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Fractional periodicity of persistent current in coupled quantum rings
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We study the transmission properties of a few-site Hubbard rings with up to second-nearest neighbor coupling
embedded to a ring-shaped lead using exact diagonalization. The approach captures all the correlation effects
and enables us to include interactions both in the ring and in the ring-shaped lead, and study on an equal footing
weak and strong coupling between the ring and the lead as well as asymmetry. In the weakly coupled case we
find fractional periodicity at all electron fillings at sufficiently high Hubbard U , similar to isolated rings. For
strongly coupled rings, on the contrary, fractional periodicity is only observed at sufficiently large negative gate
voltages and high interaction strengths. This is explained by the formation of a bound correlated state in the ring
that is effectively weakly coupled to the lead.
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I. INTRODUCTION

Systems having a connected geometry exhibit interest-
ing properties in the presence of a magnetic flux. In the
Aharonov-Bohm effect, transmission through a ring pierced
by a magnetic flux shows interference effects as electrons
traversing through the two different paths acquire different
phase factors. On the other hand, a magnetic field induces a
nondissipative current called the persistent current in isolated
phase-coherent rings or ring ensembles due to the single
valuedness of the electron wave function.1 Both before
and after the experimental observations of the persistent
currents,2–11 intense theoretical study has been devoted to
the different factors affecting the periodicity of the current,
such as the effects of electron-electron interaction, disorder,
and finite temperature.12–24 The persistent currents in more
complex systems, such as multichannel rings or cylinders24,25

and two-dimensional quantum dot arrays,1 have also been the
topic of theoretical considerations.

The understanding of these phenomena is not only interest-
ing for fundamental science but also from an applicational
point of view. Quantum rings could serve as components
for future nanoelectronics. For instance, there have been
suggestions to use ring molecules as quantum interference
effect transistors.26–28 Aharonov-Bohm phenomena are also
relevant for carbon nanotubes in which band gap oscillations
as a function of external magnetic flux have been observed.29,30

Metallic rings with a large number of charge carriers
are well described by noninteracting theories and by now
the properties of the persistent current in them, such as the
magnitude, periodicity, and direction, are well understood.2

In these systems, the measured periodicity of the persistent
current is a flux quantum �0 = ch/e, or half of it, �0/2.2–6,31

Theoretically, the two different periods are related to parity
effects with respect to number of electrons in the ring.17,21 In
the experiment, the half-flux periodicity is observed only in
measurements over an ensemble of metallic rings.4,5,31 This
has been explained in terms of ensemble averaging of the
different parities of the individual rings.32

In semiconducting rings with a small number of electrons,
electron-electron correlations are important. With a strong
enough electron-electron interaction, the appearance of frac-
tional periodicity �0/Nel, where Nel is the number of electrons

in the ring, has been theoretically predicted.16,19 Fractional
periodicity has also been shown to occur at low values of U

in dilute systems when Nel/NU is small, associated with the
disappearance of parity effects.21 However, only Keyser et al.33

have been able to show this experimentally by studying a
semiconducting ring with less than ten electrons. Very recently,
Hernandez et al.34 reported measurements on a 20–40-electron
ring but they were only able to observe the �0 and �0/2
oscillations. As the effect seems to be elusive in experiments, it
is necessary to study which additional factors could complicate
the experimental observation of fractional periodicity.

In the experiments, either isolated rings or rings connected
to external leads are studied. A superconducting quantum
interference device (SQUID)-type setup allows the measure-
ment of the persistent current from the induced magnetic
moment in isolated rings or ring ensembles.3,4,6,8,31 Also
resonator-based methods have been used in the literature to
study isolated ring systems.2,5 These methods provide access
to both the magnitude of the persistent current and its flux
periodicity. On the other hand, the magnetoconductance of
the ring can be measured in an Aharonov–Bohm-type setup
with external leads.7,9–11,33,35 In these measurements, a bias
voltage is applied, and the strength of the coupling between
the ring and the leads can be controlled by gate voltages. These
measurements yield only the magnetic flux periodicity through
the measured conductance but provide no direct information
on the magnitude of the persistent current.

Theoretical study of conductance through interacting sys-
tems is far from trivial. A Landauer–Büttiker-type36 formalism
is available also for the interacting case, although the practical
implementation is cumbersome.37 Flux-pierced interacting
rings have been widely studied in the literature using per-
turbative approaches with respect to the coupling between the
ring and the leads,38–40 using a variety of theoretical models
to describe the ring part of the system: a Luttinger liquid,41

spinless interacting fermions,42 the t-J model,40 and also the
Hubbard model.38 The strongly coupled case has, to the best of
our knowledge, not yet been addressed for interacting systems,
and in general only noninteracting leads have thus far been
considered. Moreover, we are not aware of any studies dealing
with the conductance or transmission properties of Hubbard
rings with second-nearest neighbor coupling.
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It has been proposed that the conductance properties of
interacting nanostructures can be studied using the so-called
embedding approach,43,44 in which the interacting system
is embedded into a noninteracting lead. Instead of using
semi-infinite leads and introducing a bias voltage between
them, as in the widely used Landauer-Büttiker approach,36 the
lead is formed into a ring that is pierced by a magnetic flux.
As a consequence, a persistent current is induced in the ring
and its magnitude in the presence and in the absence of the
nanostructure can be related to the transmission coefficient
of the nanostructure, and thus to conductance. In the limit of
an infinitely long lead, the approach yields linear response
conductance. On the other hand, quantum dots embedded in
a flux-pierced ring have also been studied using a capacitive
charging model.45 If electron-electron interaction is introduced
to the lead part of the system, no formal relationship between
the persistent current and the conductance has been found in
the literature. However, the magnitude of the lead current can
still be thought to probe the transmission properties of the
nanostructure. The advantage of the embedding approach is
that all coupling strengths can be treated on equal footing,
and that the ground-state energy of the composite system
is, in principle, all that is needed to extract the conductance
properties.

In this paper we study a fully interacting system consisting
of a flux-pierced Aharonov-Bohm ring embedded in an
interacting ring-shaped lead. By studying a Hubbard ring
with second-nearest neighbor couplings, we show that in the
weakly coupled case, the fractional periodicity of the persistent
current can be observed for all electron fillings. For strong
coupling between the ring and the lead, on the contrary,
fractional periodicity is only observable at higher electron
fillings, stronger interaction, and larger gate voltages, where
a correlated bound state that is weakly coupled to the lead
is formed. We also discuss the effect of asymmetry, both in
the coupling strengths and lead positions, as well as in the
interaction strength in the ring and lead parts of the system.
Our results provide insight into why the fractional periodicity
is difficult to observe experimentally.

II. MODEL AND METHOD

We use the Hubbard model to describe our system con-
sisting of an interacting ring (hereafter ring) and an equally
interacting ring-shaped lead (hereafter lead) connected to
it, schematically shown in Fig. 1. We note that a related
multiring or multiarm setup has recently been studied within
the noninteracting tight-binding formalism.46 We take the
hopping amplitude between the sites within the ring and within
the lead as a constant, t0 = −t , and measure all energies in the
units of t . For the ring part of the system, we consider rings
with the next-nearest neighbor coupling (2NN) that is given
by the hopping amplitude t ′.

In 1NN Hubbard rings, fractional �0/Nel periodicity
appears in the U → ∞ limit.47 Isolated 2NN rings have
been shown to map to continuum rings, and the inclusion
of 2NN hoppings has been shown to lower the required
value of the on-site electron-electron interaction U for the
onset of fractional periodicity.48 The presence of the 2NN
hopping makes thus the ring effectively quasi-1D as electrons

FIG. 1. (Color online) The geometry of the double ring system.
Dotted lines: alternative connections between the ring and the lead
(the three colors/shades of gray show the different positions) Dashed
lines: second-nearest neighbor hoppings in the ring. For symbols, see
Sec. II.

are allowed to pass each other even at very high interaction
strengths. We denote the onset value by Uc. We use the value
t ′ = 0.2t , following a previous study on isolated rings,48 for
which this value was found to lead to a relatively low value
for Uc (Uc = 5.3t for an eight-site ring at quarter-filling). The
ring is pierced by an Aharonov-Bohm (AB) flux � and the
system properties as a function of this flux are studied. Nring

gives the number of sites in the ring and Nl the number of sites
in the lead.

In order to drive a current through the ring to probe the
transmission properties, another AB flux that is fixed to the
value φ0 pierces the lead ring. Throughout this paper we set
h̄ = c = e = 1 and the fluxes are thus represented in units of
�0 = ch/e = 2π . In the limit of an infinitely long noninter-
acting lead, the transmission through the nanostructure can be
expressed using the current in the lead part in the presence
and in the absence of the nanostructure, when the boundary
condition in the lead part is given by a flux φ0 = 0.25�0 =
π/2, also called a “twisted boundary condition.”43,44,49 We
choose this value of φ0 also for the interacting leads, although
we cannot analytically link the value of the current and the
transmission coefficient. The current in the lead is thus driven
by a hopping t0e

iφ0 between one pair of sites in the lead, the
rest of the hoppings between the nearest neighbors being t0.

The Hubbard Hamiltonian is given by

H = Hkin + HU + Hg, (1)

where the kinetic energy contribution is given by

Hkin =
∑

i,j,σ

(tij c
†
iσ cjσ + t∗ij c

†
jσ ciσ ), (2)

the contribution due to the on-site interaction by

HU =
∑

i

Uini↓ni↑, (3)
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and the gate voltage applied upon the ring by

Hg =
∑

iσ

V
g

iσ niσ . (4)

Here tij is the spin-independent hopping amplitude between
sites i and j , Ui is the interaction strength at site i, and V

g

iσ

is the gate voltage applied onto the ring sites, modeled by an
on-site energy. Other notation is standard second quantization.
We denote by Ur and Ul the interaction strength in the ring and
in the lead, respectively, if necessary. The hopping amplitude
within the ring is given by t0e

iφ between nearest neighbors,
and by t ′e2iφ between second-nearest neighbors for clockwise
rotation.48 Due to hermiticity of the Hamiltonian, tj i = t∗ij
naturally applies. The total flux piercing the ring is given by
� = Nringφ. The coupling between the lead and the ring is
given by tc < 0. We assume there is no magnetic field present
in the electron paths, and thus neglet the spin-orbit interaction
and Zeeman splitting. As for a given total spin S, the states
with different Sz values are degenerate in the absence of
Zeeman splitting, we may choose Sz = 0 (Sz = 1/2) for even
(odd)-electron systems without losing information on states
with a higher total spin.

We exactly diagonalize the Schrödinger equation H� =
E� presented in the many-body basis formed from the
many-electron states for both spin species. The diagonalization
is performed in a block of the Hamiltonian with a fixed
number of electrons in the system, Nel = N↑ + N↓, and a fixed
Sz = N↑ − N↓, as the Hubbard interaction does not couple
sectors of the Hamiltonian with different Sz or Nel. To obtain
the lowest-energy eigenstate, we apply the Lanczos diago-
nalization algorithm,50 converging the lowest eigenenergy to
within 10−12t . The computational effort associated with the
exact diagonalization method limits the number of sites in
our system to below 30, and also the number of electrons
in the system to around six, as the size of the Hilbert space
grows factorially as ( N

Nσ
)( N

N−σ
). We mostly focus on a six-site

ring to allow sufficient variation in the lead length for the
consideration of finite-size effects. We also consider different
coupling positions between the ring and the lead, shown by
the dotted lines with different colors/shades of gray in Fig. 1.

From the wave function of lowest-energy eigenstate, we
calculate the observables of interest, such as the current
between any two sites i and j , by calculating the expectation
value Jij = 〈�|Ĵij |�〉, where the current operator is given by
(h̄ = c = e = 1)51

Ĵij = i
∑

σ

(tij c
†
iσ cjσ − t∗ij c

†
jσ ciσ ). (5)

We define Jring and Jlead such that the sites i and j in Eq. (5)
both belong to the ring or lead part of the system, respectively.
Alternatively, we could calculate the persistent current in the
ring from the variation of the ground-state energy E0 with
respect to a change in the flux,12

J = −∂E0

∂�
. (6)

We prefer, however, the current operator approach as it allows
us to easily calculate the current in the different branches of

the system by choosing the sites i and j accordingly. Similarly,
we calculate the occupation of a given site (n̂i = ∑

σ n̂iσ =∑
σ c

†
iσ ciσ ) or the total spin of our system [〈Ŝ2〉 = Stot(Stot +

1)] by calculating the expectation value of the corresponding
operator.

III. RESULTS

A. Weakly coupled rings

To begin with, we consider weak coupling between the
ring and the lead. We expect the behavior of the fractional
periodicity to be close to that of isolated rings, and also
to observe single-electron tunneling. For the time being, we
restrict ourselves to the symmetric ring-lead coupling (Fig. 1,
1–4 connection).

We use a 14-site lead and leave the discussion on finite-size
effects to Sec. III C. We occupy the system with an odd number
of electrons, n↑ = 2 and n↓ = 3. The ring and the lead are
weakly coupled, tc = −0.2t . We calculate the current in the
ring and lead parts of the system, as well as the total spin state
of the composite system and its contribution from the ring,
at V g values chosen as to keep the ring occupation nring near
an integer value, as shown in the top left panels in Fig. 2 at
U = 2t,5t,11t , and 21t . The values of U have been chosen to
best illustrate the fractional peridicity �0/Nel for each of the
ring fillings Nel = 2, 3, 4, and 5. To restrict the computational
effort, however, only integer values for U were considered. In
the right panels of Figs. 2(a)–2(d), the current in the ring Jring

is given by the solid lines and the one in the lead Jlead by the
dotted lines. The current have been shifted and normalized
to better illustrate the shape and periodicity of the ring
current.

In Fig. 2 (right panels, solid lines) the kinks in the ring
current appear due to crossings between the energy parabola
that determine the ground state of the system. Figure 3
illustrates this, showing the energy of the two lowest-energy
states as a function of � as obtained from the Lanczos
diagonalization in which the lowest-energy state has been
converged. The energy parabolas are easily identified. At
the crossings, the slope of the ground-state energy changes
sign, leading also to an abrupt sign change in the persistent
current [see Eq. (6)]. For nring = 1, the periodicity of the ring
current is always �0. For higher occupations, in the absence
of interactions, a period of �0 (�0/2) would be expected for
even (odd) occupation numbers in the ring.16,17 Interaction,
however, shifts the energy parabola, leading to additional
crossings and a pseudo-�0/2 period for even electrons below
Uc

16,17 as parabola corresponding to states with a higher total
spin are less shifted. This is also reflected in the total spin
projected onto the ring, shown in the left panels in Fig. 2 by
thicker lines. When U is increased, the regions where the ring
spin is high or even maximal (S = nring/2) are widened.

At the onset of the fractional periodicity (U = Uc), the
period of the ring current is �0/nring and segments between
the kinks are of equal length in �.This is also illustrated in
Fig. 3(a) that shows the ground-state energy as a function
of � at U = 5t corresponding to nring = 3 with fractional
periodicity. Notably, even though two of the ring sites are
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FIG. 2. (Color online) The properties of a six-site 2NN ring weakly connected (tc = −0.2t) to a 14-site lead as a function of the total flux
� piercing the ring, with the ring occupation nring at integer values (top left panels). Bottom left panels show the total spin (thin line) and its
projection onto the ring part of the system (thick line) and the right panels the ring current (solid lines) and the lead current (dashed lines). The
dotted lines show the zero level, and the curves have been normalized to facilitate comparison. For lead currents, the scaling factors rounded to
two significant digits are indicated. The values of U are chosen as to show fractional periodicity at each integer nring, and the gate voltage V g

to keep the occupation constant as a function of the flux �. The five curves illustrate the different ring occupations (nring ≈ 1, 2, 3, 4, 5: black,
blue, red, green, and yellow in color, black to light gray in grayscale). (a) U = 2t , (b) U = 5t , (c) U = 11t , and (d) U = 21t .
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FIG. 3. The two lowest energy levels as a function of the flux � for
a six-site ring with Nl = 14 as given by the Lanczos diagonalization
in which the lowest-energy state has been converged. The ring
occupation nring is approximately three electrons. (a) Weakly coupled
system at fractional periodicity (U = 5t , tc = −0.2t , V g = −0.9t).
(b) Weakly coupled system for U > Uc (U = 8t , tc = −0.2t ,V g =
−1.1t). (c) Strongly coupled system near fractional periodicity (U =
8t , tc = −t , V g = −1.1t). Other parameters tt = 0.2t , Nel = 5.

perturbed through the presence of the leads, the fractional
periodicity is not affected. Above Uc, the parabola continue to
shift in energy and the kinks in the ring current are no longer
of equal length, shown in Fig. 3(b) at U = 8t . It is readily
seen that the parabola around � = �0/2 + n�0 have shifted
relative to the ones at � = n�0. The periodicity, however,
remains pseudo-�0/nring.

The different periodicities of the persistent current in the
ring are also reflected in the lead current, shown in dashed lines
in the right panels of Fig. 2. Apart from the nring = 5 case, in
which the magnitude of the ring current is so small that it is
significantly affected by numerical instabilities, the kinks in
the ring current are associated with jumps or peaks in the lead
current. The overall periodicity of the lead current is twice
that of the ring current. This is understood by considering the
double-ring geometry (Fig. 1). In the present configuration
(1–4 connection, see Fig. 1), the ring is pierced by the flux 6φ.
The lead and some of the ring sites can be thought to form
another ring that is pierced by the flux −3φ + φ0. Thus, the
periodicity in the lead current is twice that of the ring current.
The effect of the position of the coupling sites will be discussed
in more detail in Sec. III D.

In Fig. 2 the lower left panels show the total spin of the
ring-lead system (thin line) and its projection onto the ring
part (thick lines). The total spin is restricted to half-integer
values by the electron number (n↑ = 2, n↓ = 3), and at low
interaction values it is 1/2 for all nring. At higher U , some
regions of S = 3/2 appear. The total spin projected onto the
ring, on the contrary, reflects the changes in the ground-state
energy parabola. With an increasing interaction strength, the
regions with a higher total spin value widen in �, and for
nring = 4 even regions of maximal spin S = 2 appear at and
above Uc. This effect is similar than in isolated rings48 in which
a maximally spin polarized state (S = Nel/2) was found above
Uc at a fixed value of � = 0.5�0 for a quarter-filled eight-site
ring. Due to the coupling between the lead and the ring, the
values of the total spin projected onto the ring are, however,
not strictly integer or half-integer.

The onset value of the fractional periodicity seems to scale
approximately as Uc ∝ N2

el. Thus, in order to experimentally
observe fractional periodicity, a large number of electrons in
the ring might require a very strong interaction. In the weakly
coupled case, the fractional periodicity is very similar to the
isolated case and we thus turn our attention to the case with a
strong coupling between the lead and the ring.

B. Strongly coupled systems

Similar to Fig. 2 for weak coupling, Fig. 4 shows the
ring and lead currents, along with the total spin and the ring
occupation in the strongly coupled systems. Again, the values
of U are chosen as to best show the fractional periodicity at
each nring if possible. The top left panels in Fig. 4 show the
ring occupation as a function of �. Unlike for weak coupling,
the charge state of the ring cannot be fixed to integer values for
all electron numbers and interaction strengths. For nring = 2,
the value U = 2t was chosen to facilitate comparison with
the weakly coupled case (Fig. 2), and for nring = 3, U = 8t to
show the closest the system gets to fractional periodicity.

The ring and lead currents (Fig. 4, right panels) for low
occupations appear irregular and in the nring = 1 case even
2�0 periodic. This is, again, related to the doubled period
in the lead part of the system. In the strongly coupled case,
the magnitudes of the lead and ring current are comparable
and due to the current conservation at the coupling points,
the lead current alters the ring current. In contrast to the
weakly coupled case, we only observe fractional periodicity
for higher ring occupations, nring � 4. For electron fillings
nring < 3, the saw-tooth shape of the persistent current is
completely smoothened at low interaction strengths, and for
nring = 3 a persistent current resembling fractional periodicity
with a partly smoothened shape appears. This is related to
entanglement with the lead states and the resulting fluctuation
in the occupation of the ring as a function of �.14,25 On
the other hand, from the viewpoint of the ring, the strong
coupling to the lead can be interpreted as a form of disorder
at the coupling sites. Disorder has also been shown to lead to
smoothening of the kinks.25 In the nring = 3 case, however,
we observe a ring current characteristic to U > Uc in the
weakly coupled case at strong interaction, even though the
actual fractional periodicity with sharp saw-tooth features is
missing.
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FIG. 4. (Color online) The properties of a six-site 2NN ring strongly connected (tc = −t) to a 14-site lead as a function of the total flux
� piercing the ring, with the ring occupation nring as close as possible to integer values (top left panels). Bottom left panels show the total
spin (thin line) and its projection onto the ring part of the system (thick line), and the right panels the ring current (solid lines) and the lead
current (dashed lines). The dotted lines show the zero level, and the curves have been normalized to facilitate comparison. For the lead currents,
the scaling factor rounded to two significant digits is indicated. The values of U chosen as to show fractional periodicity at each nring, or as
close as the system gets to it, and the gate voltage V g to keep the occupation constant as well as possible. Due to the strong coupling, large
fluctuations in the electron number are present especially at low values of interaction. The five curves illustrate different ring occupations
(nring ≈ 1, 2, 3, 4, 5: black, blue, red, green, and yellow in color, black to light gray in grayscale). (a) U = 2t , (b) U = 8t , (c) U = 16t , and
(d) U = 22t .
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At higher ring occupations, nring = 4 or 5, we see fractional
periodicity at sufficient U , and (pseudo-)�0/2 periodicity
below it. Thus, it appears that at sufficiently low V g values
corresponding to high nring, the ring becomes effectively
weakly coupled to the lead. Some of the kinks are slightly
smoothened due to avoided crossings of the energy parabola,
fluctuations in the ring occupation, and large magnitude of
the lead current. Figure 3(c) shows the ground-state energy
as a function of � at U = 8t for nring ≈ 3. As opposed to
the weakly coupled case of Fig. 3(b), some of the sharp
crossings between the parabola disappear in the strongly
coupled case. For occupations and interaction strengths with
fractional periodicity, the behavior of the lead current, as
well as the behavior above Uc, is similar to that at weak
coupling. For values of V g for which the ring occupation
strongly fluctuates as a function of �, also other periodicities
are possible. For instance, in a six-site ring strongly coupled to
a 14-site lead with five electrons, at V g ≈ −1.5t and U = 2t

the occupation fluctuates between three and five electrons,
and the periodicity of the ring current is pseudo-�0/3 (not
shown).

In general, in the strongly coupled systems the peaks and
kinks in the lead current do not reflect the kinks in the ring
current as accurately as for weak coupling. At fractional
periodicity, the behavior of the ring and lead currents are
similar irrespective of the coupling strength, namely, with
abrupt magnitude and sign changes that coincide with the
jumps in the ring current. At low U and lower ring occupations
we mainly see a single peak in the 2�0-periodic lead current,
as if the ring were just a disordered site in the lead ring.
For nring = 5 the lead current shown in Fig. 4 is essentially
numerical noise due to minuscule magnitude of the current.
Thus, in the strongly coupled case, the observation of fractional
periodicity from conductance or transmission is much more
difficult than at weak coupling.

The evolution of the total spin with increasing interaction
is similar to the weakly coupled case, although the spin
projection onto the ring is smoothened out at low nring due
to the strong coupling. At fractional periodicity, however,
the crossings between different-S parabola are clearly seen
as abrupt changes in the spin state in the upper right panels
of Fig. 4. Again, with increasing U , states with a higher total
spin become the ground state for larger regions in �.

In Figs. 2 and 4 the current curves have been normalized as
to facilitate qualitative comparison. It is, however, instructive
to also consider the magnitudes of the current. For the lead
currents, the scaling factors relative to the nring = 1 current
are given in the figures, rounded to two significant digits.
In general, the magnitude of the ring current is only slightly
smaller in the strongly coupled case than in the weakly coupled
case, the difference increasing with increasing interaction
strength. The lead current, on the other hand, is an order
of magnitude larger in the strongly coupled case than in the
weakly coupled case. In particular, for the strongly coupled
nring = 1 case, the lead and ring current are of the same
order of magnitude. The strong coupling disturbs the ring part,
decreasing the ring current as the hybridization with the lead
states is enhanced. The increased magnitude of the lead current
in the strongly coupled case can be understood as increased
transmission through the ring.
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FIG. 5. The effect of lead length at weak coupling (tc = −0.2t)
with a fixed flux φi = 0.01�0 on (a) the occupation of the ring (b) the
lead current as a function of the gate voltage V g . (c) The persistent
current in the ring (d) persistent current in the lead as a function of the
flux piercing the ring � at Vg chosen such that nring = 2. The number
of sites in the lead Nl increases from 10 to 20 in steps of two with
the darkening shade of gray. Other parameters Nel = 6, U = 2t , and
t ′ = 0.2t .

C. Finite-size effects

As we are dealing with relatively small systems, it is
necessary to pay attention to finite size effects, namely, what is
the effect of the length of the lead. We are not interested in the
diminishing magnitude of the lead current with increasing lead
length52 but instead, the behavior of the ring persistent current
and the gate voltages at which the charge state of the ring
changes. Figure 5 shows the properties of a six-site ring with
2NN hopping (t ′ = 0.2t) with the length of the lead increasing
from 10 sites to 20 sites in steps of two sites. The ring is weakly
coupled, tc = −0.1 t , and the number of spin up and spin down
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electrons are equal (Nel = 6). In Figs. 5(a) and 5(b) φi is fixed
to 0.01�0, and in Figs. 5(c) and 5(d) V g in the ring is chosen
to give nring ≈ 2.

In Fig. 5(a) a clear Coulomb staircase characteristic for
weakly coupled systems with well-defined charge states and
transition regions associated with an electron tunneling from
the lead to the ring between them is seen. As the lead length is
increased, the steps shift toward more negative gate voltages,
and the values of V g corresponding to the steps converge
starting from the steps with highest nring. As the total number
of electrons in the ring-lead system is fixed, a removal of an
electron in the ring corresponds to an addition of an electron in
the lead. For high ring occupations, the filling factor in the lead
is low and thus the exact number of sites is not as important as
for higher fillings. The lead can be thought to act as a sort of a
small reservoir but due to the system configuration, neither the
electron number of the ring nor its chemical potential remain
constant when the gate voltage or flux piercing the ring are
changed. Comparing the lead current as a function of the gate
voltage, shown in Fig. 5(b), we see that changes in the ring
occupation are accompanied by peaks in the lead current due
to charge transfer between the two subsystems.

Figures 5(c) and 5(d) show the persistent current in the
ring and in the lead as a function of �, respectively, at a
gate voltage V g fixed such that there are approximately two
electrons in the ring. The small differences between the curves
in Fig. 5(c) are mainly due to small fluctuations in the ring
occupation. We see that the lead length has little effect on the
current within the ring, whereas with an increase in the lead
length leads, the magnitude of the lead current is somewhat
decreased [Fig. 5(d)]. The persistent current in a perfect,
noninteracting ring without a nanostructure decays as 1/Nlead,
and with a weakly coupled embedded Anderson impurity-type
quantum dot as 1/N

1/2
lead.52 Again, qualitatively the curves are

very similar, the changes in the current occurring at same flux
values with sign changes in the ring current.

In the strongly coupled case, the Coulomb staircase is
partly smoothened out, as illustrated in Fig. 6. In principle,
the strong coupling between the lead and the ring should lead
to broadening of the transmission resonances leading to the
smoothening of the Coulomb steps. Figures 6(a) and 6(b) show
the ring occupation as a function of the gate voltage V g for
a six-site 2NN ring at strong coupling (tc = −t) and U = 2t

for Nel = 5 and Nel = 6, respectively. In both subfigures, the
darkening shade of the curves indicates the increasing number
of sites Nl in the lead. We indeed observe a smoothening of
the steps, to the extent that in the Nel = 5 case only one step
is observable, compared to all five seen at weak coupling.
Figure 6(c) compares the staircase for Nel = 5, 6, and 7 with
Nl = 19, 17, and 14, respectively. The low-occupation steps
remain smoothened out but increasing the total number of
electrons in the system leads to the presence of additional
high-occupation steps.

The disappearance of the low-occupation steps can be
understood if the competition between kinetic and interaction
energy is considered. At large negative gate voltages, the
localization of electrons in the ring is favored as the kinetic
effects due to the strong coupling are small compared to the
effect of the gate voltage. As the ring is close to half-filling,
the density of doubly occupied sites is low and due to the
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FIG. 6. (Color online) The effect of an increasing lead length Nl

on the Coulomb staircase in a six-site ring strongly coupled (tc =
−t) with the lead. In (a), Nel = 5, the lead lengths 10, 13, 16, and
19 sites, and in (b) Nel = 6, the lead lengths 11, 14, and 17 sites,
the lead length increasing with darkening shade of gray/red. In (c),
the Coulomb staircase for different electron numbers is compared
(Nel = 5: Nl = 19, Nel = 6: Nl = 17, and Nel = 7: Nl = 14). In all
calculations, φi = 0.01�0 and U = 2t .

presence of the 2NN hoppings, the electrons are allowed to
move within the ring without having to doubly occupy any
single site. When the gate voltage is increased, the electrons are
increasingly delocalized both in the ring and the lead. Charging
effects associated with the addition of a single electrons can
no longer be observed. Thus, at large negative Vg the system
is effectively weakly coupled to the gate voltage, and shows
behavior similar to weak coupling. At higher Vg , on the
contrary, neither well-defined charge states in the ring, nor
fractional periodicity in the ring current are observed.

Studying the effect of the interaction strength U on the
Coulomb staircase provides additional insight into this effec-
tive decoupling. Figure 7(a) shows the effect of the interaction
strength on the Coulomb steps. When the interaction is
increased, shown in the different shades of gray, the number of
steps increases. With an increasing electron-electron repulsion
strength, the kinetic energy associated with the strong coupling
becomes weaker relative to the interaction energy, and bound
correlated states are formed in the ring part at sufficiently
negative V g also for lower nring. The bound correlated states
also support a ring current with fractional periodicity. Indeed,
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FIG. 7. The effect of the interaction strength for Nel = 5 for
strong coupling between the ring and the lead. (a) The solid gray
to black line: U = 2t , 5t , 10t , 15t , and 20t . (b) and (c) The effect of
the interaction strength in the lead Ul with Ur = 5t and Ur = 20t in
the ring part for all curves, respectively. Ul increases with darkening
shade of gray. In all calculations, Nring = 6, tc = −t , Nl = 16, and
φi = 0.01�0.

we see in Fig. 7(a) that at U � 15t , a Coulomb step with
nring ≈ 3 has appeared, and the corresponding nring = 3 curves
in Fig. 4 show characteristics increasingly similar to the weakly
coupled case above Uc with increasing U .

The interaction strength in the lead is actually less impor-
tant. Figures 7(b) and 7(c) show the effect of increasing the
interaction in the lead part of the system, while the interaction
in the ring part is Ur = 5t and Ur = 20t , respectively, for
all curves. The highest-V g steps slightly shift when the
interaction is increased but the overall shape of the curve is very
similar regardless of the lead interaction strength. At weaker
interaction in the ring [Ur = 5t in Fig. 7(b)] the presence of
interaction in the lead has little effect, whereas of stronger
ring interaction [Ur = 20t , Fig. 7(c)], the system is practically
converged to the Ul = 20t case at Ul = 5t .

D. Asymmetry effects

Thus far we have only considered structures in which the
coupling between the lead and the ring is symmetric, both
in strength and in the coupling position. In experiments,53

however, the coupling strength between the ring and the
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FIG. 8. The effect of asymmetry in the strength of the lead-ring
coupling on the Coulomb steps, that is the ring occupation as a
function of the gate voltage Vg . The ring occupation has been
normalized using the total number of electrons Nel = 5, and curves
are shifted for clarity. The circles in the inset show the values of the
couplings in the tc1-tc2 space, a–d link some of the values to the main
figure, and arrows show the direction of change. Parameters: six-site
ring, Nl = 14, U = 5t , Nel = 5, φi = 0.01�0, and t ′ = 0.2t .

lead is typically controlled by gates and it is possible that
the coupling strength is not equal for both contacts. Our
approach allows us to study explicitly the effect of both types
of asymmetry. Figure 8 compares the Coulomb steps for a
six-site ring 1–4 coupled to a 14-site lead but with unequal
coupling strengths tc1 and tc2. The circles in the inset show the
used tc1-tc2 combinations, and a–d indicate the corresponding
nring − V g curves in the main figure. Starting from relatively
weak and equal coupling, increasing the asymmetry leads
to smoothening of the Coulomb steps in which the ring
occupation changes from an odd value to an even value (a →
b). When one of the couplings is strong, tc1 = −t , increasing
the second one, tc2, leads to smoothening also in the steps
associated with even-odd transitions (b → c). Moving along
the diagonal in tc1-tc2 space gradually reintroduces all of the
steps (c → d → a).

The product of the couplings, tc1tc2 = 1 is fixed but the
asymmetry, given by the fraction tc1/tc2, is varied. When the
difference between tc1 and tc2 increases, the systems becomes
effectively more weakly coupled, seen in the appearance of
the Coulomb steps. Thus, a single weak link is sufficient for
weakly coupled behavior.

The position of the lead-ring coupling can also be changed,
the arms of the ring thus being of unequal length. Unequal-
length arms appear also in the experiments.53 Figure 1
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FIG. 9. (Color online) The ring and lead currents [(a)–(c) and (d)–(f), respectively], as well as spin imbalance n↑ − n↓ in the ring [(g)–(i)],
in the (�, V g) space for the three different coupling sites for weak coupling between the lead and the ring. (a), (d), (g): 1–2 coupling; (b),
(e), (h): 1–3 coupling; (c), (f), (i): 1–4 coupling. In (a)–(c) the contours of half-integer ring occupation nring are additionally drawn, separating
regions of approximately integer values of nring. Other parameters: six-site ring, 14-site lead, tc = −0.2t , t ′ = 0.2t , Nel = 5, U = 2t . The color
scales for each row are fixed to allow comparison in the magnitudes between different coupling positions.

illustrates the three different coupling positions available for
the six-site ring. The effect of the coupling positions on the
ring and lead currents is illustrated in Fig. 9 in which the
magnitude and sign of the ring current [Figs. 9(a)–9(c)] and
the lead current [Figs. 9(d)–9(f)] is shown in the (V g ,�)
space for a weakly coupled (tc = −0.2t) six-site ring with
a 14-site lead (U = 2t , t ′ = 0.2t , n↑ = 3, n↓ = 2), as well as
the spin imbalance in the ring, n↑ − n↓ [Figs. 9(g)–9(i)]. The
color scale is fixed so that in each row the magnitudes for
different coupling positions can be compared. The contours
overlaid with the ring current maps in Figs. 9(a)–9(c) show the
occupation of the ring nring.

It is easily understood that for weak coupling, the choice of
the position has little effect on the behavior of the ring current
and fractional periodicity, as seen in Figs. 9(a)–9(c). The effect
of the position is, however, seen in the current circulating in
the lead part of the system. More precisely, an alternation in
the magnitude of the lead current depending on the coupling
position is clearly seen, as well as changes in the broadening of
the lead current peaks. The high-current regions approximately
parallel to the � axis are due to the electrons entering the ring,
seen in the upper row as contours of half-integer nring. The
ridges parallel to the V g axis, on the other hand, are due to
charge transfer changing the spin polarization n↑ − n↓ within

the ring at a constant ring occupation. The density of one spin
species increases and the other decreases abruptly, as seen in
Figs. 9(g)–9(i).

In fact, the magnitude alternation in the lead current
[Figs. 9(d)–9(f)] resembles the magnitude of persistent current
in a ring, superimposed on the resonance peaks, only with a
two, three, or six times longer period. There is also a phase shift
when the number of electrons in the lead changes, similar to
the odd-even alternation in isolated, clean rings. Like already
mentioned, the effect of increased period in the lead current is
seen also in the symmetrically coupled case. In Figs. 2 and 4 the
periodicity of the lead current is twice that of the ring current,
explained by a second ring formed by the lead and some ring
sites that is pierced by half of the flux � in Sec. III A. Also
for the other coupling positions, we get the period of the lead
current by comparing the flux piercing the ring, and a ring
formed by the lead and some sites in the ring. Thus the 1–2
coupling results in a six times longer period in the lead current
compared with the period of the ring, and the 1–3 coupling
in a three times longer period. We also note that the maximal
magnitude of the lead current in the symmetrically coupled
case is approximately half of that for the other cases, shown
in Fig. 9(c). This is most likely due to the appearance of de-
structive interferences when the ring arms are of equal length.
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FIG. 10. (Color online) The ring and lead currents [(a)–(c) and (d)–(f), respectively], as well as spin imbalance n↑ − n↓ in the ring [(g)–(i)],
in the (�, V g) space for the three different coupling sites for strong coupling between the lead and the ring. (a), (d), (g): 1–2 coupling; (b),
(e), (h): 1–3 coupling; (c), (f), (i): 1–4 coupling. In (a)–(c) the contours of integer and half-integer ring occupation nring are additionally drawn.
Other parameters: six-site ring, 14-site lead, tc = −t , t ′ = 0.2t , Nel = 5, U = 2t . The color scales for each row are fixed to allow comparison
in the magnitudes between different coupling positions.

Figure 10 shows similar figures for the strongly coupled
case. As there are no bound correlated states in the V g range
considered and the electrons are delocalized both in the ring
and the lead, the coupling position affects also the ring current.
For larger negative V g , regions with a well-defined constant
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FIG. 11. (Color online) The occupation in the ring nring as a
function of the gate voltage V g for ring sizes Nring = 5–8 for Nel = 5,
6, and 7 (from lighter to darker curves). For the five-site ring, also
Nel = 8 included. Other calculational parameters: U = 2t , t ′ = 0.2t ,
tc = −t , and Nl = 14.

nring similar to the weakly coupled case would be seen also
for strong coupling. The effect of the coupling position on
the magnitude of the lead current is much larger than in the
weakly coupled case, the maximal value of the lead current
being six times larger at 1–2 coupling compared to 1–4
coupling. The diminishing magnitude of the lead current also
makes the charge imbalance smaller in the 1–4 case, shown in
the contours of the lower row in Fig. 10. The periodicities
of the lead current, however, are the same as at weak
coupling.

Up to this point we have only considered a six-site ring.
We conclude by noting that our results on the six-site rings are
representable also for other ring sizes. Figure 11 compares the
Coulomb steps at strong coupling for five- to eight-site rings
with a 14-site lead. In all cases, the lowest-occupation steps
are smoothened out, and for higher nring the bound states that
are effectively weakly coupled to the lead appear.

IV. CONCLUSIONS

We have studied a Hubbard ring with second-nearest
neighbor hoppings, connected to a ring-shaped lead using
an embedding approach and solving the system Hamiltonian
using exact diagonalization. In the case of a weak ring-lead
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coupling, the behavior of the persistent current is similar to that
in isolated rings and the presence of the lead is only a weak
perturbation. In addition, the interaction strength required
to observe fractional periodicity is increased with a higher
electron occupation in the ring.

In the strongly coupled case, on the contrary, fractional
periodicity cannot be observed for low electron occupations
in the ring. For higher occupations corresponding to large
negative gate voltages, fractional periodicity is observed due
to the formation of bound, strongly correlated states. High
interaction strength, however, are required. Our results provide

additional insight to why the fractional periodicity is difficult
to observe experimentally.
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