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Hall effect in quasi-one-dimensional metals in the presence of anisotropic scattering

N. Wakeham and N. E. Hussey
H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom

(Received 2 April 2012; published 11 June 2012)

We apply Boltzmann transport theory to investigate the possible effect of an anisotropic scattering time τ on
the temperature dependence of the Hall coefficient RH in quasi-one-dimensional (q1D) conductors. Specifically
we show that the measured RH in two candidate materials (TMTSF)2PF6 and PrBa2Cu4O8 can be accounted for
almost entirely by using a model that assumes only weak sinusoidal variation of τ along the Fermi surface. While
the temperature dependence of RH is markedly different in the two cases, the variations in τ are found to be
almost identical. This work highlights the importance of considering the anisotropy of the electrical resistivity in
any analysis of RH(T ) in q1D systems and hints that the momentum dependence of the inelastic scattering rate,
and thus its origin, are rather generic in both organic and inorganic q1D metals.
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I. INTRODUCTION

Quasi-one-dimensional (q1D) metallic systems possess a
highly anisotropic electronic state characterized by weakly
corrugated sheets of open Fermi surface (FS). As a result,
their Fermi-liquid (FL) ground state is extremely fragile, prone
both to competing instabilities such as superconductivity1,2

and spin3 and charge4 density waves, as well as to the possible
emergence of the Tomonaga-Luttinger liquid (TLL) state with
its distinct, collective excitations of spin and charge.5 Since the
TLL state is predicted to occur strictly in one dimension, the
inevitable coupling that exists between individual conducting
chains in real solids ought to inhibit manifestations of TLL
physics, at least at low energies or at low temperatures.5 As
an example of an easy-to-measure low-energy probe, the Hall
effect has the potential to address the nature of the electronic
state in q1D conductors and its evolution with temperature.6

Interpretation of existing results, however, has so far proved
controversial.7–10

In conventional metallic systems, the Hall coefficient RH

depends only on the size of the FS and the sign of the charge
carriers. A marked T dependence of RH(T ) is often the first
indicator of a change in state, as found, for example, in
underdoped high-Tc cuprates near the 1/8-doping anomaly.11,12

In quasi-two-dimensional (q2D) metals with a single band or
a single carrier type, the magnitude and sign of RH can also be
dependent on the FS curvature whenever the mean free path
� is anisotropic,13–15 and can be T dependent whenever the
anisotropy in � changes.

Here, we investigate to what extent the Hall effect of
real q1D metals can be explained within a conventional
band picture by developing a version of the Boltzmann
transport equation that incorporates sinusoidal variation of
both the Fermi velocity vF and scattering time τ . We then
use this approach to model RH(T ) in PrBa2Cu4O8 (Pr124) and
(TMTSF)2PF6, whose Hall coefficients both exhibit strong,
distinct temperature dependencies.8,16 We find that RH(T )
is extremely sensitive, both to small variations in τ (as
found previously17) and to the T -dependent anisotropy of
the electrical resistivity ρ(T ). We also find that the measured
RH(T ) in both compounds can be explained by a quantitatively
similar evolution of their τ anisotropy, save for the sharp drop
in RH(T ) in (TMTSF)2PF6 at low T . In the important high-T

regime, where one might expect a crossover to TLL behavior,8

an anisotropic FL description is found to be sufficient to
explain the magnitude and T dependence of RH. Moreover, the
form (and, by inference, the origin) of the inelastic scattering
rate in both the organic and inorganic systems appears to the
same.

II. ANISOTROPIC SCATTERING MODEL

Using the Jones-Zener expansion of the linearized Boltz-
mann equation within the relaxation time approximation, we
obtain an expression for σ

(n)
ij , the nth order term of the ij

component of the conductivity tensor,

σ
(n)
ij = −e2+n

4π3h̄n

∫
viτ

(
[vk × B]

∂

∂k

)n

vj τ

(
−∂f 0

k

∂εk

)
d3k,

(1)

where B is the applied field, vi the electron velocity in the
i direction, f 0

k the density of carriers occupying momentum
state k in equilibrium, and εk the energy of the electron in state
k. For a q1D system with an open FS, it is most convenient to
use Cartesian coordinates, the energy integral being performed
along the reciprocal axis parallel to the conducting chain (i.e.,
kx). This introduces a factor 1/(h̄vx |k=kF

) in the denominator of
Eq. (1), which for B||z (the crystal axis of lowest conductivity),
current J||x, and Hall voltage VH||y now reads

σxy = e3B

4h̄2π3

∫∫ (
lx

∂ly

∂ky

− ly
∂ly

∂kx

)
dkydkz, (2)

where lx (ly) is the mean free path in the x (y) direction.
Usually, vy does not depend on kx . For the simple q1D
tight-binding FS shown in Fig. 1, for example, the energy
dispersion is given by ε = −2tx cos(kxa) − 2ty cos(kyb) + εz.
Here ty � tx is the y-axis (interchain) hopping parameter,
tx the intrachain hopping parameter, a and b the x- and y

-axis lattice parameters, and εz the energy dispersion in the
z direction. Thus, for isotropic scattering, or for a scattering
function that only depends on ky , Eq. (3) reduces to

σxy = e3B

4h̄2π3

∫∫
lx(ky)

∂ly(ky)

∂ky

dkydkz. (3)
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FIG. 1. (Color online) Typical Fermi surface of a q1D conductor.
In the case of isotropic scattering, the green (blue) shaded sections
give negative (positive) contributions to RH, respectively.

Ong13 showed that in q2D metals, this expression could be
interpreted using a geometrical picture of the “Stokes area”
swept out by the vector lk as k moves around the FS. A similar
geometric picture can also be considered for q1D metals,18

though it is illuminating to consider separately the effect of
the anisotropy of v and τ , as we do here.

Let us consider first the case of isotropic scattering at a
doping level equivalent to half-filling, at which point vx is con-
stant everywhere on the FS [see Eq. (4)]. In the green shaded
regions, ∂vy

∂ky
is positive, whereas it is negative elsewhere. Since

vx is constant, the contributions to σxy from the green and blue
sections cancel out and RH = σxy

σxxσyy
= 0. For a band filling

greater (smaller) than 0.5, vx (and correspondingly lx) will be
less (more) at ky = 0 than at ky = π/2b due to the dispersion
of the band. Therefore the contribution from the blue shaded
region will be less (more) than that of the green region and
RH will be finite and positive (negative), even in the case of
an isotropic τ . Assuming constant charge carrier density, this
gives a temperature-independent Hall coefficient, since the
(T -dependent) isotropic scattering time has canceled in the
equation for RH. This is in agreement with earlier work17,19

but is contrary to the claims of Fortune et al.18

Equation (3) shows that there may also be contributions
to RH due to anisotropic scattering, i.e., to a variation of τ

with ky . Since scattering time anisotropy is likely to be T

dependent, this should give rise to a T -dependent Hall effect.
More formally, for the FS depicted in Fig. 1, the variation of
vx with ky can be shown20 to be

vx = v0
x + 2tya

h̄ tan(kF a)
cos(kyb) = v0

x + δvx, (4)

where kF is the Fermi wave vector. Going forward, we assume
that the scattering rate has the simple form

1

τ (ky)
= 1

τ0
[1 + γ cos(kyb)], (5)

where γ is a dimensionless variable that quantifies the
scattering rate anisotropy. For γ � 1, we can reexpress this,
via a Taylors series, as an equivalent scattering time

τ (ky) ∼ τ0[1 − γ cos(kyb)] = τ0 + δτ (6)

which makes the calculations easier to handle. Substituting
Eqs. (6) and (4) into Eq. (3) gives

σxy ∝
∫

δvxτ
2
0
∂vy

∂ky

+ τ0v
0
xδτ

∂vy

∂ky

+ δτδvx

∂(vyδτ )

∂ky

dky. (7)

The first term in Eq. (7), of order t2
y , describes the contribution

to RH from the variation in vx alone and leads to the usual
expression RH = 1

ne
kF a

tan kF a
, where n is the carrier density.19

The second term comes from the variation in τ and, being of
order tx ty , can have a much greater influence on the magnitude
(and sign) of σxy and thus RH(T ). The third term is a small
correction that comes from both the variation in τ and in vx .
Note that in general there may be another small correction term
which appears upon expansion of Eq. (3), δτv0

x

∂(vyδτ )
∂ky

, which
is zero for this particular FS. Equation (7) then enables us
to model the measured RH(T ) in our candidate q1D systems
within a Boltzmann approach and to estimate the level of
anisotropy in τ that is required to account for any departures
from the isotropic band value.19

III. RESULTS AND DISCUSSION

A. PrBa2Cu4O8

Pr124, the nonsuperconducting structural analog of the
underdoped cuprate YBa2Cu4O8, is a q1D conductor with
two 1/4-filled zigzag chains of corner-sharing CuO4 units
oriented along the b axis. It has a large resistivity anisotropy,
ρb : ρa ≈ 1 : 1000, with ρc � ρa .21 The T dependence of
ρb(T ) is approximately quadratic at low T and T linear
above ∼150 K,22 consistent with expectations for a q1D FL
with dominant electron-electron scattering.23 Optical measure-
ments on Pr124, on the other hand, have been interpreted in
terms of TLL physics.24

In the absence of published band-structure calculations,
we assume here that its FS takes the form shown in
Fig. 1. In order to obtain a value for the hopping pa-
rameters which are self-consistent with the data used in
fitting RH(T ), we first take vF = 2.5 × 105 ms−1, as inferred
from photoemission spectroscopy,25 then use the equation
tx = tb = h̄vF /2b sin(kF b) to calculate tb. From ρa/ρb =
(tx/ty)2 ∼ 1000 at low T , we thus obtain ty = ta = 9.7 meV,
which compares with 1.5 meV estimated from dimensional
crossover studies.21 This discrepancy is significant and is
likely to arise from a combination of factors. First, the
value for vF is taken from data more than 20 meV away
from the Fermi level, and any further band renormalization
below this energy scale, e.g., due to the electron-phonon
interaction, would only act to reduce vF . Second, the inter-
chain hopping parameter determined from the dimensional
crossovers is an effective hopping parameter, which may be
reduced further, relative to that measured from ρa/ρb, through
interactions.5
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FIG. 2. (Color online) RH(T ) for Pr124. Solid circles represent
measured data; the thin black line, the band estimate assuming
isotropic scattering; and the dashed red line, the fitted curve assuming
an anisotropic τ . The thick black lines indicate the band value for
RH assuming isotropic scattering and ρa ∝ ρb. Inset: Corresponding
resistivity anisotropy ρa/ρb(T ). Note its similarity to the solid line in
the main panel.

While the intrachain resistivity ρb(T ) in Pr124 is metallic
and monotonic, the interchain resistivity ρa(T ) goes through
maximum around 130 K.21 Since RH ∝ σxy/σxxσyy , this
difference in the two ρ(T ) curves has a dramatic effect on
RH(T ). As an illustration, the solid black line in Fig. 2
represents RH(T ) calculated using the published resistivity
data21 and assuming strictly isotropic scattering. As one can
see from comparison with the inset to Fig. 2, the T dependence
of RH(T ) precisely mimics that of ρa/ρb(T ). Were ρxx ∝ ρyy ,
RH would simply be a constant, as indicated by the short thick
lines on either side of the ordinate axis.

The RH(T ) data, plotted as solid circles in Fig. 2, were
measured using the four-point ac lock-in technique and agree
with previously published work.16 While the measured data
overlap with the isotropic fit at high T , below around 250 K, the
two curves separate, with the measured RH(T ) curve changing
sign at intermediate temperatures before becoming positive
again as T → 0. Within the Boltzmann picture, this separation
of the two curves indicates the development of anisotropy in τ

with decreasing T . The solid red line is the corresponding fit to
the data obtained by allowing γ , the strength of the anisotropy
in τ , to vary with temperature. The resultant γ (T ) is plotted
in Fig. 4. It is striking to note that this marked departure in the
as-measured RH(T ) results from a very small (<10%) change
in τ across the entire FS. We shall return to this point later,
after we first consider the case of (TMTSF)2PF6.

FIG. 3. (Color online) RH(T ) for (TMTSF)2PF6. Open circles
represent measured data (Ref. 7); the solid black lines, the band
estimate (Ref. 7) assuming isotropic scattering; and the dashed blue
line, the fitted curve for anisotropic scattering. The inset shows an
exaggerated Fermi surface of (TMTSF)2PF6.

B. (TMTSF)2PF6

(TMTSF)2PF6 is one of several q1D organic metals which
have been the subject of intense interest with regard to the
possible realization of a TLL ground state. As Pr124, it too has
a large resistive anisotropy ratio, with ρa : ρb ≈ 1 : 100 and
ρc � ρb.7 The T dependence of ρa(T ) (taking into account
the large thermal expansion coefficient) varies approximately
as T 2 below ∼130 K and, as Pr124, it has a lower temperature
exponent at higher T .8 Its Hall effect, meanwhile, has been
analyzed both in terms of TLL physics8 and within a q1D FL
picture with an anisotropic τ .26 Hence it is an ideal compound
with which to compare our analysis.

The dispersion relation of (TMTSF)2PF6 is taken
to be ε = −2ta cos(kxa) − 2tb cos(kyb) − 2t ′b cos(2kyb) + εz,
where ta(tb) are the intrachain (interchain) hopping parameters,
and 2t ′b = t2

b cos(kF a)/ta sin2(kF a).27 The inclusion of phase
factors in the above cosine terms17 is found to have a minimal
impact on our results. The FS takes the form shown (greatly
exaggerated) in the inset of Fig. 3. Using the method outlined
above for Pr124 and the literature value of vF = 4.0 ×
105 ms−1 for (TMTSF)2PF6,27 we estimate tb = 24 meV,
in reasonable agreement with previous analysis27,28 (taking
ta/tb = tx/ty ≈ 10). The t ′b term constitutes ∼3% of the total
warping and thus its inclusion has a negligible impact on the
magnitude and T dependence of RH.

As with Pr124, we can estimate γ (T ) from the as-measured
RH(T ) curve,7 plotted as open circles in Fig. 3. Here we have
scaled the expected band value at 1/4 filling [the thick black
lines in Fig. 3 (Ref. 7)] by ∼10% (within the experimental
uncertainty) to allow the calculated, isotropic, RH to be equal
to the measured RH at T = 300 K. The solid blue line in
Fig. 3 represents the anisotropic-τ fit and the corresponding
anisotropy parameter γ (T ) is plotted in Fig. 4. The dramatic
change in RH(T ) around T = 60 K is at too high a temperature
to be associated with any known FS reconstruction. The sharp
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FIG. 4. (Color online) Scattering time anisotropy parameter γ

extracted from fits to RH(T ) in (TMTSF)2PF6 and Pr124.

reduction in RH is reminiscent of what occurs in hole-doped
cuprates at 1/8 doping where it was attributed to a possible
confinement of carriers to individual stripes.11 However, in the
absence of any reconstruction, such confinement is expected to
arise only once kBT > 2tb,5 and hence should occur at higher
T , rather than at lower T . Within our anisotropic-τ model, the
drop in RH(T ) corresponds to an increase in γ (T ) from ∼0.02
at T = 50 K to around 0.14 at T = 15 K [i.e., just above the
spin density wave (SDW) transition]. Hence, the more likely
explanation for the sudden drop in RH is the development of
“hot spots,”26 regions of intense scattering (e.g., due to SDW
fluctuations7 or umklapp scattering29) that we have not tried
to capture here.

IV. CONCLUSIONS

The results presented above highlight several key points.
First, it confirms the finding of Yakovenko and Zheleznyak17

that RH(T ) in q1D systems is highly sensitive to anisotropy in
τ (ky). We can see in Fig. 4 that in the two cases considered

here, a variation of at most 10% (γ < 0.05) is sufficient to
recover the measured RH(T ) in Pr124, including the change
of sign, and in (TMTSF)2PF6 above T = 50 K. We have also
demonstrated the importance of taking into account the T

dependence of the resistivity anisotropy. An interesting finding
of this work is the remarkable similarity in the magnitude, sign,
and T dependence of γ in Pr124 and (TMTSF)2PF6 (above
50 K). The reduction in γ (T ) toward zero as T → 300 K
presumably reflects the mixing of states at high T due to
an increase in scattering, while the small residual anisotropy
at low T in both systems can be attributed to small-angle
impurity scattering (i.e., scattering off defects located outside
the conducting chains30). Given the similarity in γ (T ) in
both systems, it is tempting to assign the same origin for the
dominant scattering process in each compound. In the future,
it will be illuminating to apply this model to a range of q1D
systems to determine how generic this form of γ (T ) actually
is. Then we may turn our attention to other q1D conductors,
such as (TMTTF)2AF6 (Ref. 10) and Li0.9Mo6O17,31 where the
Hall effect cannot easily be explained within this anisotropic
framework and consider Hall effect anomalies arising from
more exotic (e.g., TLL) electronic states.32

Finally, the small magnitude of the τ anisotropy in Pr124
and (TMTSF)2PF6 contrasts markedly with that found in the
q2D cuprates, for example, where even far from the Mott
insulating state, τ anisotropy can peak at over 100% (at
T = 100 K).33 In the cuprates, this anisotropic scattering
is associated with an anomalous scattering rate, of as yet
unknown origin, that varies linearly in T down to the lowest
temperatures studied.34 From this perspective, it would be
interesting to explore the possibility that the rapidly developing
τ anisotropy inferred from RH(T ) in (TMTSF)2PF6 might also
be associated with a similar T -linear term observed in the
low-T resistivity.35
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10B. Korin-Hamzić, E. Tafra, M. Basletic, A. Hamzic, and M. Dressel,
Phys. Rev. B 73, 115102 (2006).

11T. Noda, H. Eisaki, and S. Uchida, Science 286, 265
(1999).

12D. LeBoeuf et al., Nature (London) 450, 533 (2007).
13N. P. Ong, Phys. Rev. B 43, 193 (1991).
14A. Narduzzo, G. Albert, M. M. J. French, N. Mangkorntong,

M. Nohara, H. Takagi, and N. E. Hussey, Phys. Rev. B 77,
220502(R) (2008).

15Y. Nakajima et al., J. Phys. Soc. Jpn. 75, 023705 (2006).

235117-4

http://dx.doi.org/10.1051/jphyslet:0198000410409500
http://dx.doi.org/10.1051/jphyslet:0198000410409500
http://dx.doi.org/10.1103/PhysRevLett.102.206602
http://dx.doi.org/10.1103/PhysRevB.55.12446
http://dx.doi.org/10.1103/PhysRevB.43.8421
http://dx.doi.org/10.1103/PhysRevB.43.8421
http://dx.doi.org/10.1021/cr030647c
http://dx.doi.org/10.1103/PhysRevB.61.16393
http://dx.doi.org/10.1103/PhysRevB.61.16393
http://dx.doi.org/10.1103/PhysRevB.63.075109
http://dx.doi.org/10.1103/PhysRevB.63.075109
http://dx.doi.org/10.1103/PhysRevB.75.195123
http://dx.doi.org/10.1103/PhysRevB.75.195123
http://dx.doi.org/10.1103/PhysRevLett.84.2670
http://dx.doi.org/10.1103/PhysRevLett.84.2670
http://dx.doi.org/10.1103/PhysRevLett.84.2674
http://dx.doi.org/10.1103/PhysRevB.67.014513
http://dx.doi.org/10.1103/PhysRevB.73.115102
http://dx.doi.org/10.1126/science.286.5438.265
http://dx.doi.org/10.1126/science.286.5438.265
http://dx.doi.org/10.1038/nature06332
http://dx.doi.org/10.1103/PhysRevB.43.193
http://dx.doi.org/10.1103/PhysRevB.77.220502
http://dx.doi.org/10.1103/PhysRevB.77.220502
http://dx.doi.org/10.1143/JPSJ.75.023705


HALL EFFECT IN QUASI-ONE-DIMENSIONAL METALS . . . PHYSICAL REVIEW B 85, 235117 (2012)

16S. Horii, H. Takagi, H. Ikuta, N. E. Hussey, I. Hirabayashi, and
U. Mizutani, Phys. Rev. B 66, 054530 (2002).

17V. M. Yakovenko and A. T. Zheleznyak, Synth. Met. 103, 2202
(1999).

18N. Fortune, P. Fons, and K. Murata, Synth. Met. 70, 1001
(1995).

19J. R. Cooper et al., J. Phys. (France) 38, 1097 (1977).
20Derived from vx = 2tx a

h̄
sin[(kF +δkx)a], where δkx =�kx cos(kyb)

and 2txa sin(kF a)(2�kx) = 4ty .
21N. E. Hussey, M. N. McBrien, L. Balicas, J. S. Brooks, S. Horii,

and H. Ikuta, Phys. Rev. Lett. 89, 086601 (2002).
22M. N. McBrien, N. E. Hussey, P. J. Meeson, S. Horii, and H. Ikuta,

J. Phys. Soc. Jpn. 71, 701 (2002).
23A. Oshiyama, K. Naka, and H. Kamimura, J. Phys. Soc. Jpn. 45,

1136 (1978).
24K. Takenaka, K. Nakada, A. Osuka, S. Horii, H. Ikuta,

I. Hirabayashi, S. Sugai, and U. Mizutani, Phys. Rev. Lett. 85,
5428 (2000).

25T. Mizokawa et al., Phys. Rev. Lett. 85, 4779 (2000).
26V. M. Yakovenko and A. T. Zheleznyak, Synth. Met. 120, 1083

(2001).
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