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(Received 11 July 2011; revised manuscript received 10 February 2012; published 11 June 2012)

We investigate an extended version of the periodic Anderson model (the so-called periodic Anderson-Hubbard
model) with the aim to understand the role of interaction between conduction electrons in the formation of the
heavy-fermion and mixed-valence states. Two methods are used: (i) variational calculation with the Gutzwiller
wave function optimizing numerically the ground-state energy and (ii) exact diagonalization of the Hamiltonian
for short chains. The f -level occupancy and the renormalization factor of the quasiparticles are calculated as a
function of the energy of the f orbital for a wide range of the interaction parameters. The results obtained by the
two methods are in reasonably good agreement for the periodic Anderson model. The agreement is maintained
even when the interaction between band electrons, Ud , is taken into account, except for the half-filled case. This
discrepancy can be explained by the difference between the physics of the one- and higher-dimensional models.
We find that this interaction shifts and widens the energy range of the bare f level, where heavy-fermion behavior
can be observed. For large-enough Ud this range may lie even above the bare conduction band. The Gutzwiller
method indicates a robust transition from Kondo insulator to Mott insulator in the half-filled model, while Ud

enhances the quasiparticle mass when the filling is close to half filling.
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I. INTRODUCTION

Rare-earth materials exhibit numerous remarkable phenom-
ena such as heavy-fermion behavior, valence fluctuations, and
unconventional superconductivity. The simplest model that
can account for these phenomena is the periodic Anderson
model (PAM), where mobile conduction electrons in a broad
band of width W can hybridize with immobile f electrons
sitting at the lattice sites. The Coulomb repulsion is taken into
account between the f electrons only. Written in a mixed,
Bloch and Wannier representation, this model is defined by
the Hamiltonian

H =
∑
k,σ

εd (k)d̂†
kσ d̂kσ + εf

∑
j,σ

n̂
f

jσ

−V
∑
j,σ

(f̂ †
jσ d̂jσ + d̂

†
jσ f̂jσ ) + Uf

∑
j

n̂
f

j↑n̂
f

j↓, (1)

where d̂
†
kσ (d̂kσ ) is the creation (annihilation) operator of

conduction electrons with wave vector k and spin σ , while
f̂

†
jσ (f̂jσ ) denotes the creation (annihilation) operator of f

electrons at site rj in an arbitrary dimensional lattice with
N lattice sites, n̂

f

jσ = f̂
†
jσ f̂jσ is the number operator of

f electrons at site rj , and n̂d
jσ is defined similarly. The

hybridization matrix element between f and d states is denoted
by V , and Uf is the strength of the on-site Coulomb repulsion
between f electrons. We consider the nondegenerate case,
that is, one d and one f orbital per site is assumed. Therefore,
owing to the two possible orientations of the spin, the average
number of d and f electrons per site, nd and nf , respectively,
can vary between zero and two. The filling will refer to the
ratio of the total electron density per site (nd + nf ) and the
maximally allowed electron density (nmax = 4).

Although it has been investigated for several decades,1 this
model and its extended versions are still in the forefront of

condensed-matter physics. Since exact results are available
only for certain special cases,2 besides the large number
of perturbative studies nonperturbative techniques have also
been developed to go beyond the weak-coupling limit. The
Gutzwiller variational method3 has been applied by several
authors.4–10 In this method, an uncontrolled approximation
(the so-called Gutzwiller approximation3) is often used to
calculate expectation values with the correlated wave function.
Metzner and Vollhardt11 have shown that the expectation
values can be evaluated exactly in one dimension. Later they
considered the limit of large dimensions,12 where analytic
treatment is possible. Gebhard13 developed a technique to
calculate expectation values in a controlled expansion in
the inverse of the degeneracy of the f level and in the
inverse of the dimension of the lattice. He showed that the
Gutzwiller approximation provides exact results in the limit
of large dimensions. Moreover, in this limit this method is
equivalent to the slave-boson mean-field theory of Kotliar and
Ruckenstein.14,15 Later on, the dynamical mean-field theory,16

which, too, is exact in the limit of infinite dimensions, has been
applied to the PAM by several authors17–20 to better understand
the main features of the model. To avoid the problem related to
the Gutzwiller approximation, Shiba7 applied the variational
Monte Carlo method. The PAM was investigated also by using
the projector-based renormalization method21 for arbitrary
degeneracy of the f level. The ferromagnetic properties
of the PAM have been studied with the density-matrix
renormalization group.22

In view of the widespread application of the Gutzwiller
approximation, it is important to know how reliable this
method is. As will be demonstrated in this paper by comparing
the results with those of exact diagonalization, the Gutzwiller
method gives—in spite of its limitations—reliable results for
the number of electrons occupying the f orbital. The f -level
occupancy is a significant quantity, for it has recently been
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proposed23 and experimentally verified24 that the pressure-
induced enhancement of the superconducting transition tem-
perature of Ce-based compounds, CeCu2(Ge,Si)2, is closely
related to a sharp change of the valence of Ce.

Several extensions of the PAM have been considered
so far in order to make the model more realistic. It was
found that nearest-neighbor interaction between f electrons
affects the stability of the magnetic ground state in the
Kondo regime.25 On the other hand, the on-site interaction
between d and f electrons (Udf

∑
j ,σ,σ ′ n̂

f

jσ n̂d
jσ ′) influences

drastically the occupation number of f electrons.26 It has
been shown that a large Udf destroys the Kondo state and
narrows the intermediate valence regime.23,26 Its treatment in
the framework of the Gutzwiller method is, however, quite
cumbersome. In our previous work27 we assumed a special
form for this interaction, Ũdf

∑
j n̂

f

j↑n̂
f

j↓n̂d
j↑n̂d

j↓, and pointed
out that the intermediate-valence regime is narrowed in the
presence of this interaction.

The model we study in the second part of this paper
includes the interaction between conduction electrons (d
electrons). Although the corresponding impurity problem has
been examined thoroughly in several papers,28–35 only a
few results are available on the lattice problem.36–39 Fulde
and co-workers40 have pointed out that the heavy-fermion
properties41 of Ce-doped Nd2CuO4 cannot be explained
without taking correlations between conduction electrons
into account. Although it has been shown36 that correlations
between conduction electrons may increase the effective mass,
and the competition between Coulomb repulsion in the d- and
f -electron subsystem may lead to a transition from Kondo to
Mott insulator, the role of the electron-electron interaction in
the conduction electron subsystem is not fully clarified. In this
paper we calculate the number of f electrons per site and the
probability of double occupancy of f orbitals as a function of
the energy of the bare f level, the hybridization, and the f -f
and d-d Coulomb interactions. The calculations are carried
out for a wide range of parameters of the model Hamiltonian,
and the regions for Kondo-like behavior as well as for valence
fluctuations are determined.

The paper is divided into two main parts. First, we investi-
gate the reliability of the Gutzwiller method. We compare the
variational results with those of exact diagonalization on finite
chains. Second, we analyze what happens when the interaction
between conduction electrons, Ud , is switched on.

II. VARIATIONAL CALCULATION AND EXACT
DIAGONALIZATION

A. Variational calculation

First of all, following [Ref. 36] we summarize briefly the
main steps of the variational calculation for the original PAM
without interaction between conduction electrons, Ud = 0. In
this paper we restrict ourselves to the paramagnetic case, that
is, where the number of up-spin electrons, N↑, equals that
of down-spin electrons, N↓. Furthermore, we carry out the
explicit calculation only for the system being half-filled or less
than that, since the results for the system more than half-filled
can be obtained straightforwardly owing to the electron-hole
symmetry.

The trial wave function is chosen in the form

|�〉 = P̂
f

G

∏
k

∏
σ

[ukf̂
†
kσ + vkd̂

†
kσ ]|0〉, (2)

where the mixing amplitudes uk and vk are variational
parameters. P̂

f

G is the Gutzwiller projector for f electrons:

P̂
f

G =
∏

j

[
1 − (1 − ηf )n̂f

j↑n̂
f

j↓
]
, (3)

where the variational parameter ηf is controlled by Uf . We
use the Gutzwiller approximation to evaluate the expectation
values. Optimizing with respect to the mixing amplitudes, we
obtain

E = 1

N

∑
k∈FS

[εd (k) + ε̃f −
√

[εd (k) − ε̃f ]2 + 4Ṽ 2]

+ (εf − ε̃f )nf + Uf νf (4)

for the ground-state energy per site, where nf and νf denote
the number of f electrons per site and the density of doubly
occupied f sites, respectively, Ṽ = V

√
qf is the renormalized

hybridization amplitude with

qf = 1(
1 − nf

2

) nf

2

[√(nf

2
− νf

)
νf

+
√(nf

2
− νf

)
(1 − nf + νf )

]2

, (5)

while the renormalized energy of the f level, ε̃f , has to be
determined self-consistently from the condition

nf = 1

N

∑
k∈FS

⎡⎣1 + εd (k) − ε̃f√
[εd (k) − ε̃f ]2 + 4Ṽ 2

⎤⎦ . (6)

The k sum in Eqs. (4) and (6) [and in Eqs. (19) and (21) in
the next section] extends over the Uf = Ud = 0 Fermi sea
in a manner familiar from the PAM,9 since the Gutzwiller
method respects Luttinger’s theorem and leaves the Fermi
volume unchanged.

The quantities nf and νf , and thereby ε̃f and qf , depend on
the as-yet-undetermined variational parameter ηf . Optimizing
with respect to this parameter is equivalent to minimizing the
energy with respect to nf and νf , which leads to

ε̃f = ∂E
∂qf

· ∂qf

∂nf

+ ∂E
∂ε̃f

· ∂ε̃f

∂nf

, (7)

−Uf = ∂E
∂qf

· ∂qf

∂νf

+ ∂E
∂ε̃f

· ∂ε̃f

∂νf

. (8)

These equations have to be solved together with the self-
consistency condition (6).

The summation over k in Eqs. (4) and (6) could be carried
out numerically for a realistic dispersion curve εd (k), but the
variational procedure, that is, the numerical optimization of the
ground-state energy with the self-consistency condition (6),
would be very cumbersome. Instead of that, we assume
a constant density of states, ρ(ε) = 1/W , in the interval
ε ∈ [−W/2,W/2], since then the energy density and the
self-consistent value of ε̃f can be expressed analytically from
Eqs. (4) and (6) as a function of nf and νf .
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FIG. 1. The f -level occupancy as a function of εf and Uf at half
filling (n = 2) for V/W = 0.1.

However, the self-consistent solution of the minimum
conditions for nf and νf can be found analytically only in
special cases, for example, for Uf → ∞, when V 
 W .36 In
this paper we solve Eqs. (7) and (8) numerically for various
values of V , Uf , and εf in order to determine the range of
parameters for the Kondo or intermediate-valence behavior
and for the crossover regime between them.

First, we calculate the Uf and εf dependence of the f -
level occupancy, nf , and of the renormalization factor, qf ,
in the half-filled case, where the total number of electrons
equals the sum of the number of d and f orbitals (the electron
density per site n = nd + nf = 2), and in the 1/3-filled case
(n = 4/3). Other fillings are discussed later in the next section,
where we compare the results with those obtained by exact
diagonalization.

We note that our model with n electrons can be mapped
onto a model with n holes (4 − n electrons), provided that the
energy level of the f hole is chosen as −(εf + Uf ). Therefore,
the results for n > 2 can be obtained straightforwardly from
those for n < 2. Owing to this symmetry in the special,
symmetric half-filled case, when n=2 and the bare f level
is located at εf = −Uf /2, both nf and nd are exactly equal
to 1.

The f -level occupancy is displayed as a function of the
bare f -level energy and of Uf for V/W = 0.1 in the half-
filled and 1/3-filled cases, respectively, in Figs. 1 and 2. Five
different regimes can be distinguished. When εf + Uf lies
below the conduction band, all electrons occupy f orbitals,
nf ≈ 2 and 4/3, respectively. The regions, where nf varies
smoothly, almost linearly, from 2 (or 4/3) to 1 and later from
1 to 0, are the intermediate-valence regimes. On the plateau
between them, nf deviates from unity by an exponentially
small amount. This is, as we will see, the Kondo regime, since
the double-occupancy rate is exponentially small here. Finally,
when εf lies well above the conduction band, all electrons
occupy states in the conduction band, and nf ≈ 0. There are
no sharp boundaries between these regimes; narrow crossover
regions separate them.

The boundary of the nf ≈ 1 plateau could be defined by
setting a somewhat arbitrary criterion for the deviation of
nf from unity. Figure 3 shows nf in the Uf -εf plane for a
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FIG. 2. The f -level occupancy as a function of εf and Uf at 1/3
filling (n = 4/3) for V/W = 0.1.

particular value of V/W using a color code. The “boundary” of
the plateau defined by |1 − nf | = 0.005 is drawn with a white
line. As can be seen in the figures, a plateau develops only when
Uf exceeds a not sharply defined threshold value, U c

f , which
itself depends on V and on the total electron density. Besides
V/W = 0.1, we have done calculations for V/W = 0.05 and
0.2, and obtained similar results. The upper and lower limits
of εf between which the plateau forms can be estimated from
the numerical data to be roughly

−Uf + EF(nd ) + a	f � εf � EF(nd ) − a	f , (9)

where EF(nd ) is the Fermi level of the conduction band with
nd = n − 1 electrons, 	f = πρV 2 is the width of the f level
in the impurity problem, and a is a numerical factor of order
10, which depends weakly on V , Uf , and n. The factor a

is smaller by about 10% for n = 4/3 than for n = 2, which
shows that the plateau slightly expands as the filling of the
conduction band decreases from half filling.

These results are somewhat surprising. One could argue,
based on the results for the impurity Anderson model that a
Kondo-like behavior (i.e., nf ≈ 1 with very small valence
fluctuations) is realized when the Fermi level is located
between the bare f level (εf ) and the energy εf + Uf of a
second f electron occupying the same site. That is, we could
expect the condition −Uf + EF � εf � EF, when 	f 
 W .
Condition (9) obtained by the Gutzwiller method indicates
that the Kondo-like behavior is realized in the PAM in a much

FIG. 3. (Color online) The f -level occupancy as a function of εf

and Uf at half filling (left) and 1/3 filling (right) for V/W = 0.1.
The color code is shown at the right edge of the panels. The boundary
of the nf ≈ 1 plateau is drawn with a white line.
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FIG. 4. The kinetic energy renormalization factor of f electrons
as a function of εf and Uf at half filling for V/W = 0.1.

narrower interval for εf . This will be confirmed later by exact
diagonalization.

The f electrons are strongly correlated on this plateau, since
not only the average occupancy of the f orbital is close to unity
there, but the number of empty or doubly occupied f orbitals
is almost negligible. Correlations between f electrons can
conveniently be characterized by the renormalization factor
qf , which is simply related to the double-occupancy rate νf as

qf = 8νf (1 − 2νf ), (10)

when nf is exactly one. This quantity is plotted versus εf and
Uf in Fig. 4 for V/W = 0.1 at half filling.

It is clearly seen that qf decreases rapidly from about 1,
when the f level is doubly occupied or empty, to about 0 as
nf approaches 1 from either side. When qf ≈ 0, the double-
occupancy rate is also close to zero, and the f electrons show
heavy-fermion behavior; the effective mass becomes large as
m∗ ∝ q−1

f . We can, therefore, define the Kondo regime by
setting a limit on qf , by requiring, for example, qf < 0.005.
This boundary is marked by a white line in Fig. 5, where qf is
shown for n = 2 and n = 4/3 using a color code.

The Kondo regime thus defined appears again above a
critical U c

f , which is, however, somewhat larger than the
one found earlier, since the criterion |1 − nf | � 0.005 is less
strict than the condition qf < 0.005. In this latter case the
probability of double occupancy has to be less than 0.0006.
Nevertheless, comparison with Fig. 3 shows that apart from

FIG. 5. (Color online) The parameter qf is displayed for V/W =
0.1 using a color code shown at the right edge. The boundary of the
Kondo regime defined by qf = 0.005 is drawn with a white line.
(Left) Half-filled case; (right) 1/3-filled case.
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FIG. 6. qf vs V in the symmetric half-filled case, εf = −Uf /2,
for Uf /W = 1 (solid line), 3 (dashed), 5 (dotted), 7 (dashed with one
dot), and 20 (dashed with two dots), respectively.

a rounding around the critical U c
f , the two criteria define the

same regime. The plateau slightly expands when the filling of
the conduction band decreases.

When nf is exactly 1, and Eq. (10) holds, Eq. (8) can be
easily solved in the limit V 
 W . We get

qf = nd

4(V/W )2
exp

(
− Uf

16V 2/W

)
, (11)

where nd is the number of the conduction electrons per site.
The factor nd in the prefactor explains why the critical U c

f gets
smaller as the filling decreases.

The total energy density takes a simple form in this limit,

E = εf + Ed (nd ) − nd

W

2
exp

{
− Uf

16V 2/W

}
, (12)

where the first term is the energy of the half-filled f orbital
without polarity fluctuations, Ed (nd ) is the energy of the
decoupled conduction band for filling nd , and the last term
describes the coupling between f electrons and conduction
electrons, in other words, the energy decrease owing to the
polarity fluctuations caused by d-f hybridization. This term
arising from the Kondo effect gives the characteristic energy
scale in the Kondo regime. The Kondo energy, EK, is defined
by the energy decrease per conduction electron; that is,

EK = W

2
exp

{
− Uf

16V 2/W

}
. (13)

In the remaining part of this section, we study more
quantitatively the dependence of the threshold value of U c

f on
V in the half-filled case. Figure 6 shows qf as a function of V

for several values of Uf at εf = −Uf /2, where nf is exactly 1.
The threshold values determined from qf (U c

f ,V ) = 0.005 are
given in Table I together the corresponding Kondo coupling
J = 8V 2/U c

f , since, in the Kondo regime, the PAM can be
mapped onto a Kondo lattice model (KLM).
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TABLE I. The critical U c
f of the Kondo plateau for several values

of V and the corresponding Kondo coupling.

V/W U c
f /W J/W

0.16 3 0.066
0.21 5 0.071
0.26 7 0.076
0.48 20 0.093
0.74 40 0.110
0.97 60 0.125
1.17 80 0.136
1.36 100 0.148

The dependence of U c
f on V can be fitted by the analytic

functional form

U c
f /W = 62.56(V/W )α, (14)

with α = 1.54
Since, by definition, there are no doubly occupied or vacant

f orbitals in a KLM, a rigorous mapping from PAM to KLM
should be possible in the limit νf → 0. Setting a smaller limit
for qf in the criterion for the Kondo regime, larger exponents,
given in Table II, and larger numerical prefactors are obtained
in Eq. (14). The exponent α seems to converge to 2 in the
limit qf → 0, which means that U c

f is proportional to 	f ,
and the proportionality factor is of order 100 instead of the
factor a ≈ 10 in Eq. (9). This difference is due to the stricter
condition on q and to the rounding of the boundary at the
critical U c

f .
Sinjukow and Nolting42 have shown that in the extended

Kondo limit, when Uf → ∞ and V → ∞ with V 2/Uf

remaining finite, the symmetric PAM can be mapped exactly
to the Kondo lattice model with finite Kondo coupling. The
results obtained by the Gutzwiller method are in agreement
with this.

B. Comparison with exact diagonalization

With the aim to compare the variational results with those
of a completely different method, we also performed exact
diagonalization on relatively short chains. In order to check
whether the results obtained for these chains are representative
for bulk materials, we calculated the f -level occupancy,
nf , and the density of doubly occupied f sites, νf , in the
nonmagnetic (S tot

z = 0) ground state for chains of 4, 5, and 6
sites. It turned out that the results were in excellent agreement
with each other, which suggests that the 6-site chain behaves
almost like the bulk in this respect. This is in agreement
with the finding of Chen and Callaway,43 who compared the
ground-state energy obtained from exact diagonalization of a
four-site chain with Monte Carlo result on a 16-site chain. In
what follows we present the results obtained for a 6-site chain

TABLE II. The exponent α in Eq. (14) calculated for several
threshold value of qf .

q threshold
f 10−3 10−4 10−5 10−6 10−7 10−8

α 1.70 1.80 1.83 1.86 1.89 1.91

n
f
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FIG. 7. (Color online) (a) The f -level occupancy vs εf at
2V/W = 0.375. The curves are obtained by the Gutzwiller method,
while the symbols indicate the results of exact diagonalization
for 2Uf /W = 0 (black solid line, �), 3 (red dashed line, �), 5
(green dotted line, �), 7 (blue dash-dotted line, �), and 10 (purple
dash-dot-dotted line, �) . (b) The renormalization factor qf . The
notation is the same as in panel (a).

with 12, 10, 8, and 6 electrons. The case with 6 electrons is not
interesting from the point of view of Kondo physics, because
the conduction band is exhausted when nf = 1. Nevertheless,
it is used in the comparison of the two methods.

The kinetic energy of conduction electrons moving along
the chain is described by hopping between nearest-neighbor
d orbitals with hopping rate t ; thus, the bandwidth is now 4t .
Therefore, we identify W with 4t , when comparison with the
results of the variational calculation is made.

The f -level occupancies obtained by the two methods
are directly compared in Fig. 7(a). As for νf , we compare
the results indirectly, through qf . Although this quantity is
specific to the Gutzwiller method, it shows the strength of
correlations more visibly than νf itself; therefore, we define
qf with the help of Eq. (5) from nf and νf obtained from the
exact ground-state wave function. Comparison with the result
of the variational calculation is shown in Fig. 7(b).

As is seen in Fig. 7(a), the two methods give very similar
results as far as the “global behavior” of the f -level occupancy
and the extent of the nf ≈ 1 plateau is concerned, even though
the density of states is not identical in the two calculations. This
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I. HAGYMÁSI, K. ITAI, AND J. SÓLYOM PHYSICAL REVIEW B 85, 235116 (2012)

n
f

0.7

0.8

0.9

1

V/W

0 0.2 0. .6 8

(c)

n
f

0

0.5

1

1.5

2

εf/W

-4 -2

(a)

q f

0

0.2

0.4

0.6

0.8

1

εf/W

-4 -2

4 0 0.

0 2

0 2

(b)

FIG. 8. (Color online) (a) The f -level occupancy vs εf at
Uf /W = 2.5. The curves are obtained by the Gutzwiller method,
while symbols denote the results of exact diagonalization for
2V/W = 0.2 (black solid, �), 0.375 (blue dashed, �), and 0.7 (red
dotted, �), respectively. (b) The renormalization factor qf . The
notation is the same as in panel (a). (c) nf vs V at Uf /W = 2.5,
for εf /W = −0.75 (black solid line, �) and εf /W = −0.25 (blue
dashed line, �).

indicates that Eq. (9) found in the Gutzwiller method for the
boundary of the Kondo regime is not due to the Gutzwiller
approximation, but is a consequence of strong correlations in
the lattice model.

We find a subtle difference, however, in Fig. 7(b), where
qf is plotted as a function of εf . One sees that qf calculated

ν f
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ν f
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(b)

FIG. 9. The double-occupancy rate of f electrons vs V/W . The
dotted curves indicate the results of exact diagonalization, while the
solid curves are calculated by the Gutzwiller method. Uf /W is 5 and
100 in panels (a) and (b), respectively.

in the Gutzwiller method approaches zero faster in the Kondo
regime than that provided by exact diagonalization. The former
exhibits the exponential behavior given in Eqs. (11) and (13)
typical for Kondo physics, while the latter cannot be fitted to
such a curve. We discuss this quantitatively later on.

Next we check the dependence of the Kondo plateau on
the strength of the hybridization. In Fig. 8(a) we plot nf as a
function of εf for three values of V/W in the half-filled case. It
is clearly seen that the plateau (i.e., the Kondo regime) rapidly
shrinks as V increases, and disappears, in agreement with the
results presented in the previous section. Figure 8(b), where qf

is plotted, shows directly the disappearance of heavy-fermion
behavior. Finally, nf is plotted as a function of V in Fig. 8(c)
for two values of εf /W . We find again that the two methods
yield similar results for nf , but the V dependence is different
near the boundary of the Kondo regime.

In order to better see this difference, we calculate the
double-occupancy rate of f electrons in the symmetric (εf =
−Uf /2) half-filled case as a function of V near the boundary
of the Kondo regime, that is, where νf 
 1. We find, as seen in
Fig. 9, that in contrast to the results of the Gutzwiller method,
the dependence of νf on V 2/Uf is not exponential; νf varies
as a power of V 2/Uf :

νf = A
W

Uf

(
V 2

WUf

)
+ B

W

Uf

(
V 2

WUf

)2

, (15)

where A is close to unity and B ≈ 50. This power-law-like
dependence may be due to the small system size in the exact
diagonalization.

Finally, we study the filling dependence of the Kondo
regime. The f -level occupancy is shown for several fillings
in Fig. 10(a). The overall agreement between the two methods
persists as we move away from half filling, though its degree
varies somewhat, for example, the agreement in the n = 2
or 5/3 case is noticeably less good than for n = 4/3. This
indicates that the Gutzwiller-type paramagnetic wave function
is more appropriate for metallic systems with few conduction
electrons than for insulators. The Kondo plateau shifts toward
lower f -level energies as the filling decreases, owing to the
decrease of the Fermi level. We find a similar slight difference
between the results of the two methods displayed in Fig. 10(b),
where qf is plotted as a function of εf .
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FIG. 10. (Color online) (a) The f -level occupancy vs εf at
Uf /W = 2 for different fillings. The hybridization is V/W = 0.1
in all cases. The curves are obtained by the Gutzwiller method, while
the symbols are the results of exact diagonalization. The number
of electrons per site is n = 2 (black solid line, �), 5/3 (red dashed
line, �), 4/3 (green dotted line, �), 1 (blue dash-dotted line, �),
respectively. (b) The f -level kinetic energy renormalization factor.
The notation is the same as in panel (a).

III. THE ROLE OF INTERACTION BETWEEN
CONDUCTION ELECTRONS

A. Variational calculation

As a next step, we consider what happens when the
interaction between conduction electrons is switched on. For
the sake of simplicity a local, on-site interaction is assumed
and the Hamiltonian takes the form

H = HPAM + Ud

∑
j

n̂d
j↑n̂d

j↓, (16)

where HPAM is the PAM Hamiltonian defined in Eq. (1)
and Ud is the strength of the Coulomb interaction between
conduction electrons. This model is also known as the periodic
Anderson-Hubbard model. At half filling the symmetric model
corresponds to εf = −Uf /2 + Ud/2, where nf = nd = 1.

The variational calculation can be performed by a simple
generalization of the procedure used for Uf → ∞.36 The trial

wave function is chosen in the form

|�〉 = P̂
f

G P̂ d
G

∏
k

∏
σ

[ukf̂
†
kσ + vkd̂

†
kσ ]|0〉, (17)

where P̂
f

G contains the variational parameter ηf , and an extra
Gutzwiller projector has been introduced for d electrons,
which is written as

P̂ d
G =

∏
j

[
1 − (1 − ηd )n̂d

j↑n̂d
j↓

]
. (18)

The variational parameter ηd depends on Ud . Performing the
optimization with respect to the mixing amplitudes we get

E = 1

N

∑
k∈FS

[qdεd (k) + ε̃f −
√

[qdεd (k) − ε̃f ]2 + 4Ṽ 2]

+ (εf − ε̃f )nf + Udνd + Uf νf (19)

for the ground-state energy density, where νd is the density
of doubly occupied d sites, and qd denotes the kinetic energy
renormalization factor of d electrons given by

qd = 1(
1 − nd

2

)
nd

2

[√(
nd

2
− νd

)
νd

+
√(

nd

2
− νd

)
(1 − nd + νd )

]2

, (20)

which is formally identical to that found in the Hubbard
model.3 The renormalized hybridization amplitude is now Ṽ =
V

√
qdqf ; the other notations are the same as in the previous

section, and the self-consistency condition [see Eq. (6)] is now
given by

nf = 1

N

∑
k∈FS

⎡⎣1 + qdεd (k) − ε̃f√
[qdεd (k) − ε̃f ]2 + 4Ṽ 2

⎤⎦ . (21)

The summation over k and the numerical optimization of the
energy density with respect to nf , νf , and νd are carried out
in the same way as in the previous section. The equations
determining nf , νf , and νd are now

ε̃f = ∂E
∂qd

· ∂qd

∂nf

+ ∂E
∂qf

· ∂qf

∂nf

+ ∂E
∂ε̃f

· ∂ε̃f

∂nf

, (22)

−Uf = ∂E
∂qf

· ∂qf

∂νf

+ ∂E
∂ε̃f

· ∂ε̃f

∂νf

, (23)

−Ud = ∂E
∂qd

· ∂qd

∂νd

+ ∂E
∂ε̃f

· ∂ε̃f

∂νd

. (24)

First we derive analytic results from these equations in the
weak hybridization limit up to O((V/W )2) for arbitrary Uf at
special fillings: for nf = 1 and nd arbitrary; for nd = 1 and
nf arbitrary; and finally for nf = nd = 1. Similar results were
obtained in [Ref. 36], but only for Uf → ∞.

We know that the interaction between conduction electrons
suppresses charge fluctuations in the Hubbard subsystem. This
influences the Kondo physics in the following ways.
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(i) Ud shifts the Fermi energy of the conduction band. For
nf = 1 and nd < 1 we get

EF(nd,Ud ) ≈
(

nd

2
− 1

2

)
qdW + W

[
− 1

4
+

(
nd

2
− 1

2

)2

− 2

(
V

W

)2
qf

qd

]
∂qd

∂nd

. (25)

The third term in the square brackets is the contribution of d-f
hybridization. Without it we recover the equation determining
the Fermi energy of the Hubbard model for filling nd . Note
that the values of νf and νd in qf and qd , respectively, should
be taken from the solution of Eqs. (23) and (24). Equation (25)
has no simple closed form solution for arbitrary Ud except for
the half-filled case, where EF(nd = 1,Ud ) = Ud/2. At other
fillings we can expand EF(nd,Ud ) in the weak- or strong-
coupling limit (Ud 
 W or Ud � W ) as

EF(nd,Ud ) ≈ EF(nd,0) + nd

2
Ud + O

(
U 2

d /W
)

(26)
or

EF(nd,Ud ) ≈ EF(nd,0) + nd

2
W + O(W 2/Ud ), (27)

respectively. The shift of the Fermi energy is at most W/6 for
n = 4/3 (i.e., nd = 1/3), which is much smaller than the shift
in the half-filled case.

(ii) Switching on Ud reduces the Kondo energy.36 When
nf = 1, we can calculate qf and the total energy density for
finite Ud and for arbitrary nd (assuming V 
 W ). Instead of
Eqs. (11) and (12) we find

qf = ndqd

4(V/W )2
exp

(
− Uf

16V 2/W

)
, (28)

and

E = εf + Ed (nd,Ud ) − ndqd

W

2
exp

{
− Uf

16V 2/W

}
, (29)

where the second term of the right-hand side is the energy
of the decoupled correlated conduction band. Compared with
Eqs. (11) and (13), qf and the exponential Kondo scale are
reduced by qd , which is rather small when nd ≈ 1 (see below).
For n slightly less than the half-filled case this mechanism
yields a significant mass enhancement. We get qd ∼ 1/5 for
n = 1.95 and Ud = 2.4W , which means that the effective mass
is five times bigger for these parameters than without Ud .

(iii) The most interesting effect of Ud is the Mott transition
which occurs in the Hubbard model at half filling (nd = 1).
In the Gutzwiller-type treatment of Ud it is known as the
Brinkman-Rice transition. It occurs when qd becomes zero for
a finite Ud . A similar transition may take place in the half-filled
periodic Anderson-Hubbard model. In this model, however,
even if n = 2, the Kondo physics may compete with Mott
physics, nd and nf depend on Ud , Uf , V , and εf owing to the
d-f hybridization, and the conditions for the Mott transition
may not be so simple as in the Hubbard model. In what follows
we first show in the framework of the Gutzwiller treatment that
the necessary conditions for the Mott transition is that both the
f - and d-electron subsystems be half filled, that is, nd = 1 and
nf = 1 be fulfilled simultaneously, and moreover the system
be in the Kondo regime.

We see from Eq. (20) that qd is zero only when nd = 1
and νd = 0. Similarly, it follows from Eq. (5) that qf vanishes

only if nf = 1 and νf = 0. When nd = 1, the renormalization
factor qd is simply 8νd (1 − 2νd ), and Eq. (24) gives

Ud

W
−

[
1

4
+ 2

(
V

W

)2
qf

qd

]
8(1 − 4νd ) = 0 (30)

for V 
 W and nf arbitrary. The second term in the square
brackets is the contribution of d-f hybridization. Without it
we recover the equation determining the optimum νd of the
half-filled Hubbard model.

It follows from this equation that νd goes to zero as Ud

approaches a finite critical value only if qf also approaches
zero, and qf is of the same order as qd . This situation can
be realized only if nd = 1 and nf = 1 are simultaneously
fulfilled, and moreover qf is given by Eq. (28); that is, the
system is in the Kondo regime.

When nd = 1 and nf = 1 are simultaneously satisfied, and
the system is in the Kondo regime, the term in Eq. (30) due to
d-f hybridization is independent of νd and is equal to EK/W

[see Eqs. (13), (28), and (29)]. Equation (30) is easily solved
to give

νd = 1

4
− Ud

8(W + 4EK)
, (31)

which shows that νd decreases linearly as Ud increases and
reaches zero at U c

d = 2(W + 4EK). At this value of Ud ,
which—owing to the coupling between the d- and f -electron
subsystems—is slightly larger than the critical value in the
Hubbard model (U c

d = 2W ), the conduction band undergoes
a Brinkman-Rice transition. Note that the exponentially small
correction has been neglected in [Ref. 36]. Since νd = νf = 0
at this transition, all polarity fluctuations are suppressed and
the effective d-f hybridization (Ṽ = V

√
qdqf ) as well as the

Kondo energy scale become zero; that is, the Kondo effect is
completely quenched. The system transforms from a Kondo
insulator into a Mott insulator.

Analytically, we can claim only that the condition nd =
nf = 1 is realized in the symmetric point of the half-filled
model, where εf = −Uf /2 + Ud/2. Indeed, when Ud is
smaller than U c

d and is not very close to it, it is found
numerically that nd = nf = 1 is realized only at the symmetric
point, and thus one could expect that a Brinkman-Rice
transition occurs only in the half-filled symmetric periodic
Anderson-Hubbard model and that the system becomes a Mott
insulator for Ud > U c

d only if εf = −Uf /2 + Ud/2.
Contrary to this expectation we have found numerically

that when Ud is slightly smaller than the critical value, nf =
nd = 1 holds not only at the symmetric point, but—within the
limits of the numerical accuracy of our calculations, which
was about 10−6—in a wide range of εf within the nf ≈ 1
plateau. In order to find the extent of this range, we display
the Ud and εf dependence of the f -level occupancy and of
the renormalization factor qf for Ud � 2W at half filling in
Figs. 11 and 12, respectively.

It is clearly seen that the Kondo plateau, where nf ≈ 1 and
qf ≈ 0, shifts toward higher energies owing to the shift of the
Fermi energy by Ud/2, and the center of the plateau is located
indeed at εf = −Uf /2 + Ud/2, as expected from Eq. (25).
The condition for the Kondo regime can be written similarly
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FIG. 11. The f -level occupancy vs the f -level energy and Ud at
half filling for V/W = 0.1 and Uf /W = 2.

to Eq. (9) as

−Uf + EF(nd,Ud ) + a	f � εf � EF(nd,Ud ) − a	f . (32)

Note that the center of the plateau is at the center
of the noninteracting d band, when Ud = Uf . In other words,
the f level does not need to lie low enough compared to the
conduction band to show heavy-fermion behavior.

Another remarkable feature is that the plateau widens as Ud

approaches the critical value U c
d . At Ud = 2W , it is situated

in the range −Uf + Ud/2 � εf � Ud/2. That means that the
narrowing of the plateau compared to the impurity model given
by a	f in Eq. (9) gets remarkably smaller close to U c

d . This
is probably due to the formation of the Hubbard subbands and
the drastic variation of the density of states at the Fermi energy
near the transition point.

Numerical calculations give nd = nf = 1 at U c
d on the

whole Kondo plateau. This indicates that—at least within the
Gutzwiller-type treatment of correlations—both nd and nf are
fixed to exactly unity in the half-filled model as we approach
U c

d and the condition for Kondo behavior is satisfied. The

-3 -2 -1 0 1 2 3

εf/W
0

0.5
1

1.5
2

U
d /W

0

0.2

0.4

0.6

0.8

1

q f

FIG. 12. The kinetic energy renormalization factor for f elec-
trons vs εf and Ud at half filling for V/W = 0.1 and Uf /W = 2.
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FIG. 13. The f -level occupancy vs f -level energy and Ud at 1/3
filling (n = 4/3), for V/W = 0.1 and Uf /W = 2.

renormalization factors, qd and qf vanish simultaneously, the
d-f hybridization is completely suppressed, as is the Kondo
effect, and a Mott transition takes place. This transition in the
conduction electron subsystem is robust, it is the dominant
feature of the half-filled model.

Our finding that the Brinkman-Rice transition and the Mott
insulating state are not restricted to the symmetric model
is corroborated by calculations for Ud > U c

d . The numerical
variational calculation yields meaningless negative values for
νd in the whole interval −Uf + Ud/2 � εf � Ud/2. Note that
for εf outside this interval we can carry out the numerical
calculations for arbitrary large Ud without any difficulty.

Next we show that the d-f hybridization prevents the Mott
transition when n < 2 (or for n > 2). In this case the term
coming from the d-f hybridization in Eq. (30) becomes large,
if qd → 0, since qf is always finite for nf < 1, and thus
there exists no such solution for νd (or qd ), which approaches
zero at a finite Ud . Charge fluctuations on the d orbitals
are thus not completely suppressed. A finite νd indicates the
existence of a Fermi surface, since qd is identified with the
discontinuity at the Fermi wave number in the single-particle
occupation number.3 This can be understood as follows: Even
if the correlated conduction band is half filled and Ud is large
enough, so that the conduction band is separated into Hubbard
subbands and the Fermi level lies within the f band located
in the Hubbard gap, the d electrons are taking part in the
formation of the Fermi surface via d-f hybridization.

The results of the numerical calculations in the 1/3-filled
case (n = 4/3) are shown for 0 � Ud � 3W in Fig. 13. We
observe that one more plateau appears at higher f -level
energies, above the bare conduction band, when Ud � 2W ,
corresponding to nd ≈ 1. Its formation indicates that two
separate Hubbard subbands are formed above this critical value
of Ud . The plateau appears when εf is located between the
two subbands, that is, in the Hubbard gap. The Fermi level is
located in the f band in this situation. The center of the plateau
is approximately at Ud/2, which indicates that the upper and
lower subbands are centered at 0 and Ud , respectively; that is,
the location of the subbands is the same as in the Hubbard
model.
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We observe furthermore that the nf ≈ 1 plateau hardly
shifts as Ud increases. Since according to Eq. (27) the Fermi
energy only weakly depends on Ud away from half filling,
we find again the condition given in Eq. (32) for the Kondo
regime.

It is worth mentioning here what happens when the system
is more than half filled. The answer can be obtained without
any further calculation from electron-hole symmetry. A model
with n electrons can be mapped onto a model with n holes
(4 − n electrons) by the transformation

d̂
†
jσ → eiϕj d̂hj σ̄ , d̂jσ → e−iϕj d̂

†
hj σ̄ ,

(33)
f̂

†
jσ → −eiϕj f̂hj σ̄ , f̂jσ → −e−iϕj f̂

†
hj σ̄ ,

where the index (h) refers to holes, and σ̄ = −σ . If the
kinetic energy of conduction electrons is written in Wannier
representation,∑

k,σ

εd (k)d̂†
kσ d̂kσ =

∑
ijσ

tij d̂
†
iσ d̂jσ , (34)

and the phase factor is chosen in the form ϕj = Q · rj , it is
easily seen that the kinetic energy term is transformed into∑

k,σ

εhd (k)d̂†
hkσ d̂hkσ , (35)

where

εhd (k) = −εd (k + Q). (36)

Assuming that tii = 0, the center of the band sets the zero of
energy. The term describing hybridization is invariant under
this transformation, while the on-site energy of f levels
and the on-site interaction terms give rise to energy shifts.
Therefore, the Hamiltonian written in terms of the creation
and annihilation operators of holes has the same form as for
electrons with shifted energies for the d and f electrons and
an overall energy shift,

He(εd (k),εf ,V ,Ud,Ud )

−→ Hh(εhd (k) − Ud, εhf ,V ,Ud,Uf ) + E0, (37)

where εhf = −εf − Uf and E0 = (2εf + Uf + Ud )N . If the
energy levels are measured from −Ud the Hamiltonian in hole
representation becomes

Hh(εhd (k), ε̄hf ,V ,Ud,Uf ) + Ē0, (38)

with ε̄hf = −εf − Uf + Ud and

Ē0 = −(2εd + Ud )Nh + (2εf + Uf + 2εd + Ud )N, (39)

where Nh is the total number of holes. Provided that εhd (k) ≡
−εd (k + Q) = εd (k) for a certain Q, as is the case for the one-
dimensional model with nearest-neighbor hopping, or when a
constant density of states is assumed, then the dispersion curve
of d holes is the same as for d electrons and the results obtained
in the electron representation can be applied to holes when the
energy shifts are taken into account.

Using this transformation, the results for n > 2 can be
obtained straightforwardly from those for nh = 4 − n < 2.
We can get, for example, the Fermi energy of the correlated
conduction band for nd = n − 1 > 1 (nf = 1) from that for

nhd = 2 − nd < 1 [see Eq. (25)] by first shifting the origin of
the energy by −Ud and then reversing the energy axis. We get

EF(nd,Ud ) = −[EF(nhd ,Ud ) − Ud ], (40)

from which for nd > 1

EF(nd,Ud = 0) = −EF(2 − nd,Ud = 0). (41)

The equation giving the shift of the Fermi energy for nd > 1
is thus

EF(nd,Ud ) ≈ EF(nd,0) − 2 − nd

2
W + Ud + O(W 2/Ud )

(42)

instead of Eq. (27). This shows that the shift of the Fermi
energy owing to Ud for nd > 1 is larger than that at half filling.

The condition on εf for the Kondo regime is obtained for
n > 2 as follows: The condition on the f -hole level ε̄hf for
nh < 2 is formally the same as for electrons [see Eq. (32)],
since the Hamiltonian has the same form, that is,

−Uf + EF(nhd ,Ud ) + a	f � ε̄hf � EF(nhd,Ud ) − a	f .

(43)

The condition on the f -electron level for the Kondo regime
for n > 2 is simply obtained by rewriting this condition for
the original εf using ε̄hf = −εf − Uf + Ud . We get

−Uf + Ud − EF(nhd ,Ud ) + a	f

� εf � Ud − EF(nhd ,Ud ) − a	f . (44)

Since according to Eq. (40) Ud − EF(nhd ,Ud ) (nhd < 1) is the
Fermi energy of the interacting conduction band, EF(nd,Ud ),
for nd = 2 − nhd > 1, the condition takes the same form given
in Eq. (32) for all fillings. For n > 2, the shift of the nf ≈ 1
plateau is thus even larger than in the half-filled case, it may
appear above the bare conduction band.

B. Comparison with the results by exact diagonalization

Now, we compare the results of exact diagonalization with
those obtained by variational calculation. Note that we discuss
only the case n > 1, that is, more than six electrons on a six-site
chain. The quarter-filled case is not interesting from the point
of view of Kondo physics, because the conduction band is
exhausted when nf = 1.

The values of nf obtained by both methods are shown for
several fillings at Uf = Ud = 2W in Fig. 14(a). The overall
agreement between the results of the two methods demon-
strated earlier remains good for finite Ud . It is remarkable that
the agreement is even better than for Ud = 0.

The shift of the nf ≈ 1 plateau due to Ud is observed in both
methods, showing that the shift of the plateau is not an artifact
of the Gutzwiller approximation, and may be observable in
some materials, where the conduction electrons are strongly
correlated; that is, they may exhibit heavy-fermion behavior
despite the fact that the bare f level does not lie below the
conduction band.

The formation of two separate plateaus corresponding to
nf ≈ 1 and nd ≈ 1 is also observed in both methods. The
formation of the Hubbard subbands owing to Ud in the
conduction-electron subsystem is thus confirmed by exact
diagonalization, too. We carried out the comparison also at
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FIG. 14. (Color online) (a) The f -level occupancy vs εf at
Uf /W = Ud/W = 2 and V/W = 0.1. The curves are obtained using
the Gutzwiller method, while the symbols are the results of exact
diagonalization. The electron number per site is 2 (half filling) (black
solid line, �), 5/3 (red dashed line, �), and 4/3 (green dotted line,
�), respectively. (b) The renormalization factor qf . The notation is
the same as in panel (a).

Uf = Ud = 5W for n = 5/3 and found that the agreement
between the two methods is almost perfect for nf .

Figure 15 shows the kinetic-energy renormalization factor
of conduction electrons (qd ) for three different fillings. The
agreement between the two methods is fairly good in panel
(a), while a marked difference is seen in panel (b), that is, at
half filling. The Gutzwiller method gives not only a vanishing
valence fluctuation on f orbitals, νf = 0, and consequently
qf = 0 at Ud = 2W + 8EK, but the same is true for the
conduction-electron subsystem: Also νd and qd vanish at
the Brinkman-Rice transition. In contrast to this behavior,
exact diagonalization gives a finite νd—and consequently
a finite qd—in agreement with the known behavior of the
one-dimensional half-filled Hubbard model. In this model, νd

is finite for arbitrary Ud ,45 even though the ground state is
conducting only for Ud = 0, and it is insulating for any nonzero
Ud .46 We believe that this discrepancy, a finite critical U c

d for
the Mott transition in the Gutzwiller method, is due partially
to dimensionality effects and partially to our neglect of the
possibility of magnetic ordering. In looking for a Mott insula-
tor, we imposed from the beginning a paramagnetic conduction
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FIG. 15. (Color online) The kinetic energy renormalization fac-
tors of the conduction electrons vs εf at Uf /W = Ud/W = 2. The
curves are obtained by the Gutzwiller method; the symbols show the
values calculated with exact diagonalization using Eq. (20). (a) The
results for n = 5/3 (red solid line, �) and n = 4/3 (green dashed
line, �). The hybridization is V/W = 0.1 in all cases. (b) The results
for half-filling, n = 2 (black solid line, �).

electron subsystem, while it is known that a Slater transition to
an antiferromagnetic insulator occurs for arbitrary Ud in a half-
filled tight-binding model of conduction electrons on a hyper-
cubic lattice due to the complete nesting of the Fermi surface.

IV. CONCLUSIONS

In this paper we considered an extended PAM, the so-called
periodic Anderson-Hubbard model with on-site Coulomb
repulsion in the conduction-electron subsystem. Our main aim
was to investigate how the additional repulsive interaction
between conduction electrons influences the Kondo regime
and how the Kondo physics and Mott physics compete. For this
study we calculated the average number of f and d electrons
per site, nf and nd , and the probability of double occupancy in
both subsystems, νf and νd , using the Gutzwiller variational
method. In order to check the reliability of this method, we also
performed exact diagonalization on relatively short chains. We
also present results for the original PAM.

A rather good agreement was found between the results of
the two methods in the original model as far as the location
of the Kondo and valence-fluctuation regimes are concerned.
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A subtle difference was, however, found near the boundary of
the Kondo plateau. Namely, while the results of the Gutzwiller
method exhibit an exponential dependence of the double
occupancy on the characteristic combination of the couplings,
V 2/Uf , those of exact diagonalization show a power-law
behavior. This will be the subject of subsequent studies.

The situation is somewhat different for the extended
model. Both methods indicate that when the on-site Coulomb
repulsion between conduction electrons (Ud ) is switched on,
the heavy-fermion regime shifts toward higher energies of the
bare f level by Ud/2 in the half-filled case, in agreement with
the shift of the Fermi energy owing to Ud . A marked difference
appears, however, between the results provided by the two
methods, when Ud is of the order of 2W . The Gutzwiller
method indicates that both nd and nf are fixed to unity for a
wide range of the f -level energies in the half-filled model at
a critical value of Ud , and a robust Brinkman-Rice transition
takes place to a Mott insulator. Although the Kondo effect
is enhanced, when the Anderson-Hubbard system approaches
the critical point, this effect is completely suppressed right
at the transition, and all charge fluctuations are suppressed.
The exact diagonalization on chains does not reproduce this
result. It is probably due to the fact that the possibility of
magnetic ordering was excluded in the variational calculation.

In general, the Mott transition to a paramagnetic insulator
might take place at a nonzero U c

d , while in a tight-binding
model on a hypercubic lattice a Slater transition to an
antiferromagnetic insulator may occur with U c

d = 0.
When the electron system is less than half filled, the Mott

transition is suppressed by the d-f hybridization, and besides
the Kondo plateau (nf ≈ 1) another plateau appears at nd ≈ 1,
provided that Ud � 2W , that is, when the conduction band is
split into a lower and upper Hubbard band. The results provided
by the two methods are in surprisingly good agreement in this
case, in particular when correlations are strong. The shift of
the heavy-fermion regime toward higher bare f -level energies
owing to Ud is small compared to that in the half-filled case,
because the shift of the Fermi energy due to Ud is at most
ndW/2 for nd < 1. On the other hand, when the electron
system is more than half filled, the shift of the Kondo regime
with Ud is much larger, since the shift of the Fermi energy is
also larger than that in the half-filled case.
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