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Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime
signature transitions
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Extraordinary rays in a hyperbolic metamaterial behave as particle world lines in a three-dimensional (2 + 1)
Minkowski spacetime. We analyze electromagnetic field behavior at the boundaries of this effective spacetime
depending on the boundary orientation. If the boundary is perpendicular to the spacelike direction in the
metamaterial, an effective Rindler horizon may be observed, which produces Hawking radiation. On the other
hand, if the boundary is perpendicular to the timelike direction, the system undergoes a phase transition to a
state with a different nature of the spacetime, with nonintegrable field divergence at the transformation point.
Experimental observations of the transition using plasmonic metamaterials confirm this conclusion.
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Modern developments in gravitation research strongly
indicate that classic general relativity is an effective macro-
scopic field theory, which needs to be replaced with a
more fundamental theory based on yet unknown microscopic
degrees of freedom. On the other hand, our ability to obtain
experimental insights into the future fundamental theory is
strongly limited by low energy scales available to terrestrial
particle physics and astronomical observations. The emergent
analog spacetime program offers a promising way around this
difficulty. Looking at such systems as superfluid helium and
cold atomic Bose-Einstein condensates, physicists learn from
nature and discover how macroscopic field theories arise from
known well-studied atomic degrees of freedom. An interesting
recent example of this approach is Horava gravity,1 which is
based on the well-known Lifshitz point behavior in solid state
physics. Another exciting development along this direction is
the recent introduction of metamaterials and transformation
optics.2–4 The latter field is not limited by the properties
of atoms and molecules given to us by nature. “Artificial
atoms” used as building blocks in metamaterial design offer
much more freedom in constructing analogs of various exotic
spacetime metrics, such as black holes,5–9 wormholes,10,11

spinning cosmic strings,12 and even the metric of Big Bang
itself.13 Explosive development of this field promises new
insights into the fabric of spacetime, which cannot be gleaned
from any other terrestrial experiments.

On the other hand, compared to standard general relativity,
metamaterial optics gives more freedom to design an effective
spacetime with very unusual properties. Light propagation
in all static general relativity situations can be mimicked
with positive εik = μik ,14 while the allowed parameter space
of the metamaterial optics is broader. Thus, flat Minkowski
spacetime with the usual ( − , + , + , + ) signature does not
need to be a starting point. Other effective signatures, such
as the “two times” (2T) physics ( − , − , + , + ) signature
may be realized.15 Theoretical investigation of the 2T higher
dimensional spacetime models had been pioneered by Dirac.16

More recent examples can be found in Refs. 17 and 18. Metric
signature change events (in which a phase transition occurs
between say ( − , + , + , + ) and ( − , − , + , + ) spacetime
signature) are being studied in Bose-Einstein condensates

and in some modified gravitation theories (see Ref. 19 and
the references therein). It is predicted that a quantum field
theory residing on a spacetime undergoing a signature change
reacts violently to the imposition of the signature change.
Both the total number and the total energy of the particles
generated in a signature change event are formally infinite.19

While optics of bulk hyperbolic metamaterials provide us with
ample opportunities to observe metric signature transitions,15

even more interesting physics arise at the metamaterial
interfaces. Very recently it was demonstrated that mapping of
monochromatic extraordinary light distribution in a hyperbolic
metamaterial along some spatial direction may model the
“flow of time” in a three-dimensional (3D) (2 + 1) effective
Minkowski spacetime.13 If an interface between two meta-
materials is engineered so that the effective metric changes
signature across the interface, two possibilities may arise.
If the interface is perpendicular to the timelike direction z,
this coordinate does not behave as a “timelike” variable any
more, and the continuous “flow of time” is interrupted. This
situation (which cannot be realized in classic general relativity)
may be called the “end of time.” It appears that optics of
metamaterials near the “end of time” event is quite interesting
and deserves a detailed study. For example, in the lossless
approximation all the possible “end of time” scenarios lead
to field divergencies, which indicate quite interesting linear
and nonlinear optics behavior near the “end of time.” On the
other hand, if the metamaterial interface is perpendicular to
the spacelike direction of the effective (2 + 1) Minkowski
spacetime, a Rindler horizon may be observed (the Rindler
metric approximates spacetime behavior near the black hole
event horizon).14

Let us begin with a brief summary of Refs. 13 and 15, which
demonstrated that a spatial coordinate may become “timelike”
in a hyperbolic metamaterial. To better understand this effect,
let us start with a nonmagnetic uniaxial anisotropic material
with dielectric permittivities εx = εy = ε1 and εz = ε2 and
assume that this behavior holds in some frequency range
around ω = ω0. Any electromagnetic field propagating in this
material can be expressed as a sum of the “ordinary” and
“extraordinary” contributions, each of these being a sum of an
arbitrary number of plane waves polarized in the “ordinary”
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( �E perpendicular to the optical axis) and “extraordinary” ( �E
parallel to the plane defined by the k vector of the wave
and the optical axis) directions. Let us define our “scalar”
extraordinary wave function as ϕ = Ez so that the ordinary
portion of the electromagnetic field does not contribute to ϕ.
Since metamaterials exhibit high dispersion, let us work in
the frequency domain and write the macroscopic Maxwell
equations as20

ω2

c2
�Dω = �∇ × �∇ × �Eω and �Dω = ↔

εω
�Eω. (1)

Equation (1) results in the following wave equation for ϕω if
ε1 and ε2 are kept constant inside the metamaterial:

−ω2

c2
ϕω = ∂2ϕω

ε1∂z2
+ 1

ε2

(
∂2ϕω

∂x2
+ ∂2ϕω

∂y2

)
. (2)

While in ordinary crystalline anisotropic media both ε1 and
ε2 are positive, this is not necessarily the case in metamaterials.
In hyperbolic metamaterials21 ε1 and ε2 have opposite signs.
These metamaterials are typically composed of multilayer
metal-dielectric or metal wire array structures, as shown in
Fig. 1. Optical properties of such metamaterials are quite
extraordinary. For example, there is no usual diffraction limit
in a hyperbolic metamaterial.22,23

Let us consider the case of constant ε1 > 0 and ε2 < 0
and assume that this behavior holds in some frequency
range around ω = ω0. Let us assume that the metamaterial
is illuminated by coherent continuous wave (CW) laser
field at frequency ω0, and we study spatial distribution of
the extraordinary field ϕω at this frequency. Under these
assumptions Eq. (2) can be rewritten in the form of 3D
Klein–Gordon equation describing a massive scalar ϕω field:

− ∂2ϕω

ε1∂z2
+ 1

|ε2|
(

∂2ϕω

∂x2
+ ∂2ϕω

∂y2

)
= ω0

2

c2
ϕω = m∗2

c2

h̄2 ϕω,

(3)

FIG. 1. (Color online) The schematic of the (a) nanowire and
(b) layered realizations of hyperbolic media and the (c) corresponding
isofrequency surface.

in which the spatial coordinate z = τ behaves as a “timelike”
variable. Therefore, Eq. (3) describes world lines of massive
particles, which propagate in a flat (2 + 1) Minkowski space-
time. When a metamaterial is built and illuminated with a
coherent extraordinary CW laser beam, the stationary pattern
of light propagation inside the metamaterial represents a
complete “history” of a toy (2 + 1) dimensional spacetime
populated with particles of mass m∗. This “history” is written
as a collection of particle world lines along the “timelike” z

coordinate. Note that in the opposite situation in which ε1 < 0
and ε2 > 0, Eq. (2) would describe world lines of tachyons24

having “imaginary” mass m∗ = iμ.
The world lines of particles described by Eq. (3) are

straight lines, which is easy to observe in the experiment.13

If adiabatic variations of ε1 and ε2 are allowed inside the
metamaterial, world lines of massive particles in some well-
known curvilinear spacetimes can be emulated, including
the world line behavior near the “beginning of time” at the
moment of Big Bang.13 Thus, mapping of monochromatic
extraordinary light distribution in a hyperbolic metamaterial
along some spatial direction may model the “flow of time” in
an effective 3D (2 + 1) spacetime. Since the parameter space
of metamaterial optics is broader than the parameter space
of general relativity, we can also engineer the “end of time”
event if an interface between two metamaterials is prepared
so that the effective metric changes signature at the interface.
In such a case the spatial coordinate does not behave as a
“timelike” variable any more, and the continuous “flow of
time” is suddenly interrupted, as shown in Fig. 2(a). While
this situation cannot be realized in classic general relativity,
the optics of metamaterials near this transition event is quite
interesting and deserves a detailed study.

We consider the case of constant ε1 = εx = εy and assume
that the z-dependent dielectric permittivity component ε2 = εz

changes sign at z = 0. Aside from the relative mathematical
simplicity of the model that ignores the spatial variation
of the “in-plane” component ε1 of the dielectric tensor,
it also corresponds to the most readily available low-loss
realization of hyperbolic metamaterials25 formed by metallic
nanowires in dielectric membranes, where in the limit of
small volume fraction (p � 1) and high magnitude of the
dielectric permittivity of the metal component with respect to
its dielectric counterpart (−εm � εd ∼ 1) the dielectric tensor
of the composite equals

εx = εy ≈ εd (4)
εz ≈ εd + p(z)εm. (5)

Taking into account the translational symmetry of the system in
x and y directions, we can introduce the in-plane wave vector
(kx , ky) so that the propagating waves can be expressed as

Eω(�r) = E(z) exp(ikxx + ikyy)

Dω(�r) = D(z) exp(ikxx + ikyy) (6)

Bω(�r) = B(z) exp(ikxx + ikyy),

while the uniaxial symmetry of this medium reduces the ordi-
nary and extraordinary waves to, respectively, the TE- ( �E⊥ ẑ)
and TM- ( �B⊥ ẑ) polarized modes. Introducing the wavefunc-
tion ψ(�r) as the z component of the electric displacement field
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FIG. 2. (Color online) (a) Schematic representation of the “end
of time” model in metamaterials: the spatial coordinate z does not
behave as a “timelike” variable any more, and the continuous “flow
of time” is suddenly interrupted at the interface of two metamaterials.
(b) Metric signature change across a “spacelike” direction leads to
appearance of a Rindler horizon.

of the TM wave, also proportional to the magnetic field B(z),

ψ(�r) = Dz(�r) = εz(z)Ez(�r) = − c

ω
kxB. (7)

For the wave equation we obtain

−∂2ψ

∂z2
+ ε1

ε2(z)
ψ = ε1

ω2

c2
ψ. (8)

We will further assume that the material losses in the system are
small, so that the propagation distance (and correspondingly
the “lifetime” in the proposed model “Universe”)
l ∼ (Im(ε)/Re(ε))λ is much larger than the thickness d

of the area where the dielectric permittivity changes sign:

ε2(z) = ε− + i	, at z � −d
(9)

ε2(z) = ε+ = ε1, at z � d.

To avoid the mathematical complications related to
nonanalytic behavior of ε2(z) but still have a well-defined

transition region near z = 0, we assume that the dielectric
permittivity exponentially approaches its asymptotic values:

ε2(z) = ε+ε−
1 − exp(z/d)

ε+ − ε− exp(z/d)
+ i	

1 + (− ε−
ε+

)
exp(z/d)

.

(10)

Substituting Eq. (10) into Eq. (8), in the limit 	 � 1 we obtain

(u2 + u)
∂2ψ

∂u2
− Au + B

u − 1 + i0
ψ = 0, (11)

where u = exp(z/d), and

A = (kd)2 − ε1

(
ωd

c

)2

(12)

B = ε1

(
ωd

c

)2

− ε1

ε−
(kd)2. (13)

Note that the parameter B is always positive, while A < 0
if the dielectric at z � d can support the propagating wave
with the wave number k (i.e., k <

√
ε+ω/c = √

ε1ω/c), and
A > 0 otherwise. In the former case, a fraction of the energy
incident from the hyperbolic medium is transferred to the
wave propagating in the dielectric away from the interface,
while in the latter the field exponentially decays for z > 0.

The general solution of Eq. (11) can be expressed in terms
of the hypergeometric function 2F1(a,b,c,u);26 however, care
must be taken to choose the proper branch of its analytical
continuation as z = 1 is a branch point. Physically, the
difference between two branches in question corresponds to
the infinitesimal loss and infinitesimal gain at u = 1 (z = 0).
For an (infinitesimal) loss in our system, we find

ψ(u)

= ui
√

B × 2F
∗
1 (−

√
A− i

√
B,

√
A − i

√
B,1 − 2i

√
B,u − i0)

+ ru−i
√

B × 2F
∗
1 (−

√
A + i

√
B,

√
A

+ i
√

B,1 + 2i
√

B,u − i0), (14)

where the reflection coefficient is

r = −
[
	(

√
A + i

√
B)

	(
√

A − i
√

B)

	(1 + √
A + i

√
B)

	(1 + √
A − i

√
B)

]∗

× 	(1 + 2i
√

B)∗

	(1 + 2i
√

B)
exp(−2π

√
B). (15)

In particular, when the in-plane wavenumber of the incident
wave exceeds the maximum momentum supported by the
dielectric at z > d, the field exponentially decays at z > 0,
and for the reflection coefficient we find

|r|2 = exp(−4π
√

B) = exp

(
−4π

√
ε1 + ε1

(−ε−)

k2c2

ω2

ωd

c

)
.

(16)

Note that despite “total internal reflection” from the dielectric,
the reflected wave contains only an (exponentially small)
fraction of the incident energy—even an infinitesimal loss
(	 → +0) leads to the absorption of nearly all incident energy.
The origin of this behavior is the divergence of the electric
field Ez = ψ(z)/εz, as according to Eq. (14) the wavefunction
ψ(0) = 0 and ε(0) = i0. This situation is similar to the
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field singularity at the positive-negative index metamaterial
interface.27

When the in-plane incident momentum k <
√

ε1ω/c (so
that A < 0), the dielectric medium to the right of the boundary
layer can support the transmitted wave with the corresponding
transmission coefficient:

t = 2
√

B√−A + √
B

	(2i
√−A)	(2i

√
B)

	(2i(
√−A + √

B))2

×
[

1 − sinh2 (π (
√−A − √

B))

sinh2 (π (
√−A + √

B))

]

× exp[−π (
√

B − √−A)]. (17)

When the transition layer thickness d is much larger than
the free-space wavelength, d � c/ω, the magnitude of the
transmission coefficient is

|t |2 ≈ 4

√
−B

A
exp[−2π (

√
B − √−A)]

= 4

√√√√1 + k2c2

(−ε−)ω2

1 − k2c2

ε1ω2

exp

[
−2π

(√
ε1 + ε1

(−ε−)

k2c2

ω2

−
√

ε1 − k2c2

ω2

)
ωd

c

]
. (18)

In Fig. 3 we plot the intensity of the electric field IE(z) =
Ex(z)2 + Ez(z)2 (red/dark gray curve) and the intensity of the

FIG. 3. (Color online) The electric (red/dark gray line) and
magnetic (blue/medium gray line) field intensities for (a) A = 30,
B = 40 and (b) A = − 30, B = 40.

magnetic field IB(z) = By(z)2 (blue/medium gray curve) for
both regimes: k >

√
ε1ω/c in (a) and k <

√
ε1ω/c in (b), in

logarithmic scale. The IE(z) ∼ 1/z2 divergence near z = 0 is
clearly seen in both cases.

Now let us consider the case of a hyperbolic metamaterial
interface, which is oriented perpendicular to the “spacelike”
direction [Fig. 2(b)]. For the sake of simplicity, let us consider
the case of constant ε2 = εz < 0 and assume that finite ε1(x) =
εx = εy changes sign from ε1 > 0 to ε1 < 0 as a function
of x in some frequency range around ω = ω0. Because of
translational symmetry along the z direction, we may consider
a plane wave solution in the z direction with a wave vector
component kz. Introducing ψ = B, as previously, we obtain

−∂2ψ

∂x2
+ ε2kz

2

ε1
ψ = ε2ω0

2

c2
ψ. (19)

The same analysis as previously indicates that Ex ∼ − 1
εx

∂ψ

∂z

diverges at the interface. Note that the choice of ε1 = αx2

(where α > 0) at x = 0 leads to Rindler-like optical space
near the interface. The Rindler metric can be written as

ds2 = −g2x2

c2
dt2 + dl2, (20)

where the horizon is located at x = 0.28 The spatial line element
of the corresponding Fermat metric as perceived by the Rindler
observers is

dl2 = dl2

−g00
= c4dl2

g2x2
. (21)

Since the extraordinary photon wave vector k ≈ kx ∼
(−ε2/ε1)1/2kz diverges at the interface [see Eq. (19)], the
“optical length” element experienced by the extraordinary
photons also diverges:

dl2
opt = k2c2dl2

ω2
0

∼ dl2

x2
, (22)

where dl is the length element in the coordinate space.
Comparison of Eqs. (21) and (22) demonstrates that a region
of “optical space” near x = 0 does look like an electromagnetic
black hole and α ∼ g2 defines effective surface gravity at the
horizon. However, we should emphasize that metamaterial
losses lead to the appearance of the imaginary part in the
effective potential V = ε2kz

2

ε1
in Eq. (19), so that no true horizon

appears. An attempt to compensate losses with gain and
achieve the “true horizon” would lead to effective Hawking
radiation28 from the interface. Due to divergent density of
states in the hyperbolic band of the metamaterial,15,29 energy
pumped into the metamaterial from the outside space would
mostly go into the hyperbolic band around ω0. In the language
of effective (2 + 1) Minkowski spacetime described by Eq. (3),
new “particles” would be created at the boundary of this
spacetime in the layer �x ∼ 1/α1/2. Due to the uncertainty
principle, the momentum uncertainty of these particles is
�px ∼ h̄α1/2. At given ω0, this uncertainty translates into the
same uncertainty �pz ∼ h̄α1/2 ∼ T of the z component of the
photon momentum, which plays the role of effective energy
in the (2 + 1) Minkowski spacetime [see Fig. 1(c)]. Thus,
we recover the well-known behavior of the Unruh–Hawking
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effect:

�pz ∼ TH ∼ h̄α1/2 ∼ h̄g. (23)

Let us consider a possible experimental realization of these
effects in the layered metamaterial structure presented in
Fig. 1(b). Let us assume that the metallic layers are oriented
perpendicular to z direction. The diagonal components of the
permittivity tensor in this case have been calculated in Ref. 30
using Maxwell–Garnett approximation:

ε1 = αεm + (1 − α)εd, ε2 = εmεd

(1 − α)εm + αεd

, (24)

where α is the fraction of metallic phase and εm < 0 and
εd > 0 are the dielectric permittivities of metal and dielectric,
respectively. We would like to arrange an “end of time”
interface as a function of α(z). As described previously, we
would like to keep ε1 positive, while changing the sign of
ε2. Simple analysis of Eq. (24) indicates that the “end of
time” occurs around α0 = εm/(εm − εd ), while we need to
keep εd > −εm at the experimental frequency ω0. Thus, by
gradually increasing α through the α0 value we will observe
the effect in question. This can be achieved by gradual increase
of the metal layer thickness d1, while keeping the dielectric
layer thickness d2 constant, so that the necessary range of
α = d1/(d1 + d2) is achieved. The Rindler horizon can be
achieved in a similar manner.

While realization of the experimental geometry described
previously would require complicated nanofabrication, a
simpler experiment can be performed using Poly(methyl
methacrylate) (PMMA)-based plasmonic hyperbolic metama-
terials, described in detail in Ref. 22. Rigorous theoretical
description of these metamaterials has been developed in
Ref. 31. However, the following qualitative model may
guide us in understanding similarity between the layered 3D
hyperbolic metamaterials shown in Fig. 1(b) and plasmonic
hyperbolic metamaterials (Fig. 4), which are based on PMMA

stripes deposited onto gold film surface. Let us consider a
surface plasmon (SP) wave which propagates over a flat
metal-dielectric interface. If the metal film is thick, the SP
wave vector is defined by the expression

kp = ω

c

(
εdεm

εd + εm

)1/2

, (25)

where εm(ω) and εd (ω) are the frequency-dependent dielectric
constants of the metal and dielectric, respectively.32 Let us
introduce an effective 2D dielectric constant ε2D, which
characterizes the way in which SPs perceive the dielectric
material deposited onto the metal surface. Similar to the 3D
case, we can introduce ε2D so that kp = ε2D

1/2ω/c, and, thus,

ε2D =
(

εdεm

εd + εm

)
. (26)

Now it is easy to see that depending on the frequency, SPs
perceive the dielectric material bounding the metal surface
in drastically different ways. At low frequencies ε2D ≈ εd .
Therefore, plasmons perceive a PMMA stripe as dielectric.
On the other hand, at high enough frequencies around
λ0 ∼ 500 nm, ε2D changes sign and becomes negative since
εd (ω) > −εm(ω). As a result, around λ0 ∼ 500 nm plasmons
perceive PMMA stripes on gold as if they are “metallic layers,”
while gold/vacuum portions of the interface are perceived
as “dielectric layers.” Thus, at these frequencies, plasmons
perceive a PMMA stripe pattern from Fig. 4 as a layered
hyperbolic metamaterial, shown in Fig. 1(b).

Rigorous description of plasmonic hyperbolic metamateri-
als in terms of Diakonov SPs31 produces similar results. In this
description a PMMA grating on the gold film surface is treated
as an anisotropic dielectric medium having the following
perpendicular and parallel components (defined with respect

FIG. 4. (Color online) Experimental observation of the metric signature transition in a plasmonic hyperbolic metamaterial illuminated with
488 nm light. (a) and (b) Optical microscope images of the plasmonic metamaterial patterns illuminated with white light. (d) and (e) Same
patterns illuminated with 488 nm laser light. (c) and (f) Digital zooms of the metric signature transition area.
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to the optical axis) of the diagonal dielectric tensor:

ε⊥ = αεd + (1 − α), εII = εd

(1 − α)εd + α
, (27)

where εd is the permittivity of PMMA, and α = d1/(d1 + d2)
is defined by the widths d1 and d2 of the PMMA and vacuum
stripes, respectively. In the frequency range below εm(ω) =
−ε⊥ plasmon dispersion has normal elliptic character. On the
other hand, in the frequency range between εm(ω) = −e⊥ and
εm(ω) = −(ε⊥εII)1/2, the plasmon dispersion is hyperbolic.
At α = 0.5 this hyperbolic band is located between εm(ω) =
−1.63 and εm(ω) = −1.5. According to material parameters
of gold reported in Ref. 33, this frequency range is located
around λ = 490 nm. Thus, the “end of time” conditions can
be achieved in this frequency range via continuous variation
of d1 through the α = 0.5 value in a plasmonic hyperbolic
metamaterial.

Fabrication of such plasmonic hyperbolic metamaterials in
two dimensions requires only very simple and common litho-
graphic techniques. As described in the previous experimental
scenario, the effective “metallic layer” width d1 of PMMA
stripes was varied, while the width of effective “dielectric
layers” (the gold/vacuum portions of the interface) d2 was kept
constant. Because Eqs. (25) and (26) are approximations only,
in the experiments presented in Fig. 4 we have used a PMMA
bigrating geometry and varied its periodicity along both x and
y directions within a broad range of parameters in order to
achieve the presumed “end of time” conditions. Therefore,
we followed the “combinatorial approach to metamaterials
discovery,” as described in Ref. 34. The bigrating structures
were defined using a Raith E-line electron beam lithography
(EBL) system with ∼70 nm spatial resolution. The written
structures were subsequently developed using a 3:1 IPA/MIBK
solution (Microchem) as developer. The fabricated structures
were studied using an optical microscope under illumination
with 488 nm Argon ion laser, as described in Ref. 22. It appears

that the optical images of field distribution over the sample
surface do indicate considerable field enhancement near the
presumed plasmonic metric signature transition events, as
clearly seen in the digital zoom of the metric signature
transition area shown in Fig. 4(f).

Compared to previous proposals of emulating a black
hole event horizon using macroscopic electrodynamics (see,
for example, Ref. 35 by Reznik), our technique appears
to be much more practical. Experimental realization of
Reznik’s proposal would require achieving infinite values of
the dielectric permittivity ε inside the solid state black hole
analog. While very large values of ε ∼ 1000 may indeed be
achieved in ferroelectrics in the limited frequency range, finite
range of achievable ε leads to truncation of the attractive
potential experienced by photons, so that no true horizon
may appear. On the other hand, realization of our proposal
relies on achieving ε near zero values [see Eq. (19)], which
is much more practical. The main experimental difficulty in
our case appears to be suppression of Im(ε), which has been
already demonstrated in metamaterials in the limited frequency
range.36

In conclusion, we have examined metamaterial optics at
the boundaries of hyperbolic metamaterials. If the boundary
is perpendicular to the spacelike direction in the metamaterial,
an effective Rindler horizon may be observed, which produces
Hawking radiation. On the other hand, if the boundary is
perpendicular to the timelike direction the system undergoes a
metric signature transition, with a nonintegrable electric field
divergence at the transition point. Experimental observations
of this transition using plasmonic metamaterials confirm the
theoretical prediction.
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