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Anderson localization is studied for two flavors of massless Dirac fermions in two-dimensional space perturbed
by static disorder that is invariant under a chiral symmetry (chS) and a time-reversal symmetry (TRS) operation
which, when squared, is equal either to plus or minus the identity. The former TRS (symmetry class BDI) can,
for example, be realized when the Dirac fermions emerge from spinless fermions hopping on a two-dimensional
lattice with a linear energy dispersion such as the honeycomb lattice (graphene) or the square lattice with π

flux per plaquette. The latter TRS is realized by the surface states of three-dimensional Z2-topological band
insulators in symmetry class CII. In the phase diagram parametrized by the disorder strengths, there is an infrared
stable line of critical points for both symmetry classes BDI and CII. Here we discuss a “global phase diagram”
in which disordered Dirac fermion systems in all three chiral symmetry classes, AIII, CII, and BDI, occur in
four quadrants, sharing one corner which represents the clean Dirac fermion limit. This phase diagram also
includes symmetry classes AII [e.g., appearing at the surface of a disordered three-dimensional Z2-topological
band insulator in the spin-orbit (symplectic) symmetry class] and D (e.g., the random bond Ising model in two
dimensions) as boundaries separating regions of the phase diagram belonging to the three chS classes AIII, BDI,
and CII. Moreover, we argue that physics of Anderson localization in the CII phase can be presented in terms of
a non-linear-σ model (NLσM) with a Z2-topological term. We thereby complete the derivation of topological
or Wess-Zumino-Novikov-Witten terms in the NLσM description of disordered fermionic models in all ten
symmetry classes relevant to Anderson localization in two spatial dimensions.
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I. INTRODUCTION

A. Dirac fermions in condensed-matter physics

Massless Dirac fermions emerge quite naturally from
noninteracting and bipartite tight-binding Hamiltonians at low
energies and long wavelengths when the fermion spectrum of
energy eigenvalues is symmetric about the band center and
the Fermi surface reduces to a finite number of discrete Fermi
points at the band center. This situation is generic for nonin-
teracting electrons hopping with a uniform nearest-neighbor
amplitude t along a one-dimensional chain. For noninteracting
electrons hopping on higher dimensional lattices, this situation
is the exception rather than the rule, for it is fulfilled only when
the hopping amplitudes are fine tuned to the lattice.

In the case of graphene, when described by the uniform
hopping amplitude t between the nearest-neighbor sites of the
honeycomb lattice, there are two bands in the Brillouin zone
of the underlying triangular Bravais lattice that touch at the
six corners of the Brillouin zone [see Fig. 1(a)].1 Because
the unit cell contains two sites and because the number of
inequivalent Fermi points is two, these Dirac fermions realize
a four-dimensional representation of the Dirac equation in two-
dimensional space if we ignore the spin degrees of freedom.

For noninteracting spinless electrons hopping on the square
and (hyper-)cubic lattices, Dirac fermions emerge in the vicin-
ity of the band center whenever the translation invariance of the
lattice is broken by choosing the sign of the nearest-neighbor
hopping amplitudes of uniform magnitude t in such a way that
their products along any elementary closed path (a plaquette)
is −t4 [see Fig. 1(b)]. This pattern of nearest-neighbor hopping

amplitudes preserves time-reversal symmetry. It amounts
to threading each plaquette by a magnetic flux of π or,
equivalently, −π in appropriate units and is thus called the
π flux phase. In the π -flux phase for the d-dimensional
hypercubic lattice, there are 2d nonequivalent sublattices.
Correspondingly, there are 2d Fermi points and the emerging
Dirac Hamiltonian in the vicinity of these Fermi points is 2d

dimensional. Because the minimal irreducible representation
of the Dirac equation in d dimensions is 2[(d+1)/2] dimensional
([x] denotes the largest integer smaller than or equal to x),
the π -flux phase yields a representation of the Dirac equation
larger than the minimal one in all dimensions except for d = 1.
This is called the fermion doubling problem, for it prevents
a lattice regularization of the standard model of Elementary
Particle Physics that represents its particle content (quarks,
leptons).2

The fact that the fermion-doubling problem affects both
graphene and the π -flux phase in two dimensions is not
a coincidence. The fermion-doubling problem is a generic
property of noninteracting local tight-binding Hamiltonians
with time-reversal symmetry.3

It is possible to circumvent the fermion-doubling problem
in the following way.

We consider first a one-dimensional chain along which
a spinless electron hops with the uniform nearest-neighbor
amplitude t . We also impose periodic boundary conditions
[see Fig. 2(a)]. We fold the spinless electron’s dispersion on
half of its Brillouin zone and open a gap at the folded zone
boundaries by dimerization of the hopping amplitude, t →
t ± δt , as it occurs, for example, through its interaction with
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FIG. 1. (a) Hexagonal Brillouin zone of graphene with the
conduction and valence bands touching at the zone corners in the
linear approximation. There are 6/3 = 2 inequivalent Fermi points
(Dirac cones). (b) The π -flux phase for the cubic lattice assigns the
nearest-neighbor hopping amplitudes +t for the thin bonds and −t for
the thick bonds with t a real number. There are 8 = 23 inequivalent
sublattices labeled 1 to 8.

an optical phonon within a Born-Oppenheimer approximation.
At low energies, the effective fermionic Hamiltonian is the
one-dimensional massive Dirac equation with the mass set by
the dimensionless parameter δt/t assumed to be smaller than
unity. Imagine now that the dimerization pattern is defective at
two sites that are far apart relative to the characteristic length
scale (t/δt)a, where a is the lattice spacing [see Fig. 2(c)].
At the level of the effective Dirac equation, this means that
the mass term changes sign twice, once at each defective site.
Two bound (i.e., normalizable) states appear in the spectrum
[see Fig. 2(d)] with the remarkable property that they have
opposite helicity (chirality) and an exponentially small overlap
or, equivalently, energy splitting, for they are exponentially
localized with the localization length of order (t/δt)a around
their respective defective sites.4,5

The same mechanism applies in any d-dimensional space,
be it for the massive Dirac equation6 or for tight-binding
Hamiltonians with sublattice symmetry [see Fig. 2(e)],7,8

and has been used in lattice gauge theory as a means to
overcome the fermion doubling problem.9,10 For example, the
massive Dirac equation in odd d-dimensional space supports
massless boundary states with a common helicity (chirality)
along each even (d − 1)-dimensional boundary where the
mass term vanishes. A complete classification of all such
two-dimensional boundary states was part of the classification
of topological insulators in spatial dimensions d = 1,2,3 given
in Ref. 11 in terms of the generic symmetry classes arising from
the antiunitary operations of time-reversal and particle-hole
symmetry [underlying the work of Altland and Zirnbauer on
random matrix theory (RMT)].12–14 A systematic regularity
(periodicity) of the classification as the dimensionality is
varied, in general dimension, was discovered upon the use
of K-theory by Kitaev15 (see also Ref. 16). As shown in
Refs. 17 and 18, this can, alternatively, be understood in
terms of the lack of Anderson localization at the boundaries.
More recently, an understanding of this classification of
topological insulators in terms of quantum anomalies was
developed.19
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FIG. 2. (a) Ring along which a spinless electron hops between
nearest-neighbor sites shown as circles with the uniform real-valued
amplitude t . The lattice sites are black on one sublattice and white
on the other sublattice. (b) Electronic dispersion corresponding to (a)
after folding the Brillouin zone. (c) Ring along which a spinless
electron hops between nearest-neighbor sites with the dimerized
real-valued amplitude t ± δt . There are two defective sites belonging
to opposite sublattices at which two strong bonds t + δt meet.
(d) The breaking of translation invariance in (c) has opened a gap at
the reduced zone boundaries and localized two bound states around
the two defective sites. (e) A generalization of (c) and (d) in three
dimensions can be achieved with the help of a suitable dimerization
of the π -flux phase depicted in Fig. 1(b) for spinless electrons. The
continuum approximation yields a massive 8 × 8 Dirac equation.
Two-dimensional defective surfaces normal to the direction x, say,
occur when the mass changes sign. One midgap state is bound to each
of the two-dimensional defective surfaces. Each midgap state obeys
a 4 × 4 two-dimensional massless Dirac equation as depicted by a
Dirac cone. The two midgap states have opposite chiralities.

B. Anderson localization for Dirac fermions in two dimensions

Anderson localization20 for noninteracting two-
dimensional Dirac fermions was first studied in narrow
gap semiconductors by Fradkin in 1986.21 This work was
followed up in the 1990s with nonperturbative results
motivated by the physics of the integer quantum Hall effect
(IQHE), the random bond Ising model, and dirty d-wave

235115-2



GLOBAL PHASE DIAGRAM OF TWO-DIMENSIONAL DIRAC . . . PHYSICAL REVIEW B 85, 235115 (2012)

superconductors.22–30 With the recently available transport
measurements in mesoscopic samples of graphene, as well as
the identifications of the alloy Bi1−xSbx in a certain range of
compositions x,31–33 the compounds Bi2Te3,34,35 Sb2Te3,34 and
Bi2Se3,34,36 and the prediction for another 50-and-counting
materials as three-dimensional Z2-topological band insulators
that support surface Dirac fermions,37–39 the localization
properties of random Dirac fermions have become relevant
from an experimental point of view.

While all these examples share the massless Dirac spectrum
as the energy dispersion in the noninteracting and clean
limit, the effects induced by randomness—weak localiza-
tion, universal conductance fluctuations, localization, metal-
insulator transition, spectral singularities, etc.—vary with
(i) the intrinsic symmetries respected by the disorder, (ii) the
dimensionality of the Dirac matrices representing the Dirac
Hamiltonian, and (iii) the strength and/or correlations in space
of the disorder.

When space is effectively zero dimensional, that is, at the
level of RMT, ten symmetry classes have originally been
identified and labeled according to the Cartan classification
of symmetric spaces (see Table I).12–14

As emphasized in Refs. 40 and 41, the two-dimensional
fermionic replicated NLσMs in eight of the ten symmetry
classes allow for terms of topological origin, in the form of
either θ terms42 or Wess-Zumino-Novikov-Witten (WZNW)
terms43–45 (see Table I). Symmetry classes A, C, and D support
Pruisken (θ ) terms.46–48 Symmetry classes AIII, DIII, and CI
support WZNW terms. Finally, symmetry classes AII and CII
support Z2-topological terms.

WZNW terms in symmetry classes AIII, DIII, and CI
appear when Dirac fermions propagate in the presence of
static vector-gauge-like randomness.22–30,49 This can only be

achieved at the lattice level if the fermion doubling problem
has been overcome, as is the case with the surface states of
three-dimensional Z-topological band insulators.

The Z2-topological term in symmetry class AII was
derived in the context of disordered graphene with long-range
correlated disorder50,51 or two-dimensional surfaces of three-
dimensional Z2 topological band insulators.51

LeClair and Bernard have extended the RMT classi-
fication by demanding that all perturbations to the two-
dimensional Dirac Hamiltonian with Nf flavors preserve the
Dirac structure.52 In this way, the ten-fold classification can
be refined by discriminating the parity of Nf for the three
symmetry classes AIII, DIII, and CI. These three subclasses
correspond to the fact that the replicated principal chiral
models (PCMs) whose target space correspond to symmetry
classes AIII, DIII, and CI, respectively, can be augmented by
WZNW terms. The realization of any of these additional three
subclasses in a lattice model requires overcoming the fermion
doubling problem.

The parity of the flavor number Nf of random Dirac
fermions also matters for symmetry classes AII and CII. The
fermionic replicated NLσMs derived from the random Dirac
Hamiltonians in symmetry classes AII and CII can acquire a
Z2 topological term on account of the dimensionality of the
Dirac matrices (twice the number Nf of flavors) that represents
the random Dirac Hamiltonian. Deriving these Z2 topological
terms from lattice models is not automatic because the fermion
doubling problem must be surmounted.

In this paper, by identifying a disordered fermionic model
that gives rise to the Z2-topological term in symmetry class
CII, we complete the derivation for noninteracting fermions
subject to a weak white-noise correlated random potential
of topological or WZNW terms in all ten symmetry classes

TABLE I. Table of topological terms that can be added to the replicated fermionic non-linear-σ model (NLσM) describing Anderson
localization in two dimensions and the classification (Ref. 11) of topological insulators (superconductors) in three dimensions. Symmetry
classes indicated by the “Cartan label” are classified according to the presence or absence of time-reversal, particle-hole, and “sublattice”
symmetries, which we abbreviate as TRS, PHS, and SLS, respectively. The presence of TRS and PHS is denoted by “+1” or “−1”, depending
on whether the square of the (antiunitary) operator implementing the symmetries equals +1 (identity) or −1, whereas the presence of SLS
is denoted by “1”. The absence of these symmetries is denoted by “0”. The SLS is a product of TRS and PHS. For historical reasons, the
first three rows of the table are also referred to as the orthogonal, unitary, and symplectic symmetry classes. When the disorder respects
a sublattice symmetry as in the next three rows, the terminology chiral is also used. Finally, the last four rows can be realized as random
Bogoliubov–de-Gennes (BdG) Hamiltonians. Target spaces for fermionic replicated NLσM (N is the replica index and the limit N → 0 is
understood) are given in the fifth column. The penultimate column lists the nature of the topological term compatible with the target and
two-dimensional base spaces. The symbols Z and Z2 in the last column indicate that the topologically distinct phases within a given symmetry
class of topological insulators or superconductors in three spatial dimensions are characterized by an integer topological invariant (Z) or a Z2

quantity. The symbol “0” denotes the case when there exists no topological insulator (superconductor).

Cartan label TRS PHS SLS Target space Topological term 3d-TI/TSC

AI (orthogonal) +1 0 0 Sp(4N)/Sp(2N) × Sp(2N) 0
A (unitary) 0 0 0 U(2N)/U(N) × U(N) θ term 0
AII (symplectic) −1 0 0 O(2N)/O(N) × O(N) Z2 term Z2

BDI (chiral orthogonal) +1 +1 1 U(2N)/Sp(2N) 0
AIII (chiral unitary) 0 0 1 U(N) × U(N)/U(N) WZNW term Z
CII (chiral symplectic) −1 0 1 U(N)/O(N) Z2 term Z2

CI (BdG) +1 −1 1 Sp(2N) × Sp(2N)/Sp(2N) WZNW term Z
C (BdG) 0 −1 0 Sp(2N)/U(N) θ term 0
DIII (BdG) −1 +1 1 O(N) × O(N)/O(N) WZNW term Z
D (BdG) 0 +1 0 O(2N)/U(N) θ term 0
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relevant to two-dimensional Anderson localization. The mi-
croscopic fermionic model is realized by the surface states of
a three-dimensionalZ2 topological band insulator in symmetry
class CII of Ref. 11. (See Ref. 53 for a particular lattice model
of a three-dimensional Z2 topological insulator in symmetry
class CII.)

C. Global phase diagram

In this paper, we start from the kinetic Hamiltonian K for
Nf = 2 flavors of Dirac fermions that make up a (reducible)
four-dimensional representation of the homogeneous Lorentz
group SO(1,2). We then subject K to a static and chiral-
symmetric random potential V; that is, the random Dirac
Hamiltonian H = K + V must anticommute with a unitary
matrix C,{H,C} = 0, which squares to the identity. By impos-
ing the condition that H is invariant under a representation
T = T T of time reversal for spinless single-particle states, H
belongs to symmetry class BDI in the tenfold classification
(see Table I). This corresponds to an antiunitary time-reversal
operator whose square equals plus the identity.

It is also known that such a Hamiltonian H describes
graphene (see Fig. 3) or the two-dimensional π -flux phase,
in the presence of real-valued, nearest-neighbor, spin-
independent, random hopping amplitudes when the Fermi
energy is at the band center and once the long-wave-
length limit has been taken with respect to the discrete
Fermi points.54–59 For the case of graphene,60 static random

(a) (b)

(c) (d)

FIG. 3. The four independent dimerization patterns for the real-
valued nearest-neighbor hopping amplitudes of a spinless electron
on the honeycomb lattice that preserve the sublattice symmetry
and the time-reversal symmetry for a spinless particle. The two
triangular sublattices of the honeycomb lattice are distinguished by
the coloring of their sites (white or black circles). Strong and weak
bonds are depicted by thick and thin lines, respectively. The two
independent Kékule dimerization patterns (a) and (b) are responsible
for the opening of a complex-valued gap m in the continuum
approximation by a 4 × 4 Dirac equation. The two independent
columnar dimerization patterns (c) and (d) are responsible for
the emergence of an axial vector gauge field or, equivalently, the
complex-valued axial gauge field a′ in the continuum approximation
by a 4 × 4 Dirac equation.

real-valued nearest-neighbor hopping amplitudes are induced
by neglecting61 the dynamics of phonons relative to that of
the electrons to which they couple. We emphasize that it
is imperative to treat all channels (see Fig. 3) of disorder
compatible with the chiral and time-reversal symmetries.

The first result of this paper is that analytical continuation
of the real-valued random hopping amplitudes to imaginary
ones in the aforementioned bipartite lattice models yields a
random Dirac Hamiltonian that belongs to symmetry class CII,
as it now turns out to obey the time-reversal symmetry (TRS)
generated by an operator T ′ = −T ′T acting on an isospin- 1

2
single-particle state. This corresponds to an antiunitary time-
reversal operator whose square equals minus the identity.

Second, we argue that, this random Dirac Hamiltonian
captures the (nearly) critical localization properties of the
surface states of a lattice model that, in the clean limit,
realizes a three-dimensional Z2-topological band insulator in
symmetry class CII.

More specifically, we show that the phase diagram depicted
in Fig. 4 encodes the localization properties of the random
Dirac Hamiltonian H = K + V when the chiral-symmetric
random potential V is assigned the three possible independent
disorder strengths gRe m,gIm m,ga′ which are not irrelevant
under the the renormalization group (RG). Here we discuss
a “global phase diagram,” depicted in Fig. 4(a), in the space of
these three couplings which is projected onto the gRe m - gIm m

plane (with ga′ = 0). In this phase diagram, disordered Dirac
fermion systems in all three chiral symmetry classes, AIII,
CII, and BDI occur in four quadrants, sharing one corner
which represents the clean Dirac fermion limit. Also realized
in the phase diagram are the symmetry classes AII and D at
the boundaries separating the three chiral symmetry classes,
whereby the parametrization of class D turns out to follow
from analytic continuation of the relevant disorder strength
that parametrizes class AII in the phase diagram.

The random Dirac Hamiltonian H whose potential V
is restricted to symmetry class AII captures the transport
properties at long wavelengths of the surface states of a
disordered three-dimensional Z2-topological band insulator
in symmetry class AII (say, Bi1−xSbx).11

The random Dirac Hamiltonian H whose potential V
is restricted to symmetry class D captures the transport
properties of the fermionic quasiparticles of a disordered two-
dimensional chiral p-wave superconductor (say, Sr2RuO4) or
their counterparts in the random bond Ising model at long
wavelengths.

Located in the center of the phase diagram of Fig. 4(a) is
a vertical dashed line. There exists a sector of the theory that
decouples55 from the random U(1) gauge potential. This sector
is critical along the dashed line in Fig. 4(a). We will call the
dashed line in Fig. 4(a) a line of nearly critical points to account
for the noncritical sector that is not depicted in Fig. 4(a).

It is argued in Sec. IV that along the dashed line in
region CII of Fig. 4(a), the transport properties of H are
also encoded by those of a NLσM on the target manifold
appropriate for this symmetry class. (Such a possibility was
also discussed, independently and from a different perspective,
in Refs. 62–65.) Remarkably, the standard kinetic energy of
the NLσM must be augmented by a Z2-topological term
(see Appendix A). Here, the necessary requirement for the
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(a)
(b)
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FIG. 4. Global phase diagram for random Dirac fermion defined by Eqs. (2.12)–(2.14), (2.23), and (2.29). (a) Flows of the coupling
constants close to the clean Dirac point (the origin denoted by an open circle). Along the boundaries D and AII, the coupling constant ga′ is
not generated under the RG, so ga′ = 0 can be imposed in a consistent way. In fact, symmetry classes D and AII require11,52 ga′ = 0. Away
from these boundaries, g

a′ grows under the RG and we have projected the flows onto the g
a′ = 0 plane in the regime where ga′ is still small. In

the region denoted BDI of the phase diagram, there exists a line of (nearly) critical points denoted by a dashed line as a result of Eq. (2.59b).
This line of (nearly) critical points is perturbatively stable under the RG flow (2.63). In the region denoted CII of the phase diagram, there
exists a line of (nearly) critical points denoted by a dashed line as a result of Eq. (2.62b). This line of (nearly) critical points appears to be
perturbatively unstable under the RG flow (2.65) for small values of ga′ . (b) Infrared flows dictated by Eq. (2.63) close to the clean Dirac point
when ga′ > 0. The slopes of the flows on the BDI boundaries gIm m gRe m = 0 have changed compared to the case when g

a′ = 0. (c) Infrared
flows dictated by Eq. (2.65) close to the clean Dirac point when ga′ > g′

+ with g′
± := gIm m′ ± gRe m′ and g′

+ � |g′
−|. The slopes of the flows on

the CII boundaries g′
Im m g′

Re m = 0 have changed as compared to the case when g
a′ = 0. Moreover, because of the condition g

a′ > g′
+, the RG

flows in the quadrant CII are toward the surface defined by the dashed line of (nearly) critical points (the g′
+ axis) and the out-of-plane g

a′ axis.
The plane gIm m′ - g

a′ with gRe m′ = 0 and g
a′ > 0 and the plane gRe m′ - g

a′ with gIm m′ = 0 and g
a′ > 0 are always unstable under the one-loop

flow (2.65). (d) Infrared RG flows of Eq. (2.65) in the surface defined by the g′
− axis as the horizontal axis and the ga′ axis as vertical axis of

the quadrant CII.

presence of the Z2-topological term is that the number Nf

of flavors be two times an odd integer n, i.e. Nf = 2n.
However, any purely two-dimensional noninteracting local
tight-binding Hamiltonian with Fermi points at the band
center that breaks the spin-rotation symmetry but preserves
the time-reversal and sublattice symmetries yields a Dirac
equation with Nf = 2n where n is an even integer because
of the fermion doubling problem. The fermion doubling
problem for fermions in two dimensions can be circumvented
by working with fermions localized at the two-dimensional
boundary of a three-dimensional crystal, that is, with the
boundary states of a topological band insulator in symmetry
class CII. It is the nearly critical localization properties of
these surface states that are captured by the dashed line in
region CII of Fig. 4. Thus, we can view the Z2-topological
term in the NLσM for symmetry class CII as the signature of
the physics of (de)localization, that arises from the existence
of boundary states in the clean limit, the defining property of
three-dimensionalZ2-topological band insulators in symmetry
class CII.

Third, we argue that the initial flow away from the
apparently unstable nearly critical line in region CII depicted
in Fig. 4(a) is not a crossover flow to the diffusive metallic
fixed point of the NLσM in symmetry class AII augmented by
aZ2 topological term. Rather, it is the flow depicted in Fig. 4(c)
that bends back toward the nearly critical plane defined by the
dashed line and the out-of-plane axis for the coupling ga′ as a
result of the RG flow of the coupling ga′ to strong coupling.
This flow on sufficiently large length scales along trajectories

in the three-dimensional coupling space is depicted through
the two-dimensional cuts presented in Figs. 4(b)–4(d). The
full RG flow along the boundary AII, a separatrix of the RG
flow, was computed numerically in Refs. 66 and 67 owing to
the presence of a Z2-topological term on the target manifold
of the NLσM appropriate for symmetry class AII.50,51

Finally, in the quadrant labeled by BDI, the dashed line also
represents a line of nearly critical points.54–57,59 This line of
nearly-critical points is stable, without the reentrant behavior
of the kind mentioned in the preceding paragraph. The one-
loop RG flow along the boundary D, again a separatrix of the
RG flow, was computed in Refs. 68–70.

The fact that the quadrant in symmetry class BDI can be
analytically continued to the quadrant in symmetry class CII
suggests that one can compute properties of the latter phase
from the former one. In particular, sets of nonperturbative and
exact results have been obtained for, for example, boundary
multifractal exponents for the point contact conductance on the
critical line in symmetry class BDI.71,72 These results will also
apply to the critical line in symmetry class CII upon suitable
analytical continuation.

D. Outline

The rest of the paper is organized as follows: The noninter-
acting random Dirac fermion model is defined in Sec. II. The
main result of this section is captured by Fig. 4. We argue in
Secs. III and IV that the generating function for the moments
of the retarded Green’s functions for microscopic parameters
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corresponding to the quadrant CII in Fig. 4 realizes a replicated
fermionic or, alternatively, a supersymmetric (SUSY) NLσM
augmented by a Z2-topological term. We conclude in Sec. V.

II. DEFINITIONS AND PHASE DIAGRAM

We begin in Sec. II A by defining a noninteracting random
Dirac Hamiltonian and proceed with a symmetry analysis. To
identify the axis of the phase diagram in Fig. 4, a generating
function for the disorder average over products of N retarded
single-particle Green’s functions is needed. This is done using
the SUSY formalism in Secs. II B and II C. The flows in
Fig. 4 to or away from the nearly critical line follow once it is
shown in Sec. II D that the SUSY generating function defines
a ĝl(2N|2N)k=1 SUSY Thirring model studied in Refs. 55
and 56.

A. Definitions

Common to all the aforementioned microscopic examples
is the existence of four Fermi points at the relevant Fermi
energy around which linearization in momentum space yields
the continuum Dirac kinetic energy,

K( p) :=

⎛⎜⎜⎜⎝
0 0 0 p

0 0 p̄ 0

0 p 0 0

p̄ 0 0 0

⎞⎟⎟⎟⎠
≡

(
0 σxpx + σypy

σxpx + σypy 0

)
≡ ρ1 ⊗ σ1 p1 + ρ1 ⊗ σ2 p2, (2.1)

up to a unitary transformation. Here, the momentum p =
(px,py) ≡ (p1,p2) is measured relative to the Fermi points
at the band center. The complex notation p = px − ipy and
p̄ = px + ipy is occasionally used for conciseness. The unit
2 × 2 matrix σ0 and the three Pauli matrices (σ1,σ2,σ3) are
reserved for the spinor indices of SO(1,2). The unit 2 × 2
matrix ρ0 and the three Pauli matrices (ρ1,ρ2,ρ3) are reserved
for the two-dimensional flavor subspace.

This kinetic energy has two interesting properties. First, it
anticommutes with the 4 × 4 unitary and Hermitian matrices

C1 := ρ3 ⊗ σ0, C1C
†
1 = C1C1 = +C1C∗

1 = 1,

C2 := ρ2 ⊗ σ0, C2C
†
2 = C2C2 = −C2C∗

2 = 1,
(2.2)

C3 := ρ0 ⊗ σ3, C3C
†
3 = C3C3 = +C3C∗

3 = 1,

C4 := ρ1 ⊗ σ3, C4C
†
4 = C4C4 = +C4C∗

4 = 1.

Second, the operations on K consisting of the momentum
inversion p → − p, complex conjugation, and matrix multi-
plication from the left and from the right by the 4 × 4 unitary
and Hermitian matrices,

T1 := ρ3 ⊗ σ1, T1 T
†

1 = T1 T1 = +T1 T ∗
1 = 1,

T2 := ρ0 ⊗ σ2, T2 T
†

2 = T2 T2 = −T2 T ∗
2 = 1,

(2.3)
T3 := ρ1 ⊗ σ2, T3 T

†
3 = T3 T3 = −T3 T ∗

3 = 1,

T4 := ρ2 ⊗ σ1, T4 T
†

4 = T4 T4 = −T4 T ∗
4 = 1,

all yield K again. For any i,j = 1, . . . ,4, the property

Ci K( p) Ci = −K( p), (2.4)

which we call (abusively) chiral symmetry (chS), is compatible
with the property

Tj K∗(− p) Tj = K( p), (2.5)

which we call TRS, if and only if

[Ci ,Tj ] = 0. (2.6)

In this paper, we assume that the lattice model from which
K( p) emerges imposes the chS generated by

C ≡ C1. (2.7)

This chS commutes with

T ≡ T1 (2.8)

and with

T ′ ≡ T2 . (2.9)

(Observe that T and T ′ anticommute. They are not compati-
ble.) This leads to two possible forms of TRS, either the one
appropriate for particles with integer isospin when

T T = +T (2.10)

is imposed as a symmetry, or the one for particles with half-
integer isospin when

T ′T = −T ′ (2.11)

is imposed as a symmetry. Again, the choice between T and
T ′ is dictated by the underlying lattice model.

The most general static random potential that anticommutes
with C is of the form

V =
(

0 V

V † 0

)
,

V = σ1A1 + σ2A2 + σ3M3 + σ0M0, (2.12a)

where the complex-valued

A1 = a1 − ia′
1,

A2 = a2 − ia′
2,

(2.12b)
M3 = −m3 − im′

3,

M0 = m′
0 − im0,

represent sources of (static) randomness, that is, complex-
valued functions of the space coordinates r ∈ R2. (The unusual
sign conventions are chosen to make contact with the notation
of Ref. 56.) It yields the random Dirac Hamiltonian

H(r) := (K + V) (r)

=
(

0 D(r)

D†(r) 0

)
= − iρ1 ⊗ σ1 ∂1 − iρ1 ⊗ σ2 ∂2

+ ρ1 ⊗ σ1 a1(r) + ρ1 ⊗ σ2 a2(r)

+ ρ2 ⊗ σ1 a′
1(r) + ρ2 ⊗ σ2 a′

2(r)

− ρ1 ⊗ σ3 m3(r) + ρ1 ⊗ σ0 m′
0(r)

+ ρ2 ⊗ σ3 m′
3(r) + ρ2 ⊗ σ0 m0(r). (2.12c)
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By construction, Hamiltonian (2.12c) is a member of
the AIII symmetry class (chiral-unitary symmetry class) of
Anderson localization in two dimensions.

When the disorder (2.12b) is restricted to

Aμ = −ia′
μ ∈ iR, M3 = −m3 ∈ R, M0 = −im0 ∈ iR,

(2.13a)

the random Hamiltonian (2.12c) reduces to

H(r) = − iρ1 ⊗ σ1 ∂1 − iρ1 ⊗ σ2 ∂2

+ ρ2 ⊗ σ1 a′
1(r) + ρ2 ⊗ σ2 a′

2(r)

− ρ1 ⊗ σ3 m3(r) + ρ2 ⊗ σ0 m0(r) (2.13b)

and hence is invariant under the time reversal

T H∗(r)T = H(r), T := ρ3 ⊗ σ1, (2.13c)

for any realization of the disorder (2.13a). Accordingly, this
Hamiltonian is a member of the BDI symmetry class (chiral-
orthogonal symmetry class) in Anderson localization.

On the other hand, when the disorder (2.12b) is restricted
to

Aμ = −ia′
μ ∈ iR, M3 = −im′

3 ∈ iR, M0 = m′
0 ∈ R,

(2.14a)

the random Hamiltonian (2.12c) reduces to

H(r) = − iρ1 ⊗ σ1 ∂1 − iρ1 ⊗ σ2 ∂2

+ ρ2 ⊗ σ1 a′
1(r) + ρ2 ⊗ σ2 a′

2(r)

+ ρ2 ⊗ σ3 m′
3(r) + ρ1 ⊗ σ0 m′

0(r) (2.14b)

and hence is invariant under the time reversal

T ′H∗(r)T ′ = H(r), T ′ := ρ0 ⊗ σ2, (2.14c)

for any realization of the disorder (2.14a). Accordingly, this
Hamiltonian is a member of the CII symmetry class (chiral-
symplectic symmetry class) in Anderson localization.

The BDI case (2.13) can be derived as the continuum
limit of a real-valued, nearest-neighbor, spin-independent, and
random hopping model on a bipartite lattice, the honeycomb
lattice of graphene or the square lattice with a π -flux phase,
say.54 The four-dimensional subspace associated with the ρ’s
and σ ’s originates from the two-sublattice structure and the two
nonequivalent Fermi points at the band center. The electronic
spin here plays no role besides an overall degeneracy factor as
spin-orbit coupling is neglected. In the context of graphene,
the random fields a′

1 and a′
2 are called ripples [see Figs. 3(c)

and 3(d)],73 while the random masses m3 and m0 are smooth
bond fluctuations about the Kekulé dimerization pattern
of the nearest-neighbor hopping amplitude [see Figs. 3(a)
and 3(b)].74 In the context of the π -flux phase, the random
fields a′

1 and a′
2 are smooth fluctuations of the nearest-neighbor

hopping amplitudes about the two wave vectors for the
two independent staggered dimerization patterns, while the
random masses m3 and m0 are smooth bond fluctuations
about the two independent columnar dimerization pattern.75

The CII case (2.14) can be derived as the restriction to a
two-dimensional boundary of a disordered, three-dimensional
Z2-topological band insulator in the chiral-symplectic class of
Anderson localization.11

TABLE II. Symmetry conditions on the static random fields in the
Hamiltonian (2.12). For the symmetry classes D and AII, M3M0 = 0
must hold.

AIII BDI CII D AII

A1 a1 − ia′
1 −ia′

1 −ia′
1 0 0

A2 a2 − ia′
2 −ia′

2 −ia′
2 0 0

M3 −m3 − im′
3 −m3 −im′

3 −m3 −im′
3

M0 m′
0 − im0 −im0 m′

0 −im0 m′
0

When the disorder is restricted to

Aμ = 0, M3 = −m3 ∈ R, M0 = 0, (2.15a)

we observe that Hamiltonian (2.12c) reduces to

H = ρ1 ⊗ D, (2.15b)

with

D = D†, σ1D
∗σ1 = −D, (2.15c)

and can be thought of as a random Hamiltonian belonging to
the symmetry class D (BdG Hamiltonians with both TRS and
spin- 1

2 rotation symmetry broken) in Anderson localization,
for H is then unitarily equivalent to(

D 0

0 −D

)
(2.15d)

with the unitary transformation (ρ0 + iρ2) ⊗ σ0/
√

2.
Finally, when the disorder is restricted to

Aμ = 0, M3 = 0, M0 = m′
0 ∈ R, (2.16a)

we observe that Hamiltonian (2.12c) reduces to

H = ρ1 ⊗ D, (2.16b)

with

D = D†, σ2D
∗σ2 = D, (2.16c)

and can be thought of as a random Hamiltonian belonging to
symmetry class AII (a spin- 1

2 electron with TRS but without
spin-rotation symmetry) in Anderson localization, for H can
then be brought to the block diagonal form (2.15d) by the same
unitary transformation used to reach (2.15d).

All four symmetry conditions are summarized in Table II.
The defining conditions on classes D and AII can be made
slightly more general than in Eqs. (2.15a) and (2.16a) as
becomes clear at the end of Sec. II C.

B. Path integral representation of the single-particle
Green’s function

In Anderson localization, physical quantities are expressed
by (products of) the retarded (+iη, η > 0) and advanced (−iη)
Green’s functions

GR/A(E) := (E ± iη − H)−1. (2.17)

At the band center E = 0, the retarded and advanced Green’s
functions are related by the chS through

C GR(E = 0) C = −GA(E = 0). (2.18)
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Hence, any arbitrary product of retarded or advanced Green’s
function at the band center equates, up to a sign, a product of
retarded Green’s functions at the band center. From now on
we omit the energy argument of the Green’s function, bearing
in mind that it is always fixed to the band center E = 0.

Because of Eq. (2.18), it suffices to introduce functional
integrals for the retarded Green’s function defined with the
help of the SUSY partition function

Z := ZF × ZB,

ZF :=
∫

D[χ̄ ,χ ] exp

(
i

∫
d2 r χ̄ (iη − H) χ

)
, (2.19a)

ZB :=
∫

D[ξ̄ ,ξ ] exp

(
i

∫
d2 r ξ̄ (iη − H) ξ

)
.

Here, (χ̄ ,χ ) is a pair of two independent four-component
fermionic fields, and (ξ̄ ,ξ ) is a pair of four-component bosonic
fields related by complex conjugation. For any η > 0,

Z = 1 (2.19b)

holds. The matrix elements of the retarded Green’s function
can be represented as

iGR(r,r ′) = 〈χ (r)χ̄(r ′)〉 = 〈ξ (r)ξ̄ (r ′)〉, (2.20)

with 〈· · ·〉 denoting the expectation value taken with the
partition function Z.

We now perform the change of integration variables from
χ̄ ,χ to ψ̄a†,ψ̄a,ψ

a†,ψa in the fermionic sector and from ξ̄ ,ξ to
β̄a†,β̄a,β

a†,βa in the bosonic sector where a = 1,2 and,

χ̄ =:
1√
2π

(ψ̄1† ψ1† −iψ̄2 −iψ2),

χ =:
1√
2π

(+iψ2† +iψ̄2† ψ1 ψ̄1)T ,

(2.21)

ξ̄ =:
1√
2π

(β̄1† β1† −iβ̄2 −iβ2),

ξ =:
1√
2π

(−iβ2† −iβ̄2† β1 β̄1)T .

Any correlation function such as the retarded Green’s func-
tion (2.20) is, under this or any similar change of integration
variable, to be computed with the SUSY partition function

Z =
∫

D[ψ̄,ψ,β̄,β]
Dψ̄

Dχ̄

Dψ

Dχ

Dξ̄

Dβ̄

Dξ

Dβ

× exp

(
i

∫
d2 r χ̄(ψ̄,ψ) (iη − H) χ (ψ̄,ψ)

)
× exp

(
i

∫
d2 r ξ̄ (β̄,β) (iη − H) ξ (β̄,β)

)
. (2.22)

The message conveyed by Eq. (2.22) is that we are free to
relabel all integration variables in Eq. (2.19a) independently
from each other, provided the correct bookkeeping with the
integration variables in the convergent path integral (2.19a)
is kept. In this context the symbols ¯ and † on the right-hand
side of Eq. (2.21) are only distinctive labels; that is, here they
are not to be confused with complex conjugation. The change
of integration variable (2.21) is made to bring the effective
action to a form identical to that found in Ref. 56 in which

important symmetries55 of the partition function in the limit
η = 0 become manifest.

We also introduce

a ≡ a1 − ia2 ≡ Re A1 − i Re A2,

a′ ≡ a′
1 − ia′

2 ≡ −Im A1 + i Im A2,
(2.23)

m ≡ m0 − im3 ≡ −Im M0 + i Re M3,

m′ ≡ m′
0 − im′

3 ≡ Re M0 + i Im M3,

and their complex conjugate ā, ā′, m̄, and m̄′, in terms of which
symmetry class BDI is defined by the conditions

a = 0, a′ ∈ C, m ∈ C, m′ = 0, (2.24)

while symmetry class CII is defined by the conditions

a = 0, a′ ∈ C, m = 0, m′ ∈ C. (2.25)

The boundary

a = a′ = 0, Re m = 0, m′ = 0, (2.26)

between the symmetry classes BDI and AIII belongs to
symmetry class D. The boundary

a = a′ = 0, m = 0, Im m′ = 0, (2.27)

between the symmetry classes CII and AIII belongs to
the symmetry class AII. All four symmetry conditions are
summarized in Table III. The defining conditions on the
symmetry classes D and AII can be made slightly more general
than in Eqs. (2.26) and (2.27) as becomes clear at the end of
Sec. II C.

With these changes of variables, the partition function Z =
ZF × ZB at E = 0 can be written as

ZF =
∫

D[ψ̄a†,ψa†,ψ̄a,ψa] exp

(
−

∫
d2 r

(
LF + Liη

F

))
,

ZB =
∫

D[β̄a†,βa†,β̄a,βa] exp

(
−

∫
d2 r

(
LB + Liη

B

))
,

(2.28a)

with the effective action for the fermionic part given by

LF = 1

2π

2∑
a=1

{ ψ̄a†[2∂ − i(−1)a a + a′]ψ̄a

+ψa†[2∂̄ − i(−1)aā + ā′]ψa

+ [m + (−1)a+1im′]ψ̄a†ψa

+ [m̄ + (−1)a+1im̄′]ψa†ψ̄a} (2.28b)

and

Liη

F = iη

2π
(ψ̄1†ψ2† + ψ1†ψ̄2† − ψ̄2ψ1 − ψ2ψ̄1) (2.28c)

TABLE III. Symmetry conditions on the static random fields in
the generating function (2.28).

AIII BDI CII D AII

a a1 − ia2 0 0 0 0
a′ a′

1 − ia′
2 a′

1 − ia′
2 a′

1 − ia′
2 0 0

m m0 − im3 m0 − im3 0 m0m3 = 0 0
m′ m′

0 − im′
3 0 m′

0 − im′
3 0 m′

0m
′
3 = 0
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and the bosonic part of the effective action given by

LB = 1

2π

2∑
a=1

{ β̄a†[2∂ − i(−1)a a + a′]β̄a

+βa†[2∂̄ − i(−1)aā + ā′]βa

+ [m + (−1)a+1im′]β̄a†βa

+ [m̄ + (−1)a+1im̄′]βa†β̄a} (2.28d)

and

Liη

B = iη

2π
(−β̄1†β2† − β1†β̄2† − β̄2β1 − β2β̄1), (2.28e)

where 2∂ = ∂1 − i∂2 and 2∂̄ = ∂1 + i∂2. The asymmetry
between fermions and bosons in Liη

F and Liη

B , a consequence
of the asymmetry between the ψ’s and β’s on the right-hand
side of Eq. (2.21), is the price to be paid in order to make a
GL(2|2) supersymmetry of LF + LB explicit, as is shown in
Refs. 55 and 56.76

The Nth moment of the retarded single-particle Green’s
function evaluated at the band center is obtained by allowing
the index a to run from 1 to 2N in Eq. (2.28).

C. Phase diagram

We now assume that the disorder potentials are white-noise
correlated following the Gaussian laws with vanishing mean
and nonvanishing variances

w(r) = 0, w(r)w(r ′) = gwδ(2)(r − r ′). (2.29a)

Here, δ(2)(r − r ′) is the two-dimensional δ function, (· · ·)
represents disorder averaging,

w ∈ W := {Re a, Im a, Re a′, Im a′,
Re m, Im m, Re m′, Im m′}, (2.29b)

and the disorder strengths gw are all positive. We treat
symmetry class BDI defined by

gRe a = gIm a = gRe m′ = gIm m′ = 0 (2.30)

and symmetry class CII defined by

gRe a = gIm a = gRe m = gIm m = 0. (2.31)

Their boundaries

0 = gRe a = gIm a = gRe a′ = gIm a′

= gRe m′ = gIm m′ = gRe m (2.32)

and

0 = gRe a = gIm a = gRe a′ = gIm a′

= gRe m = gIm m = gIm m′ (2.33)

to symmetry class AIII are in symmetry class D and in symme-
try class AII, respectively. All four symmetry conditions are
summarized in Table IV. The defining conditions on classes D
and AII can be made slightly more general than in Eqs. (2.32)
and (2.33), as will become clear shortly.

The phase diagram for the random Dirac fermions defined
by Eqs. (2.12)–(2.14), (2.23), and (2.29) belongs to the

TABLE IV. Symmetry conditions on the (positive) variances of
the static random fields from Table III. For symmetry class D,
gRe mgIm m = 0. For symmetry class AII, gRe m′gIm m′ = 0.

AIII BDI CII D AII

gRe a 0 0 0 0
gIm a 0 0 0 0
gRe a′ gRe a′ gRe a′ 0 0
gIm a′ gIm a′ gIm a′ 0 0
gRe m gRe m 0 gRe m 0
gIm m gIm m 0 gIm m 0
gRe m′ 0 gRe m′ 0 gRe m′
gIm m′ 0 gIm m′ 0 gIm m′

eight-dimensional parameter space

AIII := {gw ∈ R | 0 � gw < ∞, w ∈ W }, (2.34)

with the origin representing the clean limit. Imposing on
AIII the constraints summarized in Table IV yields the
four-dimensional subspaces

BDI ⊂ AIII, CII ⊂ AIII, (2.35)

and the one-dimensional subspaces

D ⊂ AIII, AII ⊂ AIII. (2.36)

We are going to analyze the phase diagram and the projected
RG flows of its couplings through two-dimensional cuts in
AIII which we depict with Fig. 4. All those cuts belong to the
six-dimensional subspace

⊥ := {gw ∈ AIII| 0 = gRe a = gIm a}. (2.37)

The cuts will involve a plane with the variance of the gauge
potential a′ set to either zero in Fig. 4(a) or a nonvanishing
value in Figs. 4(b) and 4(c). We also represent the effect of
the RG flow to strong coupling of the variance of a′ on the
coupling g′

− := gIm m′ − gRe m′ in Fig. 4(d).
To this end, we observe that the quadrant

gRe m > 0, gIm m > 0, (2.38)

belongs to symmetry class BDI in Fig. 4(a). The quadrant

gRe m < 0, gIm m < 0, (2.39)

in Fig. 4(a) belongs to symmetry class CII, as we now
demonstrate. This is expected from the fact that m′

0,3 present
in the CII model is the imaginary counterpart of m0,3 present
in the BDI model.

We begin with the Lagrangian (2.28b) on which we perform
the transformation

ψ̄2† → −ψ̄2†, ψ̄2 → −ψ̄2. (2.40)

Under this transformation,

2∑
a=1

(−1)a+1ψ̄a†ψa →
2∑

a=1

ψ̄a†ψa,

2∑
a=1

(−1)a+1ψa†ψ̄a →
2∑

a=1

ψa†ψ̄a,
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2∑
a=1

ψa†ψ̄a →
2∑

a=1

(−1)a+1ψa†ψ̄a,

2∑
a=1

ψ̄a†ψa →
2∑

a=1

(−1)a+1ψ̄a†ψa, (2.41)

while all other terms in Lagrangian (2.28b) remain unchanged.
We conclude that Lagrangian (2.28b) remains unchanged by
combining transformation (2.40) with the transformation

Re m ←→ i Re m′, Im m ←→ i Im m′. (2.42)

As the same argument carries through in the bosonic sector by
combining transformation (2.42) with

β̄2† → −β̄2†, β̄2 → −β̄2, (2.43)

we conclude that a disorder realization in symmetry class CII is
obtained from the analytical continuation (2.42) of a disorder
realization in symmetry class BDI when η = 0 [Liη

F and Liη

B
are not invariant under the transformations (2.40), (2.42),
and (2.43)]. Upon disorder averaging, the analytical contin-
uation (2.42) amounts to mapping the CII quadrant

gRe m′ > 0, gIm m′ > 0, (2.44)

one-to-one into the quadrant (2.39) through the mapping

gRe m′ → −gRe m, gIm m′ → −gIm m, (2.45)

that relates the positive variances gRe m′ and gIm m′ in symmetry
class CII to the negative variances gRe m and gIm m. The
remaining quadrants in Fig. 4(a)

0 < gRe m, 0 > gIm m = −gIm m′ , (2.46)

and

0 > gRe m = −gRe m′ , 0 < gIm m, (2.47)

belong to symmetry class AIII as their corresponding disorder
potential ρ2 ⊗ (σ0m0 + σ3m

′
3) and ρ1 ⊗ (σ0m

′
0 − σ3m3) are

not invariant under neither the time-reversal operation T nor
the time-reversal operation T ′.

The one-dimensional boundary

0 = gRe m, 0 < gIm m, (2.48)

of the BDI quadrant,

0 < gRe m, 0 < gIm m, (2.49)

belongs to symmetry class D according to Eq. (2.32). The
one-dimensional boundary

0 < gRe m′ , 0 = gIm m′ , (2.50)

of the CII quadrant (2.44) belongs to symmetry class AII
according to Eq. (2.33). The one-dimensional boundaries

0 < gRe m, 0 = gIm m, (2.51)

and

0 = gRe m′ , 0 < gIm m′ , (2.52)

also belong to symmetry classes D and AII, respectively, as
follows from the mirror symmetry about the line

R � gM ≡ gRe m = gIm m. (2.53)

To derive this mirror symmetry, one observes, when η = 0,
the invariance of the generating function (2.28) under the
combined transformations (a = 1,2)

ψ̄a† → ψ̄a†, ψ̄a → ψ̄a,

ψa† → −iψa†, ψa → +iψa,

β̄a† → β̄a†, β̄a → β̄a,
(2.54)

βa† → −iβa†, βa → +iβa,

Re m → Im m, Im m → −Re m,

Re m′ → Im m′, Im m′ → −Re m′.

However, the signs of the random fields Re m, Im m, Re m′, and
Im m′ are innocuous after disorder averaging, for these fields
are Gaussian distributed with a vanishing mean according to
Eq. (2.29). Hence, a mirror symmetry along the vertical axis
in Fig. 4(a) must hold.

The RG flows along the boundaries D and AII are known
and shown in Fig. 4(a). In symmetry class D, the RG flow is to
the clean Dirac limit (see Refs. 68–70, 48 and 77), while the
RG flow is to the metallic fixed point in symmetry class AII
(see Refs. 51, 66, and 67).78,79 The random vector potentials
a1 − ia′

1 and a2 − ia′
2. are not generated under the RG on the

boundaries D and AII.
The RG flows away from the boundaries D shown in

Fig. 4(a) are consistent with the fact that the line (2.53) is
a stable line of nearly critical points in the BDI quadrant. As
we show below, they also follow from a one-loop stability
analysis summarized in Fig. 4(b). The RG flows away from
the boundaries AII shown in Fig. 4(a) are a more subtle matter.
They are drawn to be consistent with the fact that the nearly
critical line (2.53) appears to be unstable in the CII quadrant
of Fig. 4(a) when the approximation ga′ ≈ 0 is used. However,
as we show below, relaxing this approximation and allowing
the RG flow to reach length scales such that ga′ becomes
sufficiently large changes the flow depicted in Fig. 4(a) to that
depicted in Fig. 4(c). This change is a consequence of the flow
depicted in Fig. 4(d).

D. The plane R � gM ≡ gRe m = gIm m and ga′ � 0

Consider the line (2.53) in Fig. 4(a). By combining the
results of Refs. 55 and 56 with the results of Sec. II C, we
show that this line is a line of nearly critical points. To this
end, we assume that rotation symmetry is preserved at the
statistical level. This means that we can assume

gRe a = gIm a ≡ ga, gRe a′ = gIm a′ ≡ ga′ . (2.55)

1. The plane gM ≡ gRe m = gIm m � 0 and ga′ � 0

We begin with the plane

0 < gM ≡ gRe m = gIm m, 0 � ga′ , (2.56)

in Fig. 4 along which the generating function for the average
retarded Green’s function, which is nothing but the ĝl(2|2)k=1
Thirring model studied in Refs. 55 and 56. Indeed, by setting
η = 0 in Eq. (2.28) and integrating over the random potentials,

235115-10



GLOBAL PHASE DIAGRAM OF TWO-DIMENSIONAL DIRAC . . . PHYSICAL REVIEW B 85, 235115 (2012)

one finds the partition function

Zĝl(2|2)1
=

∫
D[ψ†,ψ,ψ̄†,ψ̄] exp

(−Sĝl(2|2)1

)
,

Sĝl(2|2)1
= S0 +

∫
d z̄ d z

2πi

(
ga′

2π
Oa′ + gM

2π
OM

)
,

Oa′ = −J A
A (−1)A J̄ B

B (−1)B,

OM = −J B
A J̄ A

B (−1)A. (2.57a)

The action

S0 :=
∫

d z̄d z

4πi
(ψ̄A† 2∂ ψ̄A + ψA† 2∂̄ ψA) (2.57b)

(z̄ ≡ r1 − ir2, z ≡ r1 + ir2) is the action in Eq. (2.28) without
disorder when η = 0. The capitalized index A = 1, . . . ,4
carries a grade which is either 0 for A = 1,2 or 1 for A = 3,4.
It is the grade of the indices A and B that enters expressions
such as (−)A or (−)AB. The grade 0 (1) thus corresponds to the
bosons (fermions).80 We are using the summation convention
over repeated indices A,B = 1, . . . ,4. We also have defined
the supercurrents

J B
A := ψAψB†, J̄ B

A := ψ̄Aψ̄B†, (2.57c)

where A,B = 1, . . . ,4 and ψA, ψ̄A, ψA†, and ψ̄A† now denote
bosons for A = 1,2 and fermions for A = 3,4. (By allowing
the graded indices A and B to run from 1 to 4N, we
can compute the Nth moment of the retarded single-particle
Green’s function.)

Observe that the integration measure in Eq. (2.57a) and the
free action (2.57b) are both invariant under the local chiral
GL(2|2) × GL(2|2) transformation

ψ̄A† → ψ̄B†L−1A
B , ψ̄A → L B

A ψ̄B, (2.58a)

and

ψA† → ψB†R−1A
B , ψA → R B

A ψB, (2.58b)

for any anti-holomorphic L(z̄) and holomorphic R(z) in the
fundamental representation of GL(2|2). The transformation
law of the currents under (2.58a) and (2.58b) is

J B
A → RC

AJ D
C R−1B

D , J̄ B
A → LC

AJ̄ D
C L−1B

D . (2.58c)

Hence, the Thirring model (2.57) is invariant under the global
diagonal subgroup of the global transformation (2.58a) and
(2.58b) defined by choosing

R = L (2.58d)

in Eqs. (2.58a) and (2.58b) to be independent of space. It can
be shown that the η term responsible for the convergence of the
integrals in the bosonic sector that has been neglected so far
breaks this symmetry down to the subsupergroup OSp(2|2).
In fact, the symmetry-breaking pattern GL(2|2) → OSp(2|2)
occurs due to superfield bilinears acquiring an expectation
value with the consequence of a diverging density of states
(DOS) at the band center.55,56

The (infrared) β functions for the couplings ga′ and gM have
been computed nonperturbatively in Ref. 55. They are81

βg
a′ := dga′

dl
= 1

π

(
gM

1 + gM/π

)2

(2.59a)

and

βgM
:= dgM

dl
= 0. (2.59b)

Observe that the coupling constant 0 < gM does not flow
(we emphasize that this is a nonperturbative result) while the
coupling constant ga′ flows to strong coupling even when it
is initially zero. This is what is meant with the statement that
the plane defined by Eq. (2.56) (and its projection onto a
half line) is nearly-critical: it is critical (in spite of the flow
of the coupling ga′) for all correlation functions of fields
that are unaffected by the flow of ga′ . The half line (2.56)
in Fig. 4(a) belongs to the two-dimensional symmetry class
BDI in the ten-fold classification of Anderson localization
(see Refs. 12–14 and Appendix B).

2. The plane gM′ ≡ gRe m′ = gIm m′ � 0 and ga′ � 0

We continue with the plane

gM′ ≡ gRe m′ = gIm m′ � 0, ga′ � 0, (2.60)

in Fig. 4. The half line obtained from the projection to ga′ = 0
of this plane is also a line of nearly critical points that now
belongs to the two-dimensional symmetry class CII in the ten-
fold classification of Anderson localization (see Refs. 12–14).
Indeed, the counterpart to Eq. (2.57) is

Zĝl(2|2)1
=

∫
D[ψ†,ψ,ψ̄†,ψ̄] exp

(−Sĝl(2|2)1

)
,

Sĝl(2|2)1
= S0 +

∫
d z̄d z

2πi

(
ga′

2π
Oa′ − gM′

2π
OM

)
,

(2.61)
Oa′ = −J A

A (−1)A J̄ B
B (−1)B,

OM = −J B
A J̄ A

B (−1)A,

as follows from the analytical continuation gM → −gM′ of
Eq. (2.57) or by explicit integration over the random potentials
in Eq. (2.28) with η = 0, whereby one must account for
the extra imaginary number multiplying the random mass
m′ for symmetry class CII relative to the random mass
m for symmetry class BDI in Eq. (2.28). Accordingly, the
counterparts of Eq. (2.59) are

βg
a′ = 1

π

(
gM′

1 − gM′/π

)2

(2.62a)

and

βg
M′ = 0, (2.62b)

where one must impose the condition

0 � gM′ < π (2.62c)

to avoid the pole in the β function for ga′ .

E. Conjectured RG flows in Fig. 4

We are now going to justify why we have conjectured the
RG flows depicted in Fig. 4. More precisely, we make the
following claims.

(i) The boundaries D and AII in the plane ga′ = 0 are RG
separatrices.

(ii) The plane defined by the dashed line in Fig. 4(a) and the
out-of-plane ga′ axis is a stable nearly critical plane in that all
RG trajectories from region BDI or CII, except the fine-tuned
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RG flows along the separatrix D and AII, reach this plane
asymptotically in the infrared limit.

(iii) The rationale that allows us to deduce from one-loop
flows nonperturbative statements is that the anomalous scaling
dimension of the operator that couples to the ‘asymmetry
coupling’ g− ≡ gRe m − gIm m in the quadrant BDI, or to
g′

− ≡ gRe m′ − gIm m′ in the quadrant CII, is known to all orders
in ga′ . (By definition, g− = 0 on the dashed line in Fig. 4.)

To substantiate these three claims, we treat first the BDI
case and then the CII case.

The stability analysis in region BDI of Fig. 4 is determined
by the one-loop RG equations82

βg
a′ = g2

+ − g2
−

4π
, βg+ = − g2

−
4π

, βg− = − (g+ + ga′)g−
4π

,

(2.63a)

where

g± : = gIm m ± gRe m, g+ � |g−|. (2.63b)

These one-loop flows must respect the conditions ga′ � 0 and
g+ � |g−| in order to represent the effects of disorder on the
underlying microscopic Dirac Hamiltonian and are valid in
the close vicinity to the clean Dirac point ga′ = g+ = g− = 0
denoted by an open circle in Fig. 4(a). In the regime ga′ = 0
and g+,g− � 1, the line defined by any one of the two
boundaries D from Fig. 4(a) becomes the separatrix of a
Kosterlitz-Thouless flow

βg+ = − g2
−

4π
, βg− = −g+g−

4π
. (2.64)

In Fig. 4(a), we plotted the Kosterlitz-Thouless flows (2.64)
which accurately capture the flows (2.63) when ga′ ≈ 0.
However, in the region BDI defined by the condition g+ >

|g−|, the variance ga′ flows to strong coupling and the RG flows
follow three-dimensional trajectories. We depict them by using
a two-dimensional projection in Fig. 4(b). The perturbative
flows in the region BDI from Eq. (2.63a) after projection to the
gRe m-gIm m plane are depicted in Fig. 4(b) for ga′ �= 0. These
flows depict the instability of the BDI boundaries gRe m � 0,
gIm m = 0 and gRe m = 0, gIm m � 0 to an infrared flow toward
the nearly critical plane g− = 0.83 It can be shown by adapting
nonperturbative results from Ref. 55 that the β function for
the coupling g− in Eq. (2.65a) holds to all orders in ga′ and
to linear order in g−.84 Hence, we conjecture that the infrared
flows are from the BDI boundaries to the nearly critical plane
spanned by the dashed line and the out-of-plane axis ga′ in
Fig. 4(b) for the entire quadrant BDI.

The stability analysis of the region CII of Fig. 4 is
determined by the one-loop RG equations82

βg
a′ = g′2

+ − g′2
−

4π
, βg′+

= +g′2
−

4π
, βg′−

= + (g′
+ − ga′)g′

−
4π

,

(2.65a)

where

g′
± := gIm m′ ± gRe m′ , g′

+ � |g′
−|. (2.65b)

These one-loop flows must respect the conditions ga′ � 0 and
g′

+ � |g′
−| in order to represent the effects of disorder on the

underlying microscopic Dirac Hamiltonian and are valid in

the close vicinity to the clean Dirac point ga′ = g′
+ = g′

− = 0
denoted by an open circle in Fig. 4(a). In the regime ga′ =
0 and g′

+,g′
− � 1, the line defined by any one of the two

boundaries AII from Fig. 4(a) becomes the separatrix of the
Kosterlitz-Thouless flow

βg′+
= +g′2

−
4π

, βg′−
= +g′

+g′
−

4π
. (2.66)

In Fig. 4(a), we plotted the Kosterlitz-Thouless flows (2.66)
which accurately capture the flows (2.65) when ga′ ≈ 0.
However, in the region CII defined by the condition g′

+ > |g′
−|,

the variance ga′ flows to strong coupling and the RG flows
follow three-dimensional trajectories. We depict them by
using two-dimensional projections in Fig. 4(c) and 4(d). The
perturbative flows in the region CII from Eq. (2.65a) after
projection to the gRe m′ -gIm m′ plane are depicted in Fig. 4(c)
when ga′ is large. These flows show the instability of the CII
boundaries gRe m′ � 0, gIm m′ = 0 and gRe m′ = 0, gIm m′ � 0 to
any ga′ > 0.83 Moreover, these flows also show the infrared
flow toward the nearly critical plane g′

− = 0 due to a reversal
in the direction along the g′

− axis of the infrared flows caused
by the growth of ga′ as is depicted in Fig. 4(d). It can be
shown by adapting nonperturbative results from Ref. 55 that
the change in the sign of the β function for the coupling g′

−
holds to all orders in ga′ and to linear order in g′

−.84 Hence,
we conjecture that the infrared flows emerging from the CII
boundaries continue to the nearly-critical plane g′

− = 0 in
Fig. 4(c) for the entire quadrant CII.

III. PROJECTED THIRRING MODEL

We now proceed by discussing the dashed line in Fig. 4,
gRe m = gIm m and gRe m′ = gIm m′ .

If we are only interested in correlation functions that are
not affected by the flow (to strong coupling) of ga′ , we can set
ga′ = 0 in Sec. II. This is because, along the dashed line, the
coupling ga′ turns out55 to never feed into the RG equations
for the remaing two couplings, gRe m and gIm m, or gRe m′ and
gIm m′ .

A mathematically consistent way to achieve this is to
replace the affine Lie superalgebra ĝl(2|2)1 with its affine Lie
subsuperalgebra p̂sl(2|2)1,85,86 that is, the ĝl(2|2)1 Thirring
models (2.57) and (2.61) are combined into the p̂sl(2|2)1
Thirring model defined by

Zĝl(2|2)1
=

∫
D[ψ†,ψ,ψ̄†,ψ̄] exp

(−Sĝl(2|2)1

)
,

Sĝl(2|2)1
= S0 +

∫
d z̄ d z

2πi

gM

2π
OM, (3.1a)

OM = −J B
A J̄ A

B (−1)A,

subject to the p̂sl(2|2)1 constraints

0 = J A
A (−)A = J̄ A

A (−)A (3.1b)

and

0 = J A
A = J̄ A

A (3.1c)

along the now critical line gM ∈ R. The constraint (3.1b) justi-
fies setting ga′ = 0. The sign of the variance gM distinguishes
symmetry class BDI (gM > 0) from symmetry class CII
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(gM < 0). The graded index A runs from 1 to 4N when dealing
with the Nth moment of the single-particle Green’s function.

IV. RELATIONSHIP TO A NLσM

So far, we have relied on a description of the global phase
diagram and, in particular, of the vertical dashed line of nearly
critical points in region CII of Fig. 4 that makes explicit the
Dirac structure underlying the clean limit of the theory. In
this section, we seek an alternative description of this line, in
particular far away from the clean Dirac limit.

To this end, we first observe that we can derive a replicated
NLσM by integrating out replicated Dirac fermions in favor
of Goldstone modes as is done in Appendix A. We find a
replicated NLσM augmented by a term of topological origin,
the θ term at θ = π . The same calculation also applies to the
SUSY formulation of the disordered system, yielding a θ term
at θ = π for the NLσM defined on the SUSY target manifold
given in Eq. (4.4) below.

Without the θ term at θ = π , this NLσM was already
derived starting from a different microscopic model within the
chiral symplectic symmetry class CII by Gade in Ref. 87. This
NLσM has two coupling constants tM′ and ta′ that are positive
numbers, in addition to the topological coupling θ = π . The
labels of these couplings are chosen to convey the fact that tM′
does not flow (Ref. 87), whereas ta′ does flow away from its
value 0 at the Gaussian fixed point (Ref. 87), by analogy to the
flow of the couplings gM′ and ga′ in Eq. (2.61), respectively.
The topological coupling does not flow, for it can only take
discrete values.

The question we want to address in this section is what is the
relationship between this NLσM with a θ term at θ = π and
the Thirring model defined in Eq. (2.61). We are going to argue
that they are dual in a sense that will become more precise as
we proceed. To this end, we rely on the SUSY description used
to represent the Thirring model defined in Eq. (2.61).

We begin by establishing the relevant pattern of symmetry
breaking. The field theory (2.61) is a GL(2|2) PCM augmented
by a WZNW term at level k = 1 when the couplings gM′ =
ga′ = 0.59 This means that the theory at gM′ = ga′ = 0 is
invariant under the symmetry supergroup

GL(2|2) × GL(2|2). (4.1)

The current-current perturbations for any gM′ > 0 in Eq. (2.61)
lower this symmetry down to the diagonal supergroup

GL(2|2). (4.2)

In turn, the symmetry GL(2|2) can be further reduced if
fermion bilinears acquire an expectation value, as must be the
case if the global DOS is nonvanishing at the band center due
to the disorder. This is, in fact, what happens if the analysis
of Refs. 55 and 56 along the nearly critical line in the BDI
quadrant of Fig. 4 is repeated for the case at hand, with the
remaining residual symmetry being

OSp(2|2). (4.3)

The Goldstone modes associated with this pattern of symmetry
breaking generate the supermanifold

GL(2|2)/OSp(2|2), (4.4)

which is nothing but the SUSY target space for a NLσM
model in symmetry class CII (see Ref. 12 and Appendix B of
this paper). The critical vertical dashed line in quadrant CII of
Fig. 4 arises from removing the sector GL(1;R) × U(1) from
the field theory (2.61). The ensuing projected field theory is
given by Eq. (3.1). The corresponding operation on the target
space (4.4) of the NLσM for symmetry class CII yields the
manifold88

PSL(2|2)/OSp(2|2) ∼ PSL(2|2)/SU(2|1)

∼ U(2|2)/[U(1) × U(2|1)]

∼ CP 2|1. (4.5)

We have used here the isomorphism between OSp(2|2) and
SU(2|1). By setting all fermionic coordinates to zero on this
SUSY manifold, one obtains the bosonic submanifold given by

Boson-Boson (BB) Fermion-Fermion (FF)

(non-compact) (compact) (4.6)

SU∗(2)/Sp(2) × SU(2)/SO(2).

[The definition of the group U∗(2) is given in Appendix D.]
We close this symmetry analysis by recalling89 that the second
homotopy group of the compact part of the submanifold (4.6)
is not trivial and given by

π2[SU(2)/SO(2)] = Z2. (4.7)

We are now going to argue that, under certain natural
assumptions detailed below, the vertical dashed line of nearly
critical points in region CII of Fig. 4 is described by a NLσM
with a θ term at θ = π on the CP 2|1 target space [Eq. (4.5)].

To understand what could prevent the identification of the
vertical dashed line of nearly critical points as realizing the
CP 2|1 NLσM with θ term at θ = π , we are first going to
review the connection between the O(3) NLσM with the θ

term at θ = π and the SU(2)1 WZNW field theory perturbed
by the current-current interaction.90

The O(3) NLσM with θ term at θ = π captures the low-
energy and long-wave-length excitations of antiferromagnetic
spin- 1

2 Heisenberg spin chains. This field theory is related to
the SU(2)1 WZNW field theory by perturbing the latter with
a symmetry-breaking potential (coupling constant h), which
has the effect of changing the target manifold of the principal
chiral model, at h = 0, to that of the NLσM, at h = ∞. (see
Fig. 5). When the WZNW model is near its weakly coupled
ultraviolet (UV) Gaussian fixed point, the flow of the coupling
h away from this Gaussian fixed point is the strongest and
brings the theory into the vicinity of the weakly coupled (UV,
Gaussian) fixed point of the O(3) NLσM augmented by a θ

term at θ = π . In the vicinity of the SU(2)1 WZNW critical
point, the symmetry-breaking potential (coupling h) reduces
to the marginally irrelevant current-current interaction up to
more irrelevant interactions (some discrete symmetries must
here be invoked). When the coupling constant λ of the SU(2)
PCM augmented by the level k = 1 WZNW term is close to its
critical value λ = 1/k = 1, the symmetry-breaking potential
generates RG flows that are close to those of O(3) NLσM with
a θ term at θ = π . When the coupling constant of the SU(2)
PCM augmented by the level k = 1 WZNW term is small,
the symmetry-breaking potential generates RG flows that are
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(a) (b)

FIG. 5. (Color online) (a) Phase diagram for the SU(2) PCM with
the coupling constant λSU(2) that is (i) augmented by the WZNW term
at level k = 1 and (ii) perturbed by a symmetry-breaking potential
with coupling h . The critical WZNW theory is at λSU(2) = 1/k and
is represented in the upper-left corner of the phase diagram by a
solid circle. The flow along the upper boundary of the phase diagram
is that of the marginally irrelevant current-current perturbation. The
lower-left corner of the phase diagram is the Gaussian fixed point
of the SU(2) PCM augmented by a WZNW term at level k = 1;
it is depicted by a solid hexagon. The lower-right corner of the
phase diagram is the Gaussian fixed point of the O(3) NLσM with
θ term at θ = π ; it is depicted by a solid square. (b) Same as in
panel (a) except for the replacement of SU(2) with PSL(2|2) and
of SU(2)/U(1) with CP 2|1 under the assumption that there is no
more relevant perturbations than the exactly marginal current-current
perturbation at the upper-left corner of the phase diagram. The left
vertical boundary85,86 and the diagonal boundary55 are now lines
of critical points (red). The diagonal boundary that connects the
upper-left to the lower-right corner is a line of critical points that
is argued to have a dual representation in terms of a Thirring model
on the one hand or a NLσM with a θ term at θ = π on the other hand.

close to the weakly coupled (Gaussian) fixed point of the O(3)
NLσM with a θ term at θ = π . The envelope of all these RG
flows can be thought of as the RG flow from the Gaussian fixed
point of the O(3) NLσM with a θ term at θ = π to the SU(2)1
WZNW critical point.

The same argument can also be used to relate the PCMs
defined on the groups SU(N ) and SO(M + N ), augmented
by a k = 1 WZNW term, to the NLσM with the target
manifold SU(N )/SO(N ) and SO(M + N )/SO(M) × SO(N ),
respectively, when augmented by a θ term at θ = π . This
argument is confirmed by exact results obtained from Bethe-
Ansatz integrability for these NLσMs.41,91

On the other hand, when the level is larger than one (for
example, k > 1 arises from a fine-tuned half-integer spin chain
with spin larger than 1

2 ), the symmetry-breaking potential
permits (on symmetry grounds) the appearance of terms more
relevant than the current-current interactions in the vicinity
of the SU(2)k>1 WZNW fixed point.90 Correspondingly, the
flow of the O(3) NLσM with a θ term at θ = π will not reach
the SU(2)k>1 WZNW critical point, but reaches a different,
intermediate fixed point describing the critical behavior of the
O(3) NLσM with the θ term at θ = π [see Fig. 6(a)]. This also
happens in the OSp(2|2)/GL(1|1) NLσM with θ term at θ = π

describing the critical behavior of the spin-quantum-Hall
transition.28,92

After these preliminary comments, we proceed to the case
of interest with PSL(2|2) symmetry. If we assume that no

(a) (b)

FIG. 6. (a) Phase diagram for the SU(2) PCM with the coupling
constant λSU(2) that is (i) augmented by the WZNW term at level k > 1
and (ii) perturbed by a symmetry-breaking potential with coupling h.
The critical WZNW theory is at λSU(2) = 1/k and is represented in
the phase diagram by a solid circle. The Gaussian fixed point of the
SU(2) PCM augmented by a WZNW term at level k > 1 is depicted
by a solid hexagon. The Gaussian fixed point of the O(3) NLσM with
θ term at θ = π is depicted by a solid square. The fact that there are
operators more relevant than the current-current interaction induced
by the symmetry-breaking potential is indicated by the presence of a
third axis in coupling space. This third axis quantifies the running of
the current-current coupling constant gcc that is marginally irrelevant.
The critical point of the O(3) NLσM augmented by a θ term at θ = π

is depicted by an open circle. (b) Counterpart to Fig. 5(b) for the case
of the WZNW model on OSp(4n|4n) at level k = 1 perturbed by a
symmetry-breaking potential that projects this WZNW model to the
NLσM model in the symmetry class AII.

relevant or marginal interactions other than the marginal
current-current interaction are allowed at the PSL(2|2) WZNW
critical point at level k = 1 when the PSL(2|2) × PSL(2|2)
symmetry of the WZNW model is lowered to its diagonal
PSL(2|2) symmetry upon introduction of the symmetry break-
ing potential (a natural assumption for the level k = 1 case
under consideration), then we obtain with Fig. 5(b) the desired
relation between the PSL(2|2) WZNW theory perturbed by the
current-current interaction and the CP 2|1 PCM with θ term at
θ = π .93 By analogy with the SU(2)k>1 WZNW critical point,
we do not expect this assumption to be fulfilled when the level
|k| > 1.

A similar projection from the WZNW model onto the
NLσM with θ term at θ = π can also be implemented for
symmetry class AII, in complete analogy with the case of
the projection discussed above from the WZNW model to
the NLσM in symmetry class CII. For the case of symmetry
class AII, consider the WZNW model on OSp(4n|4n) at level
k = 1. In this case, the coupling constant of the PCM flows
away from the WZNW fixed point down towards the weakly
coupled WZNW model [see Fig. 6(b)]. Now, we project again
to the NLσM model in the symmetry class AII with the
help of the corresponding symmetry-breaking potential (with
coupling constant h). When this is done for the weakly coupled
WZNW model, this yields the weakly coupled NLσM in class
AII, the Wess-Zumino term turning into a θ term at θ = π on
the AII target space [see Fig. 6(b)]. On the other hand, the most
relevant operator in the vicinity of the fixed point of the WZNW
model on OSp(4n|4n) at level k = 1 which has the symmetries
of the symmetry breaking potential is the current-current
interaction between the Noether currents. This operator is
marginally relevant. Thus, the RG flow emerging from the
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unstable fixed point of the WZNW model on OSp(4n|4n) at
level k = 1 ends up in the infrared at the weakly coupled
NLσM in symmetry class AII [see Fig. 6(b)]. This is one way
of understanding that the NLσM in class AII with the Z2
term always flows to weak coupling (as discussed in Refs. 66
and 67), for it simply inherits this feature from the RG flow of
the underlying WZNW model.

In summary, based on this reasoning we argue that the line
of nearly critical points in region CII of Fig. 4 (the vertical
dashed line in region CII of Fig. 4) has two descriptions:
one in terms of the PSL(2|2) WZNW model perturbed by
current-current interactions and one in terms of the CP 2|1
NLσM at θ = π (Z2 topological term). These descriptions are
dual to each other in the sense that, in the vicinity of the origin
of our global phase diagram in Fig. 4 the PSL(2|2) WZNW
model is weakly perturbed, whereas the CP 2|1 NLσM is
strongly interacting. On the other hand, for large values of the
coupling constant gM′ of the current-current interaction about
the Dirac point, a measure of the distance downward along
the dotted line away from the clean Dirac point at the center
of Fig. 4, the resulting Thirring model is strongly interacting,
whereas the CP 2|1 NLσM is weakly interacting. We recall
that, because the coupling constant gM′ is exactly marginal,
and so is the coupling constant of the corresponding NLσM,87

it is possible to continuously interpolate between these two
limits by tuning gM′ . (The possibility of such a duality was also
discussed, independently and from a different perspective, in
Refs. 62–64.)

V. DISCUSSION

A. Z2 topological term in the symmetry class CII of
two-dimensional Anderson localization

A systematic study of random Dirac fermions in d-
dimensional space provides a road-map to uncovering uni-
versal properties of Anderson localization. This is so because
random Dirac fermions build a bridge between models for
Anderson localization that are defined on lattices—and thus
are nonuniversal—and effective field theories (NLσMs) that
solely depend on the underlying symmetries and dimension-
ality of space and, as such, are universal.

In one-dimensional space, Dirac fermions generically
emerge after linearization of the energy dispersion around
the Fermi energy in the clean limit. The effects of weak
static disorder are then elegantly encoded by a description of
quasi-one-dimensional quantum transport in terms of diffusive
processes on noncompact symmetric spaces.94–99 This long-
wavelength description is sufficiently fine to account for
nonperturbative effects such as parity effects in the numbers
of propagating channels in the chS classes AIII, CII, and
BDI.100 A parity effect can also be derived for the symplectic
symmetry class AII in quasi-one dimension.101,102 Although
the latter parity effect is not generic in quasi-one-dimensional
space because of the fermion-doubling obstruction, it is
generic on one-dimensional boundaries of two-dimensional
Z2-topological band insulators.103

Dirac fermions are the exception rather than the rule in band
theory when the dimensionality of space d is larger than one.
Fine-tuning between the lattice and the hopping amplitudes is
needed to select a linear energy dispersion. There is a parallel
to this fact in the context of Anderson localization.

For example, in two-dimensional space, the symmetries
respected by the static disorder do not enforce, on their
own, the presence of WZNW or Z2-topological terms in the
NLσM effective long-wave length description of the physics
of localization.

Ludwig et al.22 (Nersesyan et al.23) have shown that
nonperturbative effects can modify the localization properties
encoded by the two-dimensional NLσM with a WZNW term
in symmetry class AIII when studying the random Dirac
Hamiltonian with Nf = 1 (Nf > 1) flavors. Analogous physics
can appear in symmetry classes DIII and CI in two spatial
dimensions.11,17,104 However, because of the fermion-doubling
obstruction, these conditions cannot be met in purely two-
dimensional lattice models for Anderson localization.

On the other hand, they can always be fulfilled on the two-
dimensional boundaries of three-dimensional topological band
insulators (that are characterized by an integer topological
index).11,18

A similar situation holds for the Z2-topological terms.
The number of Dirac flavors Nf matters crucially to obtain a
Z2-topological term in symmetry class AII, as shown by Ryu
et al. in Ref. 51. In the present paper, we have completed the
derivation of topological terms of two-dimensional NLσM by
constructing theZ2-topological term for a NLσM in symmetry
class CII as a sign ambiguity in the Pfaffian of disordered Ma-
jorana spinors. Our derivation suggests that thisZ2-topological
term cannot arise from two-dimensional local lattice models
of Anderson localization because of the fermion-doubling
obstruction, but requires a three-dimensional topological band
insulator with two-dimensional boundaries.

B. Global phase diagram at the band center

The main results of this paper are summarized in Fig. 4.
They apply to Nf = 2 flavors of random Dirac fermions.

Figure 4 should be compared with Fig. 9 from Ref. 22,
which captures the phase diagram for Nf = 1 flavors of random
Dirac fermions or, more precisely, with its projection onto the
plane gA = 0 in Ref. 22 (�A = 0 in the notation of Ref. 22).
The phase diagram in Fig. 4 is also obtained after projecting
a three-dimensional flow to a two-dimensional subspace of in
coupling constant space.

The three chiral phases AIII, BDI, and CII in Fig. 4 meet
at the origin of the phase diagram. This meeting point realizes
the clean Dirac limit. We showed that analytical continuation
of the disorder at the level of the Dirac fermions allows
one to move between the BDI and CII phases. However, at
the microscopic scale of the two-dimensional lattice model
that realizes the BDI phase, this analytical continuation is
meaningless. This is yet another manifestation of the fermion-
doubling obstruction. A realization as a local lattice model of
the CII phase in Fig. 4 must go through the two-dimensional
boundary of a three-dimensional topological band insulator.

The quadrant BDI in Fig. 4 is fairly well understood if
we assume that the perturbative flows to the nearly critical
dashed line extend all the way to the boundary D. Bulk56 and
boundary71 multifractality and an analytic dependence of the
conductance on the disorder strength gM at the band center
E = 058 are governed in the thermodynamic limit by their
dependence on gM along the nearly critical dashed line.
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The dashed line in region CII of Fig. 4 is a line of nearly
critical points, each of which is captured by a projected
Thirring model. We have argued that the strong coupling
regime of this theory is “dual” to a weakly coupled NLσM
augmented by a Z2 topological term with the target space of
symmetry class CII.

We would like to emphasize that the RG flows in the CII
quadrant of Fig. 4, first away from and then to the nearly critical
plane defined by the dashed line and the out-of-plane ga′ axis,
are perturbative in g′

± (nonperturbative in ga′ ). They are derived
under the assumption that no relevant or marginal interactions
other than the current-current interactions are allowed. The
continuation of these flows to strong coupling is a conjecture.
At strong coupling, it is tempting to ask if these two-parameter
flows might be captured by a NLσM. Evidently, a NLσM
whose target space is a symmetric target space will not do
since it would only be characterized by one running coupling
constant. A NLσM on a homogeneous but not symmetric target
space with two independent coupling constants in addition to
the Gade term would do. (We refer the reader to Ref. 105
for a systematic study of NLσM on Riemannnian manifolds,
of which homogeneous and symmetric spaces are special
examples, as is explained in the context of disordered systems
in Ref. 106.) We propose that this scenario is captured by a
NLσM with the following homogeneous, but not symmetric
target space (n is an integer; see Appendix E)

GL(2n|2n)/[OSp(n|n) × OSp(n|n)]. (5.1)

The situation here is analogous to the NLσM discussed in
Ref. 106 in the context of the random-bond Ising model in
two dimensions. The NLσM on the homogeneous target space
in Eq. (5.1) has two coupling constants [in addition to the
coupling constant of the “Gade” term (“projected out” in our
global phase diagram in Fig. 4), of the kind that we previously
denoted by ga′ in the present paper]. The NLσM on this
homogeneous space interpolates between the two NLσMs on
the symmetric target spaces corresponding to symmetry classes
CII and AII, which are specific limits within the two-parameter
coupling constant space of the NLσM on this homogeneous
space (in a manner analogous to the situation discussed in
Ref. 106). See Appendix E for more details.

C. Weak breaking of the chiral symmetry in the vicinity
of the band center

The effects of a finite Fermi energy EF on the physics
of localization for the quadrants BDI and CII in Fig. 4 are
dramatic in that, in both cases, a finite EF breaks the chiral
symmetry chS.

Turning on a finite Fermi energy EF in the quadrant BDI
in Fig. 4 reduces the symmetry class to AI. All states at finite
EF are then localized.20 The band center is a quantum critical
point separating two insulating phases, one defined by EF < 0
and another one defined by EF > 0, very much as is the case
in the IQHE (see Ref. 20 for a review on plateau transitions in
the IQHE). The global DOS ν(EF) diverges as

ν(EF) ∼ 1

|EF|
exp(−c| ln |EF||2/3), (5.2)

with c a nonuniversal number when EF approaches the band
center.56

(a) (b)

FIG. 7. (a) Global DOS of a two-dimensional disorder-free tight-
binding model with sublattice symmetry and an even number equal
to or larger than two of nonequivalent discrete Fermi points at the
band center. The dashed line is the global DOS of the corresponding
disorder-free Dirac fermions in two dimensions. (b) Effect of weak
disorder for symmetry class AII without the Z2 topological term (the
surface states of a three-dimensional time-reversal-symmetric weak
topological insulator), the symmetry class relevant to the quadrant
CII when perturbed by a finite chemical potential. The band center
is a critical energy at which, according to Eq. (5.3), the global DOS
diverges. This critical energy separates two metallic phases.

Turning on a finite Fermi energy EF in the quadrant CII in
Fig. 4 reduces the symmetry class to AII but without the Z2
topological term. Indeed, the random Dirac Hamiltonian at a
finite chemical potential has now two flavors that are coupled
by the disorder. This corresponds to two Dirac cones in any
underlying microscopic model that are generically coupled
by the disorder. The global DOS ν(EF) is again diverging
according to the law

ν(EF) ∼ 1

|EF|
exp(−c′| ln |EF||2/3), (5.3)

with c′ a nonuniversal number when EF approaches the
band center.56 The state at the band center is critical. (The
robustness to strong disorder of the critical behavior of the band
center in the chiral classes is well documented in quasi-one
and two dimensions.107) However, contrary to the quadrant
BDI in Fig 4, the band center is not any more a quantum
critical point separating two insulating phases. Indeed, the
localized nature as a function of the chemical potential of
these two-dimensional states is that of the surface states of a
three-dimensional time-reversal-symmetric weak topological
insulator. The issue of Anderson localization as a function
of the chemical potential for such surface states was recently
discussed in Refs. 108 and 109. According to the numerical
study in Ref. 109 (corresponding to the case of a mean value
m̄ = 0 of the random mass m in Ref. 109), these surface states
remain extended (metallic) in the presence of disorder even
though the characteristic energy at which the upturn of the
diverging global DOS becomes sizable relative to the clean
DOS shown in Fig. 7(a) is exponentially small for weak
disorder.56
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APPENDIX A: THE SIGN AMBIGUITY OF A PFAFFIAN

In this section, we are going to argue that the dashed line in
the phase diagram of Fig. 4 that belongs to the chiral symplectic
class CII has the particularity that, within the fermionic replica
NLσM representation, there appears a Z2-topological term in
addition to the standard kinetic energy.

To this end, it will be useful to enlarge the dimensionality
of the representation of the Dirac Hamiltonian by a factor of 2
in order to treat the isospin- 1

2 TRS. To avoid ambiguities, we
use the Greek letters for the Pauli matrices acting on the three
relevant two-dimensional subspaces—ρ in flavor subspace,
σ in Lorentz subspace, and τ in the time-reversal subspace
to be introduced below—as subindices to specify the chosen
representations. In this section we use indices x,y,z, instead
of 1,2,3, in the σ and τ subspaces. For example, we denote
the Dirac Hamiltonian (2.12) when Eq. (2.14) holds by

Hρ,σ :=
(

0 Dσ

D†
σ 0

)
ρ

,

(A1a)
Dσ := σx(−i∂x + Ax) + σy(−i∂y + Ay)

+ σz Mz + σ0 M0,

where Aμ = −ia′
μ ∈ iR, Mz = −im′

z ∈ iR, M0 = m′
0 ∈ R,

and with the simultaneous chS

(ρz ⊗ σ0)Hρ,σ (ρz ⊗ σ0) = −Hρ,σ (A1b)

and isospin- 1
2 TRS

(iρ0 ⊗ σy)HT
ρ,σ (−iρ0 ⊗ σy) = Hρ,σ . (A1c)

1. Fermionic functional integral representation
of the retarded Green’s function

The generating function for the retarded Green’s function
is the partition function

Z :=
∫

D [χ̄ ,χ ] exp

(
−

∫
d2 r L

)
,

(A2a)
L := −iχ̄ (iη − H)ρ,σ χ.

Here, we have chosen

χ̄ ≡ (χ̄1 χ̄2)ρ ≡ (χ̄1↑ χ̄1↓ χ̄2↑ χ̄2↓)ρ,σ (A2b)

to be a four-component row spinor with Grassmann-valued
entries. Similarly,

χ ≡
(

χ1

χ2

)
ρ

≡

⎛⎜⎜⎜⎝
χ1↑
χ1↓
χ2↑
χ2↓

⎞⎟⎟⎟⎠
ρ,σ

(A2c)

is a four-component column spinor with Grassmann-valued
entries. All eight Grassmann-valued entries labeled by the
flavor indices 1 and 2 on which the matrices (ρ0,ρx,ρy,ρz)
act and by the Lorentz indices ↑ and ↓ on which the matrices
(σ0,σx,σy,σz ) act are independent. For the retarded Green’s
function, η > 0.

It is useful to make the TRS (A1c) explicit. To this end,
following Ref. 110, we make the manipulation

L = − iχ̄ (iη − H)ρ,σ χ

= + iχT (iη − H)Tρ,σ χ̄T

= − iχT (−iρ0 ⊗ σy)(iη − H)ρ,σ (−iρ0 ⊗ σyχ̄
T )

= − i�̄(iη − H)ρ,τ,σ�, (A3a)

by which we have doubled the number of Grassmann-valued
entries in �̄ and � through the definitions

(iη − H)ρ,τ,σ := (iη − H)ρ,σ ⊗ τ0 (A3b)

and

�̄ := 1√
2

(χ̄↑ χ̄↓ χT
↓ −χT

↑ )τ,σ ,

� := 1√
2

⎛⎜⎜⎜⎝
χ↑
χ↓

−χ̄T
↓

χ̄T
↑

⎞⎟⎟⎟⎠
τ,σ

. (A3c)

Here, the subindex τ denotes the, by now, explicit time-
reversal subspace that is spanned by the unit 2 × 2 matrix τ0
and the three Pauli matrices (τ1,τ2,τ3). Of course, the number
of independent Grassmann-valued entries remains unchanged
in the representation (A3) as the TRS (A1c) is now represented
by the constraint

�̄ = �T (−iρ0 ⊗ τx ⊗ σy). (A4)

On the other hand, the representation of the chS (A1b) is

ρz ⊗ τ0 ⊗ σ0Hρ,τ,σ ρz ⊗ τ0 ⊗ σ0 = −Hρ,τ,σ . (A5)

Instead of Eq. (A4), we seek a representation of the TRS in
terms of eight-component Grassmann-valued spinors obeying
the Majorana constraint

ψ̄ = ψT (−iρ0 ⊗ τ0 ⊗ σy). (A6)

This can be achieved by observing that the “square root” of τx

is given by

τx = −i τ T
z−yτz−y, τz−y := τz − τy√

2
. (A7)

Now, we take advantage of the fact that the kernel (A3b)
commutes with

Tz−y := ρ0 ⊗ τz−y ⊗ σ0, (A8)
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so that

L = − i�̄(iη − H)ρ,τ,σ �

= �T T T
z−y(iρ0 ⊗ τ0 ⊗ σy)(iη − H)ρ,τ,σ Tz−y�

≡ − ψ̄(iη − H)ρ,τ,σ ψ, (A9a)

where

ψ := Tz−y� (A9b)

determines ψ̄ through the Majorana constraint Eq. (A6) that
follows because of the isospin- 1

2 TRS. In view of the Majorana
constraint (A6), the isospin- 1

2 TRS is now equivalent to the
global O(2) invariance under the transformation

ψ̄ → ψ̄
(
ρ0 ⊗ σ0 ⊗ OT

τ

)
, ψ → (ρ0 ⊗ σ0 ⊗ Oτ ) ψ (A10)

for any 2 × 2 orthogonal matrix Oτ acting in the τ subspace.
Finally, it is time to make use of the chS (A1b). By making

the flavor subspace explicit,

L = ψ̄1Dτ,σψ2 + ψ̄2D
†
τ,σψ1 − iη(ψ̄1ψ1 + ψ̄2ψ2), (A11a)

where (a′
μ,m′

z,m
′
0 ∈ R),

Dτ,σ := τ0 ⊗ (−iσμ∂μ + V ),
(A11b)

V := iσμa′
μ − iσzm

′
z + σ0m

′
0,

acts on the two independent four-component Grassmann-
valued spinors ψ1 and ψ2, while the spinors ψ̄1 and ψ̄2 obey
the Majorana condition (�y := τ0 ⊗ σy)

ψ̄1 = ψT
1 (−i�y), ψ̄2 = ψT

2 (−i�y). (A11c)

With the help of the identity

ψ̄2D
†
τ,σψ1 = −ψT

1 D∗
τ,σ ψ̄T

2 = ψ̄1Dτ,σψ2, (A12)

we arrive at

L = 2 ψ̄1Dτ,σψ2 − iη(ψ̄1ψ1 + ψ̄2ψ2). (A13)

This presentation of the Lagrangian reveals that, upon
quantization, ψ̄1 and ψ2 form a canonical pair of fermionic
operators. In other words, because of the chS, the kinetic part
ψ̄1Dτ,σψ2 of the Lagrangian is invariant under any global U(2)
transformation

ψ̄1 → ψ̄1(σ0 ⊗ U †
τ ), ψ2 → (σ0 ⊗ Uτ ) ψ2, (A14)

where Uτ is a 2 × 2 unitary matrix acting in the τ subspace.

2. Replicas and disorder averaging

We now assume that a′
x , a′

y , m′
z, and m′

0 from Eq. (A11) are
all white-noise distributed with the same variance g. In doing
so, we limit ourselves to the nearly critical line of region CII
in Fig. 4.

We replicate the Lagrangian Nr times,

LNr
=

2Nr∑
a=1

[2ψ̄a1(−iσμ∂μ + V )ψa2

− iη(ψ̄a1ψa1 + ψ̄a2ψa2)]. (A15)

This Lagrangian is invariant under any global O(2Nr) rotation
in the τ and replica subspaces. After disorder averaging has

been performed, we arrive at the interacting Lagrangian

LNr
= 2

2Nr∑
a=1

d†
a(−iσμ∂μ)da

+ iη

2Nr∑
a=1

[
d†

aiσy(d†
a)T + dT

a iσy da

]
+ 8g

2Nr∑
a,b=1

(
�Sa · �Sb − 1

4
nanb

)
. (A16a)

Here, since ψ̄1 and ψ2 are canonically conjugate, we have
introduced the following notation for any a = 1, . . . ,2Nr,

d†
a := ψ̄a1, da := ψa2,

(A16b)�Sa := 1
2 d†

a �σ da, na := d†
ada.

It is worth remembering that the replicated “spin” �Sa in the
t-J -like Lagrangian (A16a) originates from the σ subspace and
not the true electronic spin- 1

2 . When η = 0 and in accordance
with the global symmetry (A14), the action is invariant under
any global U(2Nr) rotation,

d†
a → d†

bU
∗
ab, da → Uacdc, U ∗

abUac = δbc, (A17)

while, in accordance with the global symmetry (A10), any
nonzero η breaks this symmetry down to the global O(2Nr)
rotation,

dT
a → dT

b Oab, da → Oacdc, OabOac = δbc, (A18)

where summation over repeated indices is assumed.

3. Hubbard-Stratonovich transformation

It is time to introduce auxiliary (Hubbard-Stratonovich)
fields that decouple the interactions among replicas. A possible
channel for decoupling is singlet superconductivity as it is
favored by the symmetry breaking term η. Hence, for any
a,b = 1, . . . ,2Nr, we introduce the order parameters

O†
ab := −1√

2
d†

aiσy(d†
b)T

= −1√
2

(d†
a↑d

†
b↓ − d

†
a↓d

†
b↑),

Oab := 1√
2

dT
a iσy db

= 1√
2

(da↑db↓ − da↓db↑), (A19)

in terms of which the “exchange term” becomes

�Sa · �Sb − 1
4nanb = −O†

abOab, (A20)

and, in turn, the Lagrangian becomes

LNr
= 2

2Nr∑
a=1

d†
a(−iσμ∂μ)da + i

√
2 η

2Nr∑
a=1

(Oaa − O†
aa)

− 8g

2Nr∑
a,b=1

O†
abOab. (A21)
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The interacting term is then decoupled by the 2Nr × 2Nr
Hubbard-Stratonovich field �ab and its complex conjugate
�∗

ab,

LNr
= 2

2Nr∑
a=1

d†
a(−iσμ∂μ)da + i

√
2 η

2Nr∑
a=1

(Oaa − O†
aa)

+
2Nr∑

a,b=1

(
1

8g
�∗

ba�ba − O†
ab�ba − Oab�

∗
ba

)
. (A22)

No approximation has yet been invoked. As the interacting
Lagrangian (A22) is not readily tractable, we shall restrict the
path integral to slowly varying bosonic degrees of freedom
(Nambu-Goldstone bosons). We first look for a diffusive
saddle point of the Lagrangian (A22). In the diffusive regime,
the auxiliary field �ab (spontaneously) breaks the global
U(2Nr) symmetry, along the symmetry-breaking “direction”
controlled by the symmetry-breaking term η. Thus, the
spatially homogeneous configuration

�0ab = −i|�0|δab (A23)

should be a representative diffusive saddle point, where |�0| ∈
R is determined from the self-consistent equation

ln

[
1 +

(
�

|�0|
)2]

= π

2g
(A24)

and � is an UV cutoff.
This choice of a saddle point is not exhaustive. Generic

saddle points can be constructed by making use of the global
U(2Nr) symmetry (A17) of the kinetic energy:

�ab =
2Nr∑

p,q=1

Uap�0pqUbq = −i|�0|
2Nr∑
p=1

UapUbp, (A25)

where U ∈ U(2Nr). However, not all U ∈ U(2Nr) generate a
new saddle-point configuration. If U ∈ O(2Nr), �ab coincides
with the reference configuration �0ab owing to the global
O(2Nr) symmetry (A18). This means that the set of saddle
points �ab is the coset manifold

G/H = U(2Nr)/O(2Nr), (A26a)

whose elements can be parametrized by

UUT , U ∈ U(2Nr). (A26b)

Note that since UUT is symmetric and unitary, U(2Nr)/O(2Nr)
is a set of symmetric and unitary matrices.

We now include fluctuations around the saddle
points (A25). Since the longitudinal fluctuations (i.e., fluc-
tuations that changes |�0|) are gapped, we freeze them and
only consider the transverse fluctuations

�ab(r) = −i|�0|
2Nr∑
p=1

Uap(r)Ubp(r), (A27)

with U (r) ∈ U(2Nr). With the help of the Nambu representa-
tion, the effective Lagrangian becomes

Leff =
2Nr∑

a,b=1

γ̄aDab[�]γb, (A28a)

where

γ̄a = (d† dT (−iσy))a, γa =
(

d

iσy(d†)T

)
a

, (A28b)

are related by the Majorana condition

γ̄a = (−iσy ⊗ iτyγa)T , (A28c)

with τy acting in the Nambu space, and the kernel is

Dab[�] =
(−iδabσμ∂μ �ba(r)

�∗
ba(r) +iδabσμ∂μ

)
. (A28d)

(We have absorbed i
√

2η in a rescaling of �.) Because of
Eq. (A27) �ab = �ba and thus Dab[�] is Hermitian. Observe
that the eigenvalues of the kernel (A28d) are real-valued
and the nonvanishing ones come in pairs of opposite sign.
Indeed, we could have equally well presented the effective
Lagrangian (A28) as

Leff = (d† dT )

(
K iσy�(r)

−iσy�
†(r) −KT

)(
d

(d†)T

)
, (A29)

where the kinetic energy K was defined in Eq. (2.1) and we
use a matrix convention to make explicit the BdG particle-
hole symmetry responsible for the aforementioned pairing of
eigenvalues.

The effective field theory Seff[�] describing the dynamics
of the slowly varying bosonic field �ab follows from integrat-
ing out the fermionic fields d† and d in the partition function,

e−Seff [�] ≡
∫

D[d†,d] exp

(
−

∫
d2 r Leff

)
= (±)

√
Det D[�]

≡ Pf D[�]. (A30)

Here, the Pfaffian Pf D[�] implements the isospin- 1
2 TRS

through the Majorana condition (A28c) [see also Eq. (A11c)].
A gradient expansion of the exponentiated Pfaffian gives the
standard kinetic energy of the NLσM on the target space
U(2Nr)/O(2Nr). However, since the second homotopy group
of G/H = U(2Nr)/O(2Nr) is nontrivial,

π2[SU(M)/O(M)] = Z2, for M > 2, (A31)

the NLσM is allowed to have a topological term of the Z2
type. In other words, Eq. (A31) tells us that the space of all
field configurations is divided into two sectors that are not
smoothly connected. Consequently, these two sectors can be
weighted differently in the effective partition function. This
possibility is encoded in the ambiguity in defining the sign of
the Pfaffian (A30), a global property of the target manifold
G/H = U(2Nr)/O(2Nr). In the following, we use the same
approach as in Ref. 51 to show that the ambiguity in defining
the sign of the Pfaffian can be interpreted as the presence of a
Z2-topological term.

4. Z2 configurations of the � field

In this section, we construct representative �-field config-
urations that belong to the two complementary Z2-topological
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sectors as defined by the second homotopy group (A31). To
this end, we introduce the generator

λ2 :=

⎛⎜⎝0 −i

i 0

02Nr −2

⎞⎟⎠ ∈ o(2Nr) (A32)

of the symmetry-broken group U(2Nr) that leaves the saddle
points (A25) invariant. We also define the generators λ1 and
λ3 through

λ1 :=
⎛⎝0 1

1 0
02Nr −2

⎞⎠ , λ3 :=

⎛⎜⎝1 0

0 −1

02Nr −2

⎞⎟⎠ .

(A33)

Here, 02Nr −2 is the (Nr − 2) × (Nr − 2) matrix with 0 in
all entries. The three matrices λ1, λ2, and λ3 generate an
SU(2) algebra. Unlike λ2, neither λ1 nor λ3 leave the saddle-
points (A25) invariant. Hence, neither λ1 nor λ3 belong to the
unbroken symmetry group H = O(2Nr).

Let S2 denote the two-sphere and choose the polar −π/2 �
θ � +π/2 and azimuthal 0 � φ < 2π angles as spherical
coordinates of S2. Following Weinberg et al. in Ref. 111 we
define on S2 the unitary matrices

Ul (θ,φ) := eilλ2φ/2 eiλ3θ/2 e−ilλ2φ/2 ∈ U(2Nr) (A34)

that we label by the integer l ∈ Z. Finally, we define the family

�l (θ,φ) := − i|�0|Ul U
T
l

= − i|�0|
(

Rl (θ,φ) 0

0 I2Nr −2

)
(A35a)

in U(2Nr)/O(2Nr), where

Rl (θ,φ) =
(

cos θ + i sin θ cos lφ −i sin θ sin lφ

−i sin θ sin lφ cos θ − i sin θ cos lφ

)
(A35b)

is labeled by the integer l ∈ Z but is independent of the replica
number Nr.

TheZ2 configurations of the � field on the two-dimensional
torus T 2 with the coordinates 0 � x,y � L (L is serving as
an infrared cutoff) can be obtained from the parametrization
of the unit sphere S2 in terms of the L-periodic unit vector

n(x,y) := r(x,y)

|r(x,y)| , (A36a)

itself given by the L-periodic vector

r(x,y) :=

⎛⎜⎝ − sin(2πy/L)

− sin(2πx/L)

cos(2πx/L) + cos(2πy/L) − 1

⎞⎟⎠ . (A36b)

For example, the L-periodic �l=1(x,y) is obtained from
Eq. (A35) by replacing Rl=1(θ,φ) with

Rl=1(x,y) =
(

nz + inx −iny

−iny nz − inx

)
. (A37)
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FIG. 8. The energy eigenvalue spectrum in the vicinity of the
band center for the kernel D[�(t)] from Eqs. (A28d) and (A39), is
computed numerically as a function of the parameter 0 � t � 1 for
|�0|/� = 1. The field �(t) interpolates between �i when t = 0 and
�f when t = 1. Without loss of generality, the replica number Nr = 1
was chosen.

5. Spectral flow

We are going to argue numerically that

sgn Pf(D[�l ]) = −sgn Pf(D[�l+1]), l ∈ Z, (A38)

by looking at the spectral flow of the kernel

�(t) := (1 − t)�i + t�f (A39)

as a function of 0 � t � 1. Here, the initial, �i , and final, �f ,
configurations belong to G/H = U(2Nr)/O(2Nr), while �(t)
is not a member of G/H = U(2Nr)/O(2Nr) for 0 < t < 1.
According to Eq. (A29), the spectrum λι(t) of D[�(t)]
is symmetric about the band center at the energy zero.
Configurations �i and �f have Pfaffians of opposite signs
whenever an odd number of level crossings occur at the band
center (“spectral flow”) during the t evolution of the kernel
D[�(t)]. This is accompanied by the closing of the spectral
gap of D[�(t)] by an odd number of pairs (−λι(t),+λι(t))
as t interpolates between 0 and 1. The spectral t evolution
is obtained numerically using the regularization of the kernel
D[�(t)] by choosing the family on the torus T 2. In this way, the
index ι takes discrete values. In Fig. 8, we show the evolution
of the eigenvalues for �(t) interpolating between �l=0 and
�l=1. Observe that in �l the part responsible for the winding
configuration Rl(θ,φ) is entirely localized in the sector of the
first replica. Thus, when computing the spectral flow, we can
focus on this sector alone. Since level crossing at the band
center takes place for a single pair of levels, we conclude
that Pf(D[�l=0]) and Pf(D[�l=1]) differ by their sign. This
supports numerically Eq. (A38).

6. Summary

In summary, after integration over the Majorana spinors
along the nearly critical line of region CII in Fig. 4, the effective
action for the Nambu-Goldstone field �, a symmetric and
unitary matrix, is given by

Z
topolo
NLσM =

∫
D[�] (−1)n[�] e−S[�], (A40a)
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where S[�] is the (fermionic replica version of the) action for
the NLσM on G/H = U(2Nr)/O(2Nr); that is,87

S[�] = 1

tM′

∫
d2 r tr[(∂μ�†)(∂μ�)]

+ 1

ta′

∫
d2 r tr(�†∂μ�)tr(�∂μ�†), (A40b)

while

n[�] = 0,1, (A40c)

the Z2-topological quantum number of �, reflects the ambi-
guity in defining globally the sign of the Pfaffian of Majorana
spinors. Because of the block structure (A35b), the topological
quantum number n[�] = 0,1 is expected to survive the replica
limit Nr → 0.

APPENDIX B: PATTERNS OF SYMMETRY BREAKING
AND SUPERMANIFOLDS

There are ten target spaces G/H for the NLσMs
of relevance to the ten symmetry classes of Anderson
localization.12–14 They encode 10 distinct patterns of symmetry
breaking. These patterns have been exhaustively classified
within a SUSY approach by Zirnbauer in Ref. 12. Each target
superspace G/H is a Riemannian symmetric supermanifold
that can be parametrized in its bosonic sector by the Rieman-
nian symmetric manifold

MB = MBB × MFF . (B1)

Here, MB is the direct product between a noncompact Rieman-
nian symmetric manifold MBB originating from the boson-
boson sector of the Riemannian symmetric supermanifold and
a compact Riemannian symmetric manifold MFF originating
from the fermion-fermion sector of the Riemannian symmetric
supermanifold. The target superspaces G/H and Riemannian
symmetric manifolds MB = MBB × MFF relevant to this
paper are

(i) G/H = GL(n|n) × GL(n|n)/GL(n|n) = GL(n|n) with
the Riemannian symmetric manifolds,

MBB = GL(n,C)/U(n),
(B2)

MFF = U(n),

for the chS class AIII;
(ii) G/H = GL(2n|2n)/OSp(2n|2n) with the Riemannian

symmetric manifolds,

MBB = GL(2n,R)/O(2n),
(B3)

MFF = U(2n)/Sp(2n),

for the chS class BDI;
(iii) G/H = GL(2n|2n)/OSp(2n|2n) with the Riemannian

symmetric manifolds,

MBB = U∗(2n)/Sp(2n),
(B4)

MFF = U(2n)/O(2n),

for the chS class CII;
(iv) G/H = OSp(2n|2n)/GL(n|n) with the Riemannian

symmetric manifolds,

MBB = Sp(4n,R)/U(n),
(B5)

MFF = O(2n)/U(n),

for the BdG symmetry class D;
(v) G/H = OSp(4n|4n)/OSp(2n|2n) × OSp(2n|2n) with

the Riemannian symmetric manifolds,

MBB = Sp(2n,2n)/Sp(2n) × Sp(2n),
(B6)

MFF = SO(4n)/SO(2n) × SO(2n),

for the symplectic symmetry class AII.
The compatibility of these target superspaces with the

addition of a topological term in the corresponding NLσM
is solely determined by the compact Riemannian symmetric
manifold MFF : A topological term requires a nontrivial second
homotopy group of MFF (e.g., CII and AII). In this context,
observe that the Riemannian symmetric supermanifolds for
symmetry classes BDI and CII merely differ by the exchange
of the boson-boson and fermion-fermion stabilizers O(2n)
and Sp(2n) [in that regard, it is convenient to view U∗(2n)
as a noncompact real subgroup of GL(2n,C)]. This small
difference is of great consequence since the NLσM for the
symmetric class BDI cannot be augmented by a topological
term.

For simplicity, we consider symmetry class CII with n = 1.
According to Eq. (B4), the target superspace is

GL(2|2)/OSp(2|2) ≈ GL(2|2)/SL(1|2), (B7)

whereby we used the isomorphism OSp(2|2) ≈ SL(1|2). The
projected CII target superspace obtained by quotienting out
the two diagonal generators of GL(2|2) is

PSL(2|2)/OSp(2|2) ≈ PSL(2|2)/SL(1|2). (B8a)

One must carry this projection on the noncompact and compact
Riemannian symmetric manifolds (B4). This is done by
quotienting out their R+ and U(1) factors, respectively. Hence,
the projected boson-boson Riemannian symmetric manifold is

SU∗(2)/Sp(2) ≈ SU∗(2)/SU(2), (B8b)

while the projected fermion-fermion Riemannian symmetric
manifold is

SU(2)/O(2) ∼ S2. (B8c)

APPENDIX C: THE SUPERGROUP PSL(n|n)

Let n ∈ N be an integer and denote with smat(n|n) the set
of all real (n|n) supermatrices M , that is, matrices of the form

M :=
(

MBB MBF

MFB MFF

)
, (C1)

where MBB and MFF are n × n real-valued matrices while
MBF and MFB are n × n Grassmann-valued matrices. We
denote with I and J the (n|n) diagonal supermatrices

I := diag(1 · · · 1 1 · · · 1),
(C2)

J := diag(1 · · · 1 − 1 · · · −1),

respectively. For any element M ∈ smat(n|n), the supertrace
is defined by

str M := tr MBB − tr MFF . (C3)
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Observe that

tr MBB = 1
2 (str MJ + str MI ) ,

(C4)
tr MBF = 1

2 (str MJ − str MI ) ;

that is, demanding that tr MBB and tr MBF both vanish
is equivalent to demanding that str MJ and str MI both
vanish. For any element M ∈ smat(n|n) with det M−1

FF �= 0
or det M−1

BB �= 0 the superdeterminant is defined by

sdet M := det
(
MBB − MBF M−1

FF MFB

)
det MFF

, (C5)

or

sdet M := det
(
MFF − MFBM−1

BBMBF

)
det M−1

BB

, (C6)

respectively.
An obvious generalization of smat(n|n) is achieved through

the complexification

M → M + iM ′, M,M ′ ∈ smat(n|n). (C7)

Another one follows from the substitution

smat(n|n) → smat(m|n), (C8)

where the supermatrices from the set smat(m|n) are of the
form (C1) with the entries of the m × m matrix MBB and
the n × n matrix MFF commuting numbers while the entries
of the m × n matrix MBF and the n × m matrix MFB are
anticommuting numbers.

The following definitions apply to both real and complex
supermatrices. The supergroup PSL(n|n) is constructed from
the supergroup GL(n|n) ⊂ smat(n|n) as follows. The super-
group GL(n|n) consists of all (n|n) supermatrices for which
both MBB and MFF are nonsingular (i.e., have nonvanishing
determinants) and with the matrix multiplication as the group
operation. The supergroup GL(n|n) is not semisimple. It
possesses the matrix subsupergroup SL(n|n) that follows from
restricting the superdeterminants in GL(n|n) to one. The super-
group SL(n|n) is also not semisimple, for it contains the (n|n)
unit supermatrix I that commutes with all (n|n) supermatrices.
All elements of SL(n|n) are generated through exponentiation
of elements of the Lie superalgebra sl(n|n), whereby any
element of sl(n|n) is a (n|n) supermatrix of the form

X :=
(

XBB XBF

XFB XFF

)
, (C9)

with XBB and XFF n × n real-valued matrices while MBF

and MFB are n × n Grassmann-valued matrices with the
vanishing supertrace

str X = 0. (C10)

The supergroup PSL(n|n) is defined to be the factor group
SL(n|n)/R+ (R+ the set of positive real numbers) by which
any two elements in sl(n|n) that differ by a multiple of the
unit element I generate upon exponentiation the very same
element of PSL(n|n). The supergroup PSL(n|n) is semisimple;
an element of PSL(n|n) cannot be written as a supermatrix.

APPENDIX D: THE LIE GROUP U∗(2)

Let n ∈ N. The Lie group U∗(2n) is the set of matrices in
GL(2n,C) that commutes with the linear transformation

ψ : C2n → C2n,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1

...

zn

zn+1

...

z2n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z∗
n+1

...

z∗
2n

−z∗
1

...

−z∗
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (D1)

where complex conjugation is denoted by ∗. It follows that the
Lie algebra u∗(2n) is the set of matrices in GL(2n,C) of the
form (

Z1 Z2

−Z∗
2 Z∗

1

)
, (D2)

where Z1 and Z2 are any complex-valued n × n matrices.
We now specialize to the Lie group U∗(2) with the Lie

algebra u∗(2). Let X ∈ u∗(2). There exist the complex numbers
z1 and z2 such that

X =
(

z1 z2

−z∗
2 z∗

1

)
= Re z1 σ0 + iIm z2 σ1 + iRe z2 σ2 + iIm z1 σ3. (D3)

Here, we have introduced the unit 2 × 2 matrix σ0 and the three
Pauli matrices (σ1,σ2,σ3). Evidently, U∗(2) and GL(1,R) ×
SU(2) share the same Lie algebra,

u∗(2) ≈ R ⊕ su(2). (D4)

Locally, one thus has the isomorphism

U∗(2) ≈ R+ ⊗ SU(2), (D5)

where R+ is the set of positive real numbers.

APPENDIX E: NLσM ON HOMOGENEOUS TARGET
SPACES VERSUS NLσM ON SYMMETRIC

TARGET SPACES

In this Appendix we briefly summarize a number of facts
about NLσM on target spaces which are homogeneous spaces
G/H . (For more details we refer the reader, for example, to
the Appendix of 106, and references therein.)

The essential properties of a NLσM whose target space is
of the form of a coset space G/H , where G is a Lie group and
H a Lie-subgroup, are as follows.

If H is a maximal subgroup of G, then the NLσM has
precisely one coupling constant (the target space G/H is then
what is known as a “symmetric space”). If, on the other hand,
there exists precisely one intervening subgroup H ′, that is,

H ⊂ H ′ ⊂ G, (E1)

then the NLσM with target space G/H turns out to have
precisely two independent coupling constants. If, in the latter
case, we were to run the RG into the infrared (i.e., to large
length scales), then one of the two coupling constants will
disappear. In this case one ends up, asymptotically at long
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scales, with a NLσM with one coupling constant, whose target
space will be either G/H ′ or H ′/H (both are, by assumption,
symmetric spaces in the sense of maximal subgroups). The
number of coupling constants for a NLσM on a homogeneous
space with more intervening subgroups increases accordingly.

The relevance of the symmetric space NLσM for the uni-
versal physics appearing at large length scales is thus simply a
consequence of the RG. If we begin with a NLσM on a general
homogeneous space, the RG will select, asymptotically at long
length scales, a target space which is a symmetric space G/H ,
where H is a maximal subgroup of G. So, all NLσM on coset
spaces become NLσM on symmetric spaces, asymptotically at
long length scales. It is for this reason that they are the “stable”
large-scale limits, and appear naturally, without fine tuning.

The appearance of a NLσM (on a, in general, possibly
homogeneous and not necessarily symmetric space) arises in
a physical context from the general principle of symmetry
breaking. The group G is the global symmetry group of
the problem. The subgroup H (not necessarily maximal)
characterizes the symmetries which are preserved when the
global symmetry G is broken.

In the situation discussed in this article, the global symmetry
group is

G = GL(2m|2m), m = 1,2, . . . . (E2)

When a global DOS is generated in the Dirac fermion for-
mulation of the theory, the resulting expectation value breaks
the symmetry G but preserves the symmetry H ⊂ G. It follows
from Ref. 55 that on the “dotted line” in our global phase
diagram in Fig. 4 this subgroup is H ′ = OSp(2m|2m). The
manifold G/H ′ = GL(2m|2m)/OSp(2m|2m) is the symmet-
ric space corresponding to symmetry class CII. On the bound-
ary of the CII region the symmetry class is AII, corresponding
to a target manifold H ′/H = OSp(2m|2m)/[OSp(m|m) ×
OSp(m|m)]. Thus, the entire lower half of our global phase
diagram in Fig. 4 can be described by the NLσM on the
homogeneous space

G/H = GL(2m|2m)/[OSp(m|m) × OSp(m|m)], (E3)

which has two coupling constants (besides the coupling
of the Gade term). This is analogous to the discussion
in Ref. 106.
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The stability of the vertical dotted line in region BDI of Fig. 4 fol-
lows from the analytical continuation gA → −g

a′ , gV → −gIm m,
and gM → +gRe m of these flows, as pointed out in Ref. 54.
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Similarly, the stability of the vertical dotted line in region CII
of Fig. 4 follows from the analytical continuation gA → −g

a′ ,
gV → +gIm m′ , and gM → −gRe m′ of these flows.

83Observe that g
a′ > 0 does not flow along the BDI boundaries g2

+ =
g2

− or the CII boundaries g′2
+ = g′2

− . The projected slope in region
BDI is

βgIm m

βgRe m

= −2gIm m + g
a′

2gRe m + g
a′

in Fig. 4(b). The projected slope in region CII is

βg
Im m′

βg
Re m′

= −2gIm m′ − g
a′

2gRe m′ − g
a′

in Fig. 4(b). Given these finite slopes of the flows out of the
boundaries of regions BDI and CII, the reader might conclude
that it is possible to flow from the region AIII to the regions BDI or
CII. This is not so, however, as any pair of couplings gRe m > 0 and
gIm m < 0 (gRe m′ < 0 and gIm m′ > 0) or gRe m < 0 and gIm m > 0
(gRe m′ > 0 and gIm m′ < 0) in region AIII always generates a flow
to strong coupling of the variance ga associated to the vector gauge
potentials that break TRS [see Eq. (4.84) from Ref. 55]. These flows
thus escape the regions BDI and CII for which ga = 0.
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