procedure is initialized by first solving the KS equa-
tion using a local-density-dependent exchange-correlation
potential, in this case the LDA. From this self-consistent
calculation the initial orbitals and density are obtained. Using
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FIG. 3. Convergence of the �-point band gap of diamond using
the OEP against the number of steps. Solid dots are for the Barzilai-
Borwein minimizer and open dots are for the conjugate gradient
minimizer.
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FIG. 4. (Color online) The exchange poten-
tial (VOEP − VH) as a slice perpendicular to the
[111] direction (bond axis) in diamond structured
Si for the primitive unit cell. Atomic positions
are at the origin and quarter of the long diagonal.
The color key is in eV.

this density the effective potential is then constructed explicitly
using the LDA functional for the exchange and correlation.
Solving the KS equation to find the ground-state orbitals
is accomplished variationally using a conjugate gradient
method.40 The nonlocal HF exchange energy and the Hartree
energy are also initially calculated using the LDA orbitals.

The OEP has been implemented within the pseudopotential
plane-wave code CASTEP.42,43 The orbitals, density, and poten-
tials are represented on rectilinear grids in the usual manner of
a plane-wave DFT implementation.44 Kohn-Sham orbitals are
described on reciprocal space grid points G within a sphere
bounded by the cutoff wave vector, Gmax, and the density
and potentials are nonzero within a sphere of radius 2Gmax.
Therefore, the grids in both real and reciprocal space used to
represent the density and potentials have twice the dimensions
of the grid used for the orbitals. The Hylleraas minimization
scheme is performed explicitly on these real space grids by
direct variation, so that the effective basis used to represent
V σ (r) is the set of grid points {G} : |G| � 2Gmax.

Optimized norm-conserving pseudopotentials used in this
work were generated using the OPIUM code45 developed by
Rappe et al. The Hartree-Fock approximation was used and
the nonanalytic behavior of HF pseudopotentials was treated
using the localization and optimization scheme of Al-Saidi
et al.46 Including exchange exactly in the pseudopotentials
is required to ensure accurate core-valence interaction within
the current formalism. Incorrect core-valence interaction has

been shown to have noticeable effects on calculated electronic
structures.47,48 We found that calculations using pseudopoten-
tials which include d states in the core typically predict band
gaps 20–70% larger than if the d states are treated as valence.
Therefore, semicore d states were treated as valence for As,
Cd, Ga, Ge, In, Se, Te, and Zn.

The convergence characteristics of the conjugate gradient
and Barzilai-Borwein variational minimizers are compared in
Fig. 2, which plots the total OEP energy for diamond as a
function of iteration number. An initial rapid decrease in the
total energy is followed by a long tail of decreasing change in
the total energy in both cases. The conjugate gradient energy
decreases smoothly and monotonically towards the converged
result, but the Barzilai-Borwein energy does not, exhibiting
sharp drops and an occasional spiked increase (behavior which
has been noted previously49). After 100 or so steps the BB
method still converges rapidly while the conjugate gradient
method exhibits a very slow energy decrease. The difference
in total energy per step is below 2.5 μeV per atom after 250
iterations of the BB minimizer and the solution is stationary
after 300 iterations. For the conjugate gradients method,
however, the energy difference per step does not drop below
5 μeV per atom even after 500 iterations. After 500 iterations
the energy difference between the two methods is within 8 μeV
per atom. In both cases we find that the calculated gradient
tends to zero as the total energy converges, as expected in a
variational method. The convergence rates of the �-point band

TABLE I. Energy gaps (in eV) for some semiconductors and insulators. Calculated values are shown for LDA, PBE, PBESOL, PW91, WC,
Hartree-Fock, and the OEP method, using HF pseudopotentials.

LDA PBE PBESOL PW91 WC HF OEP Experimental

Ge 0.09 0.13 0.04 0.14 0.04 6.01 0.86 0.7950

InN 0.21 0.38 0.27 0.39 0.27 7.46 1.39 0.9351

Si 0.43 0.60 0.45 0.62 0.47 6.45 1.16 1.1650

GaAs 0.99 1.08 0.97 1.09 0.96 7.32 1.86 1.5250

CdTe 1.46 1.79 1.64 1.74 1.61 8.16 2.20 1.6152

ZnSe 1.88 2.15 2.02 2.13 1.99 9.35 2.86 2.8053

GaN 2.13 2.35 2.23 2.36 2.23 10.38 3.32 3.3954

ZnO 1.93 2.28 2.09 2.29 2.10 11.51 3.48 3.4355

C 3.98 4.21 4.03 4.24 4.08 12.76 4.87 5.4751

CaO 3.93 4.11 4.01 4.12 4.02 14.63 6.09 7.0956

NaCl 4.84 5.34 5.13 5.35 5.19 13.74 6.27 8.9757
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FIG. 5. (Color online) Comparison of calculated and experimen-
tal band gaps: red squares are HF, blue diamonds are OEP, and green
circles are LDA.

gap of diamond behave in a similar fashion as shown in Fig. 3.
After 250 iterations the gap is converged to within 25 μeV for
the BB minimizer. By comparison, with the conjugate gradient
minimizer the band gap is converged to 200 μeV in the same
number of iterations. All calculations presented below using
the OEP method were run for at least 250 iterations to ensure
sufficient accuracy. These calculations take about the same
CPU time as the commonly used hybrid XC functionals.

In the calculations that follow, the basis set size (plane-wave
cutoff energy) and Brillouin-zone sampling were chosen
so that total energy differences, evaluated using the LDA,
were less than 1 meV/atom. The same settings were used
for the OEP calculations, which resulted in a very similar
convergence error with cutoff as the LDA case. However,
the OEP calculations were more sensitive to Brillouin-zone
sampling error; for example, in the case of diamond, a
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FIG. 6. (Color online) Band structure of Ge (diamond structure),
calculated using the LDA (left) and the OEP (right).
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FIG. 7. (Color online) Band structure of CdTe (zinc-blende
structure), calculated using the LDA (left) and the OEP (right).

8 × 8 × 8 Monkhurst-Pack grid58 resulted in a 1 meV/atom
error using the LDA but 3 meV for the OEP, rising to 9 meV
for ZnO. Convergence testing was also performed on the fast
Fourier-transform grid used to represent the potential, and the
energy error was determined to be ≈10 μeV.

IV. CALCULATED ELECTRONIC PROPERTIES

An example OEP is displayed in Fig. 4, in this case a slice
through the primitive unit cell of Si in the diamond structure.
The potential is smoothly varying outside the pseudopotential
regions, which are the only regions where the potential is
positive. The potential is at its deepest in the bonding region
between the two ions and (outside the pseudopotential core
region) is always negative but tending to zero in the low-density
regions away from the ions.

The electronic structures of a selection of insulating and
semiconducting materials were calculated using the LDA,
some GGAs (PBE,59 PBESOL,59 PW91,60 and WC61), HF,
and the OEP. The resultant band gaps are shown in Table I
and for the LDA, OEP, and Hartree-Fock calculations are also
plotted in Fig. 5. The mean absolute error is 0.55 eV for the
OEP, 1.39 eV for the LDA, and 1.19 eV for PBE, although
these values are skewed by the underestimated values for the
band gap found for diamond, NaCl, and CaO materials. The
corresponding band structures for Ge, CdTe, InN, GaN, and
ZnO are plotted in Figs. 6–10.

Figure 6 shows the band structure of Ge in the diamond
structure calculated using the LDA and the OEP. For Ge the
OEP improves the gap from the LDA value of 0.09 to 0.86 eV,
which is very close to the experimental gap. Similarly for Si
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FIG. 8. (Color online) Band structure of InN (wurtzite structure)
using the LDA (left) and the OEP (right).
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FIG. 9. (Color online) Band structure of GaN (wurtzite structure)
using the LDA (left) and the OEP (right).

the gap is improved from 0.43 eV using the LDA to 1.16 eV
using the OEP. For GaAs the OEP opens the gap from the
LDA value of 0.99 to 1.86 eV. The OEP gap is greater than
the experimental gap by 20%; a similar overestimation of
the gap by the OEP in GaAs was also observed by Stadele
et al.17 Figure 7 shows the band structures for CdTe calculated
using the LDA and the OEP. The OEP gap is 35% larger than
the experimental gap, opening from 1.46 eV for the LDA to
2.20 eV for the OEP.

Figure 8 shows the band structures for the wurtzite
semiconductor InN calculated using the LDA and the OEP.
The calculated band gap for InN has a small direct gap of
0.21 eV for the LDA which is opened to a gap of 1.39 eV for
the OEP. Similarly the gap in GaAs and CdTe is overestimated
when compared to the experimental gap. The band structures
calculated for GaN in the wurtzite structure are shown in
Fig. 9. The OEP band gap of 3.32 eV is very close to the
experimental gap of 3.39 eV and greatly improved on the LDA
band gap 2.13 eV. The wurtzite structure ZnO band structures
calculated using the LDA and the OEP are shown in Fig. 10.
The calculated band gap is greatly improved from 1.93 eV
when using the LDA to 3.48 eV for the OEP, which is very
close to the experimental gap of 3.43 eV.

For ZnSe in the zinc-blende structure the OEP calculated
gap of 2.83 eV is remarkably close to the experimental gap and
greatly improved over the LDA value of 1.88 eV. However,
for diamond the OEP gap of 4.87 eV underestimates the
experimental value by 12% but still improves on the LDA

A H K Γ M L HΓ-10

-5

0

5

10

15

ε 
(e

V
)

A H K Γ M L HΓ-10

-5

0

5

10

15

ε 
(e

V
)

FIG. 10. (Color online) Band structure of ZnO (wurtzite struc-
ture) using the LDA (left) and the OEP (right).

value of 3.98 eV; the underestimation by the OEP was again
noted by Stadele et al.17

For the wide-gap rocksalt structure insulators CaO and
NaCl the OEP band gaps are opened up compared to the LDA
band gaps, with the LDA calculated band gap being 3.93 eV
for CaO and 4.84 eV for NaCl and the OEP calculated band
gap being 6.09 eV for CaO and 6.32 eV for NaCl. For CaO the
gap is underestimated by 14% for the OEP, and for NaCl the
predicted gap is 30% smaller for the OEP than the experimental
value. The OEP value for CaO is very similar to that found by
Kotani and Akai62 and for NaCl is in line with that found by
Li et al.63

Table II compares the OEP band gaps obtained here to those
obtained by others using a variety of basis sets. The band gaps
calculated here are very similar to previous values and confirm
the progressive underestimation of the band gap for wide-gap
materials.

The OEP also improves values for semicore energy levels
relative to the LDA, as shown in Table III. This is to be expected
given that the self-interaction error present in the LDA has the
largest effect on the tightly bound d states and that there is no
self-interaction error within the OEP. In Ge the 3d electrons
occupy states in the range −31.9 to −32.0 eV below the
valence-band maximum with the experimental binding energy
being determined as 29.1 to 29.6 eV. The LDA puts them in
the range −35.0 to −35.2 eV. The experimental In 4d electron
binding energy in InN is 17.4 eV; the LDA predicts between

TABLE II. Comparison of calculated OEP band gaps with previous work. The basis sets are plane-wave pseudopotential (PW PP), full
potential linearized augmented plane wave (FPLAPW), linear muffin-tin orbitals with the atomic sphere approximation (LMTO-ASA), and the
Korringa-Kohn-Rostoker method in the atomic sphere approximation (KKR-ASA).

PP PW17,18,64 FPLAPW23,63 LMTO-ASA21,62 KKR-ASA21,62 This work Experimental

Ge 0.94 0.89 1.57, 1.12 1.03 0.86 0.79
InN 1.40a 1.39 0.93
Si 1.14, 1.23 1.30 1.93, 1.25 1.12 1.16 1.16
GaAs 1.78 1.74 1.86 1.52
GaN 2.76,a 3.46,a 3.49a 3.32 3.39
ZnO 2.34a 3.48 3.43
C 5.06, 4.90 5.20 5.12, 4.65 4.58 4.87 5.47
CaO 6.15 6.29 6.09 7.09
NaCl 6.3b 6.27 8.97

aThese results are calculated for the zinc-blende structure.
bThis result is obtained with the self-interaction corrected functional of Perdew and Zunger11 rather than the Hartree-Fock exchange functional.
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TABLE III. Binding energies (eV) relative to the valence-band
maxima for semicore electrons calculated using the LDA and
OEP.

Material State LDA OEP Experimental

Ge Ge 3d 35.01–35.16 31.89–32.01 29.1–29.665

InN In 4d 16.34–17.22 18.38–18.94 17.466

GaAs Ga 3d 22.95–23.01 20.06–20.21 18.60–19.0467

GaAs As 3d 47.45–47.46 44.45–44.49 40.37–41.0767

CdTe Cd 4d 11.89–12.30 10.16–11.03 10.1068

ZnSe Zn 3d 11.65–11.81 9.45–9.74 9.269

ZnSe Se 3d 61.02–61.03 58.50–58.52 55.570

GaN Ga 3d 21.23–21.55 18.30–18.85 17.9471

ZnO Zn 3d 8.88–9.69 6.65–7.61 7.472

−18.4 and −18.9 eV and the OEP predicts between −16.3
and −17.2 eV.

For GaAs the experimental Ga 3d states lie between 18.6
and 19.0 eV below the valence-band maximum; the OEP
predicts a range of between −20.0 and −20.2 eV and the
LDA predicts between −22.9 and −23.0 eV. Experiment
gives As 3d states at 40.4 to 41.0 eV below the valence-band
maximum; the OEP puts them at −44.5 eV and the LDA
predicts −47.5 eV. In CdTe the Cd 4d electrons lie between
−10.2 and −11.0 eV for the OEP, −11.9 and −12.3 eV for
the LDA, compared with an experimental value of 10.10 eV
below the valence-band maximum. The experimental results
also place the Te 5s electrons very close to the Cd 4d states
with a binding energy of 9.2 eV below the valence-band
maximum, which the OEP also appears to predict. For ZnSe
the Zn 3d electrons lie in the range −9.4 to −9.7 eV below the
valence-band maximum for the OEP, −11.6 to −11.8 eV for
the LDA, and 9.2 eV from experiment. For the Se 3d electrons
the LDA gives energies of −61.02 compared with −58.5 eV
with the OEP and 55.5 eV from experiment.

For GaN the LDA gives the Ga d electrons lying between
−21.2 and −21.6 eV, the OEP between −18.3 and −18.9 eV,
with an experimental value of 17.9 eV below the valence-band
maximum. Using the OEP for ZnO gives Zn 3d states in the
range −6.6 to −7.6 eV relative to the valence-band maximum

compared with an experimental value of 7.4 eV and a range of
−8.9 to −9.7 eV with the LDA. As can be seen from the band
structures for the above materials in the valence, the s and p

states are almost identical when using the LDA and OEP. It is
the d states which display the greatest difference.

The OEP also improves upon the predicted electronic
structure given by the GGA methods of PBE, PBESOL, PW91,
and WC, which underestimate the gaps of the materials investi-
gated here, and Hartree-Fock, which greatly overestimates the
gaps. Further work on magnetic metal oxides will be reported
in a future publication.

V. CONCLUSIONS

A method of obtaining the OEP which treats the local
exchange potential exactly without using a sum over all
unoccupied states has been derived using the Hylleraas vari-
ational method and ideas borrowed from density-functional
perturbation theory. This allows for the calculation of the OEP
using a variational minimization scheme in real space. The
electronic structures of well-known materials with a wide
selection of band gaps have been calculated and the band
gaps for semiconductors are found to be in good agreement
with experimental values, although for the larger band gap
materials—diamond, CaO, and NaCl—the calculated band
gaps are still underestimated by 10–30%. Hartree-Fock pseu-
dopotentials were found to give more accurate results than
LDA pseudopotentials. The absence of self-interaction error
within the OEP is manifest in a better description of semicore
d states compared to the LDA. Their energies with respect
to the top valence band are much closer to experimental
spectroscopic measurements than within the LDA.
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