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Nonequilibrium coherent potential approximation for electron transport
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Accounting for the effects of disorder on the transport properties of electronic devices is indispensable for
comparison with experiment. However, theoretical treatment of disorder presents essential difficulty because the
disorder breaks the periodicity of the system. The coherent potential approximation (CPA) solves this problem
by replacing the disordered medium with a periodic effective medium. However, calculating the electron current
within CPA requires summing scattering diagrams to infinite order called vertex corrections. In this work we
reformulate CPA for nonequilibrium electron transport. This approach, based on the nonequilibrium Green’s
function formalism, greatly simplifies the treatment of disordered transport by eliminating the vertex corrections.
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I. INTRODUCTION

Disorder is present in electronic devices either by design
(e.g., doping) or as an inevitable side effect of the experimental
process. Therefore, for theoretical models to quantitatively
compare with experiments, it is necessary that the disorder be
included in the models. Unfortunately, in the present state of
theory, accounting for the effects of disorder on the transport
properties of devices is too cumbersome, and it is rarely done
in practice. The vast majority of theoretical reports involve
ideal systems. The reason is that calculating the electronic
structure and properties relies essentially on the periodicity
of the system. Thus, there is a principal difficulty in treating
random disorder because it breaks this periodicity.

There are many possible types of disorder but the most
commonly considered are (i) substitutional disorder when
impurity atoms substitute randomly for host atoms in the
lattice and (ii) magnetic disorder when the magnetic moment
directions deviate randomly from the spin quantization axis.
The coherent potential approximation (CPA) is a powerful tool
to threat these types of disorder.1 It is based on the the Green’s
function (GF) formalism, which is especially suitable for that
purpose because a perturbative expansion can be developed
for the GF.2 CPA replaces the actual environment seen by an
electron with an effective periodic medium which is charac-
terized by a complex self-energy. This self-energy or energy-
dependent coherent potential is obtained self-consistently from
the requirement that the scattering vanishes on average in the
effective medium. Originally CPA was introduced by Soven in
19673 and independently by Taylor.4 Velicky et al. formulated
the single-site approximation to the CPA.5

The CPA technique for electron transport was developed
by Velicky in 1969 for the purpose of calculating the
conductivity in disordered systems using the Kubo formula.6

The steady-state electron current of a noninteracting system
can be expressed through the product of the retarded and
advanced GFs.7,8 In the presence of disorder the GFs cannot
be decoupled and the current expression contains diagrams to
infinite order. The first term, called the “bubble” represents
the specular conductance. The rest of the terms, known as
the vertex corrections (VCs), give all the contributions to
the diffusive conductance. Comparing CPA with brute force

supercell calculations shows that taking into account the
diffusive contributions is essential to describe the conduc-
tance correctly.9–11 Therefore, VCs are extremely important;
however, calculating them can present a substantial technical
difficulty.12 Recently, it was shown that the on-site vertex
function which appears within the single-site CPA formalism
plays the role of the local chemical potential within Büttiker’s
voltage-probe approach.13

CPA has been implemented within the framework of several
electronic structure methods, such as Korringa-Kohn-Rostoker
(KKR)14,15 and linear muffin-tin orbitals (LMTO).16,17 Re-
cently Guo et al. showed that calculating steady-state current
using the charge density from first-principles calculations can
lead to large errors.18 They introduces a “nonequilibrium
vertex correction” (NVC) to account for the nonequilibrium
charge distribution. However, this NVC is a correction to the
electronic structure, not the current, which is calculated using
the standard CPA plus VCs methodology.

In this work we propose a nonequilibrium formulation of
CPA (NE-CPA) for electron transport through disordered sys-
tems. The method is based on the nonequilibrium GF (NEGF)
formalism.19 Within this formalism there are two independent
GFs, the retarded G and the Keldysh F . The proposed method
relies on the fact that the nonequilibrium current operator
depends linearly on the Keldysh GF. Therefore, in the presence
of disorder the current is directly expressed through the NEGF
of the effective medium. Within NE-CPA the expression for
the current contains only one term which is equivalent to CPA
plus VCs to infinite order. In addition the Keldysh GF already
contains the nonequilibrium charge distribution information.
Thus NE-CPA provides a much simpler, precise, and efficient
method to calculate transport in disordered systems.

II. METHODOLOGY

We assume that the wave function can be expanded in
terms of a linear combination of orbitals localized around
each atomic site (LCAO). In this basis the Hamiltonian of
the system can be written as

H =
∑

nm,αβ,σ

Hσ
nm,αβc†nασ cmβσ , (1)
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FIG. 1. (Color online) Schematic view of the two-probe setup
consisting of two electrodes and a scattering region. In this case, the
scattering region is a tunnel barrier with a disordered layer in the
middle.

where n,m are site, α,β orbital, and σ spin indices. The Hσ
nm

is the Hamiltonian matrix element between two sites n and
m for spin σ . The current is normally calculated in the two-
probe setup, schematically shown in Fig. 1. The current flows
between the left (L) and right (R) electrodes through a central
scattering region (C).

The continuity equation requires that the current should
be the same anywhere in the system. Therefore, the current
operator is obtained from the continuity condition to be

Î = e

ih̄

∑
n,αβ,σ

(Hln,αβ,σ c
†
lασ cnβσ − Hnl,αβ,σ c†nασ clβσ ). (2)

We adopt the principal layer (PL) convention according to
which the PL is the smallest unit cell in the z direction
such that there is hopping only between nearest-neighbor PLs.
Therefore, the site position is r = R + τ where R = (ρ,z) is a
lattice vector consisting of the two-dimensional vector ρ in the
plane and the PL number z and τ is the atomic positions within
the PL. Thus, the site index can be decomposed to n = (ρ,z,τ ).
Then the expectation value of the operator gives the physical
current through PL i to be7

I = e

h̄

∑
ρρ ′

Tr[Hi+1,i(ρ
′,ρ)Fi,i+1(ρ,ρ ′; t,t+)

−Hi,i+1(ρ ′,ρ)Fi+1,i(ρ,ρ ′; t,t+)], (3)

where both H and F are matrices with respect to the indices
(τ,α,σ ) and matrix multiplication is assumed. The F = G< +
G> is the Keldysh NEGF.19

The expression above is general and applies to any system
out of equilibrium. In the steady-state situation, we can make
a Fourier transform from time to energy space

I = e

h̄

∫
dE Tr[Hi+1,iFi,i+1(E) − Hi,i+1Fi+1,i(E)], (4)

where now the trace includes a sum over all repeating indices
including the in-plane vectors. This formula has the simple
interpretation as the net flow of charge through a surface
between PL i and i + 1. Due to the continuity equation, the
PL i can be any PL, either in the electrodes or in the scattering
region. Customarily it is chosen to be at the interface.

The Hamiltonian of the two-probe system without disorder
can be decomposed as

H = HC + HL + HR + (HCL + HCR + H.c.), (5)

where HC , HL, and HR are the Hamiltonian matrix elements
of the isolated scattering region and left and right electrodes;
HCR(CL) is the coupling between the scattering region and the

electrodes. We can derive expressions for the retarded and the
Keldysh GF under the assumption that each electrode of the
system is maintained at a local equilibrium with two different
chemical potentials μL and μR . As input we have the GF
of the disconnected parts, gCC and gLL(RR). The GF of the
isolated scattering region is gCC = (E − HC)−1. The surface
GFs for the semi-infinite electrodes are obtained using one
of the available standard methods.20,21 Using those we can
construct the “connected” retarded GF of all regions by treating
the overlap between them as perturbation V = HCL + HCR +
H.c. Projecting the Dyson equation2 on the central region we
get

G0
CC = gCC + gCCHCLG0

LC + gCCHCRG0
RC, (6)

where G0
CC is the retarded GF without disorder of the scattering

region coupled to the leads and G0
L(R)C is the retarded GF

between the left (right) lead and the scattering region. Then
we project the Dyson equation at the interface to obtain

G0
L(R)C = gLL(RR)HL(R)CG0

CC. (7)

Then, combining these two equations yields

G0
CC = gCC + gCC�G0

CC, (8)

where � = �L + �R is the self-energy due to connection of
the scattering region to the electrodes

�L(R) = H
†
L(R)CgLL(RR)HL(R)C. (9)

Note that the self-energy matrix elements are in the scattering
region. Here we use the zero superscript to signify the
quantities before disorder is introduced. Thus, the expression
for the connected GF becomes

G0 = (I − g�)−1g = (E − HC − �L − �R)−1. (10)

Next we write down the quantum kinetic equation19 for the
“connected” Keldysh GF projected on the scattering region
without disorder

F 0
CC = f 0

CC + f 0
CCHCLG

0†
LC + gCCHCLF 0

LC

+ f 0
CCHCRG

0†
RC + gCCHCRF 0

RC, (11)

where f 0
CC is the Keldysh GF in the isolated scattering region

and should not be confused with the Fermi-Dirac distribution
function f . Caroli et al. assumed that the retarded and
advanced GFs of the isolated barrier are real yielding that the
Keldysh GF of the isolated barrier is zero.7 It can be shown
in general that even if there are states in the scattering region
and the Keldysh GF of the isolated scattering region is nonzero,
the steady-state current does not depend on the Keldysh GF of
the isolated scattering region and the terms proportional to f 0

can be dropped out:22

F 0
CC = gCCHCLF 0

LC + gCCHCRF 0
RC. (12)

Next we project the quantum kinetic equation on the interface:

F 0
L(R)C = f 0

LL(RR)HL(R)CG
0†
CC + gLL(RR)HL(R)CF 0

CC, (13)

where f 0
LL(RR) = (2fL(R) − 1)(g†

LL(RR) − gLL(RR)) is the
Keldysh GF of the isolated left (right) lead which are assumed
in equilibrium. Combining these two equations yields

F 0
CC = iG0

CC[(2fL − 1)�L + (2fR − 1)�R]G0†
CC, (14)
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where �L(R) is proportional to the imaginary part of the self-
energy �L(R)

�L(R) = i(�L(R) − �
†
L(R)) (15)

and has the meaning of the lifetime of the states in the central
region (finite due to the connection to the electrodes) or in
other words it is the escape rate to the leads. Furthermore,
substituting this in the expression for the current Eq. (4), we
obtain that under steady-state conditions the current can be
expressed entirely through the retarded GF

I = e

h

∫
dE(fL − fR)Tr[�L(E)GLR(E)�R(E)G†

RL(E)],

(16)

where the integrand T = Tr[�LG0
LR�RG

0†
RL] is the transmis-

sion probability. This formula is originally due to Caroli et al.,7

who derived it in the absence of disorder. Later Meir and
Wingreen showed that it is valid for any noninteracting electron
system in an arbitrary external potential, including disorder.8

Our objective here is to calculate the current through a
disordered medium. For any particular disorder configuration
we can obtain the full G and F and calculate the current
via Eqs. (4) or (16) which will give identical results. Since
for any particular configuration the two expressions give the
same result, the configurational average over all disorder
configurations must be the same,

〈I 〉 ∼
∫

dE
∑

j

Tr[Hi+1,j ;i,j 〈Fi,j ;i+1,j 〉−Hi,j ;i+1,j 〈Fi+1,j ;i,j 〉]

=
∫

dE(fL − fR)Tr[〈�LGLR�RG
†
RL〉], (17)

which means that we could either account for disorder through
the configuration average of the Keldysh GF or through taking
the product and subsequent configurational average of the
retarded and advanced GFs. Both methods will give identical
results regardless of how disorder is treated.

A. CPA: Standard formulation

First we will calculate the current using the standard CPA
technique for G and Eq. (16) for the current. We consider
the classical nonmagnetic binary alloy case when two atomic
species A and B randomly occupy each lattice site with
probabilities p and 1 − p respectively. The method is easily
generalizable for other types of disorder. The disordered
medium can be described by H = H ′

0 + V , where H ′
0 =

H0 + �L + �R is the periodic part of the Hamiltonian and
V is the deviation from periodicity. Typically the periodic
part is given by the average Hamiltonian H0 = 〈H 〉 which is
the spirit of the virtual crystal approximation (VCA).2 If we
consider only on-site disorder

∑
n Vnc

†
ncn, the retarded GF of

the disordered medium is given by the Dyson equation

Gnm = G0
nm +

∑
l

G0
nlVlGlm. (18)

The essence of the CPA is to replace the disordered medium
with a periodic effective medium described by a yet unknown
coherent potential H̄ = H ′

0 + �, where � is on-site. The
coherent potential � is a complex energy-dependent quantity

which physically can be viewed as the self-energy due to
disorder. Then the Dyson equation can be written through
the GF of the effective medium Ḡ = (E − H̄ )−1 as

Gnm = Ḡnm +
∑

l

Ḡnl(Vl − �)Glm, (19)

where Ḡnm = G0
nm + ∑

l G
0
nl�Ḡlm. Expanding the equation

into infinite series we obtain2

Gnm = Ḡnm +
∑

l

Ḡnl tlḠlm +
∑
l,l′

ḠnltlḠll′ tl′Ḡl′m + · · · ,

(20)

where tl is the single-site scattering matrix

tl = (Vl − �)[1 − Ḡll(Vl − �)]−1, (21)

and it is understood that in the expansion consecutive t’s are
on the different sites. We can define the full retarded scattering
matrix

Tll′ = tlδll′ + tlḠll′ tl′ +
∑

k

tlḠlktkḠkl′ tl′ + · · · , (22)

which encapsulates the information for all scattering events.
With the help of the full t matrix we can rewrite Eq. (20) only
as a function of the GF of the effective medium

Gnm = Ḡnm +
∑
ll′

ḠnlTll′Ḡl′m. (23)

In order to obtain the unknown coherent potential � we
impose the condition that the scattering vanishes on average in
the effective medium 〈T 〉 = 0. Satisfying this condition means
that the average GF coincides with that of the effective medium
〈G〉 = Ḡ. Practically it is difficult to satisfy this condition for
the full t matrix because it would mean setting 〈tl1 tl2 ..tlm〉 =
0 to arbitrary order. Within the single-site approximation to
CPA, correlations of electron scattering between different sites
are neglected which means that T = T (〈t〉) only. Thus, the
requirement that the single-site t matrix vanishes on average,

〈tl〉 = ptAl + (1 − p)tBl = 0, (24)

guarantees that 〈T 〉 = 0. In effect the single-site approxi-
mation means that scattering from a single site is included
exactly but scattering from two or more sites is neglected. In
diagrammatic terms this means that all crossing diagrams in
the expansion for 〈T 〉 are ignored and the only contribution
comes from the ladder diagrams.2,23

The procedure for evaluating the coherent potential is as
follows: We work in the two-probe setup in which the current
flows along the z axis and system is periodic in the xy plane
perpendicular to the current direction. Therefore, we use the
mixed (k‖,z) representation and perform a Fourier transform in
the plane. In this representation the GF of the effective medium
is

Ḡ(k‖) = [I − G0(k‖)�]−1G0(k‖), (25)

where the coherent potential is independent of k‖ (however, it
is layer dependent). Then we apply the requirement Eq. (24)
that the average single-site t matrix is equal to zero for any
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layer l in the scattering region

0 = ptAl + (1 − p)tBl

= p
(
V A

l − �l

)[
I − Ḡll

(
V A

l − �l

)]−1

+ (1 − p)
(
V B

l − �l

)[
I − Ḡll

(
V B

l − �l

)]−1
, (26)

where Ḡll = 1
VBZ

∫
dk‖Ḡll(k‖) is the inverse Fourier transform

of the retarded GF on site l. Equations (25) and (26)
are a nonlinear system of equations for Ḡ and �. We
solve this system for all disordered layers simultaneously
using nonlinear solvers such as Newton-Raphson. The co-
herent potential is in general complex and energy dependent
through Ḡ.

After obtaining the coherent potential (and respectively the
GF of the effective medium) we can proceed to calculate the
transmission. Let indices a (b) denote the first principal layer of
the barrier to the left (right). The formula for the transmission
probability in real space is

T = Tr[�a(ρ1,ρ2)Gab(ρ2,ρ3)�b(ρ3,ρ4)G†
ba(ρ4,ρ1)], (27)

where the trace is a shorthand for the sum over all repeating
indices. Making use of the periodicity in the plane we Fourier
transform as follows: Ḡ(ρ,ρ ′) = 1

N

∑
k‖ Ḡ(k‖) exp[ik‖(ρ −

ρ ′)], and the same for �. Next we calculate the configuration
average of the transmission probability

〈T 〉 = Tr〈�LG�RG†〉
= Tr[�LḠ�RḠ†] + Tr[�LḠ〈T Ḡ�RḠ†T †〉Ḡ†]. (28)

Substituting in this expression the expansion of the scattering
matrix Eq. (22) we obtain contributions to the transmission
probability to infinite order

〈T (E)〉 = T (0) + T (1) + T (2) + · · · , (29)

where all the terms contain only the retarded GF of the effective
medium Ḡ and the single-site scattering matrix tl , in addition
to the escape rates � which do not depend on the disorder. The
first term in the expansion is the so-called “bubble” diagram

T (0) = Tr[�a(ρ1,ρ2)Ḡab(ρ2,ρ3)�b(ρ3,ρ4)Ḡ†
ba(ρ3,ρ4)]

=
∫

dk‖Tr[�a(k‖)Ḡab(k‖)�b(k‖)Ḡ†
ba(k‖)], (30)

which does not depend on the disorder configuration and
represents the transmission of the effective medium. Since the
effective medium is periodic in the plane, k‖ is a good quantum
number and the transmission is specular. Vertex corrections are
the diagrams of higher order in tl . The first-order correction is

T (1) = Tr[〈�a(ρ1,ρ2)Ḡal(ρ2,ρ3)tl(ρ3)Ḡlb(ρ3,ρ4)

×�b(ρ4,ρ5)Ḡ†
bl(ρ5,ρ6)t†l (ρ6)Ḡ†

la(ρ6,ρ1)〉]
=

∫
dk1‖dk2‖Tr[�a(k1‖)Ḡal(k1‖)

×〈tlḠlb(k2‖)�b(k2‖)Ḡ†
bl(k2‖)t†l 〉Ḡ†

la(k1‖)], (31)

which involves processes of electron transmission from a state
with momentum k1‖ to a state with momentum k2‖; i.e., the
transmission is diffusive. Similarly, expressions can be derived
for the higher order diagrams and the expressions become
increasingly involved.

B. CPA: Nonequilibrium formulation

Next we calculate the current applying the NE-CPA
technique for F and then using Eq. (4) for the current. Within
the NEGF formalism the full GF for a disordered system obeys
a generalized Dyson equation19

Ĝnm = Ĝ0
nm +

∑
l

Ĝ0
nlV̂lĜlm, (32)

where Ĝ = ( Gc G<

G> G̃c ) and V̂ = ( V c V <

V > Ṽ c ). The various NEGFs

are defined as usual:19

iGc
12 = 〈T 
̂1
̂

†
2〉, iG̃c

12 = 〈T̃ 
̂1
̂
†
2〉,

(33)
iG<

12 = −〈
̂†
2
̂1〉, iG>

12 = 〈
̂1
̂
†
2〉,

where 1 = (t1,r1) and 2 = (t2,r2) and T and T̃ mean chrono-
logical and reverse-chronological ordering of the field opera-
tors. Since the perturbation comes from a single-particle time-
independent operator V , one can obtain explicitly the general
form using the Keldysh perturbation technique V̂ = ( V 0

0 −V ).

Since the components of Ĝ are not linearly independent, we
use the Keldysh linear transformation Ĝ′ = R−1ĜR, where
R = 1

2 ( 1 1
−1 1 ), to obtain an equation for Ĝ′ = ( 0 G†

G F
) and

V̂ ′ = ( 0 V

V 0 ).19 Here G and G† are the retarded and advanced
GF and F is the Keldysh GF defined as follows:

G = Gc − G< = −G̃c + G>,
(34)

F = Gc + G̃c = G> + G<.

Since the equations for the retarded and the advanced GF
are equivalent, the transformed generalized Dyson equation is
equivalent to two independent equations, the Dyson equation
for the retarded GF

Gnm = G0
nm +

∑
l

G0
nlVlGlm (35)

and the quantum kinetic equation for the Keldysh GF19

Fnm = F 0
nm +

∑
l

F 0
nlV

†
l G

†
lm +

∑
l

G0
nlVlFlm. (36)

At this point we carry out the CPA recipe for the NEGF.
We start from the generalized Dyson equation for disordered
system Eq. (32) where we replace the disordered medium
out of thermodynamical equilibrium with a periodic effective
medium described by a yet unknown generalized coherent
potential �̂ = ( �c �<

�> �̃c ) as follows:

Ĝnm = ˆ̄Gnm +
∑

l

ˆ̄Gnl(V̂l − �̂)Ĝlm. (37)

After transformation �̂′ = R−1�̂R = ( � �

�† 0 ). This general-
ized coherent potential consists of the standard coherent
potential � and the nonequilibrium coherent potential �.
Physically � can be viewed as the nonequilibrium part of the
self-energy due to disorder. The two independent equations of
the transformed generalized Dyson equations become Eq. (19)
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for the retarded GF already considered and

Fnm = F̄nm −
∑

l

Ḡnl�G
†
lm +

∑
l

F̄nl(Vl − �†)G†
lm

+
∑

l

Ḡnl(Vl − �)Flm, (38)

where F̄nm = F 0
nm+ ∑

l(G
0
nl�Ḡ

†
lm + F 0

nl�
†Ḡ†

lm + G0
nl�F̄lm).

Next we rewrite Eq. (38) as the infinite expansion of contribu-
tions containing the retarded, advanced, and Keldysh GFs of
the effective medium

Fnm = F̄nm +
∑

l

(ḠnlτlḠ
†
lm + F̄nl t

†
l Ḡ

†
lm + Ḡnltl F̄lm)

+
∑
l,l′

(ḠnltlḠll′τl′Ḡ
†
l′m + ḠnlτlḠ

†
ll′ t

†
l′Ḡ

†
l′m

+ Ḡnltl F̄ll′ t
†
l′Ḡ

†
l′m + F̄nl t

†
l Ḡ

†
ll′ t

†
l′Ḡ

†
l′m

+ ḠnltlḠll′ tl′ F̄
†
l′m) + · · · , (39)

where by analogy with tl we have defined a nonequlibrium
single-site t matrix

τl = tl F̄ll t
†
l − tl(Vl − �)−1�(Vl − �†)−1t

†
l . (40)

Note that in Eq. (39) consecutive t’s and τ ’s are on the different
sites. Next we introduce the Keldysh counterpart of the full
scattering matrix

T F
ll′ = τlδll′ + tlḠll′τl′ + τlḠ

†
ll′ t

†
l′ + tl F̄ll′ t

†
l′ + · · · (41)

and Eq. (39) can be written through the full t matrices and the
GFs of the effective medium

Fnm = F̄nm +
∑
ll′

(
ḠnlT

F
ll′ Ḡ

†
l′m + F̄nlT

†
ll′Ḡ

†
l′m + ḠnlTll′ F̄l′m

)
.

(42)

Eventually we conclude that the NEGF can be written through
the NEGF of the effective medium

Ĝnm = ˆ̄Gnm +
∑
ll′

ˆ̄GnlT̂ll′
ˆ̄Gl′m, (43)

where the full nonequilibrium scattering matrix is defined as

T̂ll′ = t̂lδll′ + t̂l
ˆ̄Gll′ t̂l′ +

∑
k

t̂l
ˆ̄Glkt̂k

ˆ̄Gkl′ t̂l′ + · · · , (44)

and T̂ = ( T F T

T † 0 ) and t̂l = (
τl tl

t
†
l 0 ) are the full and the single-site

t matrices of the effective medium.
Then following the prescription, we apply the requirement

that scattering vanishes on average in the effective medium
〈T̂ 〉 = 0 which implies that both 〈T 〉 = 〈T F 〉 = 0. Within
the single-site approximation the NE-CPA condition becomes
〈t̂l〉 = 0 which is equivalent to two independent conditions,
Eq. (24) for tl and the additional condition

〈τl〉 = 0. (45)

The procedure for solving for the nonequilibrium coherent
potential is as follows: (i) The CPA condition Eq. (26)
combined with Eq. (25) allows us to evaluate � identically
to the standard CPA. (ii) After � is obtained, we write down

the quantum kinetic equation in the matrix notation for the
Keldysh GF of the effective medium

F̄ (k‖) = F 0(k‖) + G0(k‖)�Ḡ†(k‖)

+F 0(k‖)�†Ḡ†(k‖) + G0(k‖)�F̄ (k‖), (46)

where the nonequilibrium coherent potential � is independent
on k‖. Now we can combine the terms involving F̄ to obtain

F̄ (k‖) = Ḡ(k‖)�Ḡ†(k‖)

+ [I − G0(k‖)�]−1F 0(k‖)[I + �†Ḡ†(k‖)]. (47)

The second equation is obtained from Eq. (45) that the average
of the nonequilibrium single-site scattering matrix 〈τl〉 is equal
to zero for any layer l in the scattering region

0 = pτA
l + (1 − p)τB

l

= p
[
tAl F̄ll t

A†
l − tAl

(
V A

l − �
)−1

�
(
V A

l − �†)−1
t
A†
l

]
+ (1 − p)

[
tBl F̄ll t

B†
l − tBl

(
V B

l −�
)−1

�
(
V B

l −�†)−1
t
B†
l

]
,

(48)

where F̄ll = 1
VBZ

∫
dk‖F̄ll(k‖) is the inverse Fourier transform

of the Keldysh GF at layer l. We solve the linear system of
Eqs. (47) and (48) to determine F̄ and �. Practically, it is much
easier to solve linear Eqs. (47) and (48) for the NE-CPA than
the nonlinear system of Eqs. (25) and (26) for the standard
CPA. Also problems with convergence to the wrong solutions
do not arise as could happen in the nonlinear solver. Finally, the
average NEGF is equal to the NEGF of the effective medium
〈F 〉 = F̄ .

Using Eq. (38) and Eq. (4), the average transmission is
simply related to the Keldysh GF of the effective medium

〈T 〉 =
∑

j

Tr[Hi+1,j ;i,j F̄i,j ;i+1,j − Hi,j ;i+1,j F̄i+1,j ;i,j ]. (49)

Therefore, it follows that the nonequilibrium transmission
probability given by Eq. (49) is equivalent to that given by
Eq. (28) which contains VCs to infinite order.

III. EXAMPLE: TUNNEL JUNCTION WITH
DISORDERED BARRIER

In order to demonstrate the method we consider a simple
example consisting of a tunnel junction with a plane of
impurities within the barrier (Fig. 1). We use a single-band
tight-binding model characterized with on-site energy ε and
hopping integral t . Despite its simplicity this model has been
shown to be capable of predicting the correct properties of sev-
eral phenomena including spin transfer torque,24–28 interlayer
exchange coupling,29 and resistive switching phenomena.30

Its predictions compare well to the results of first-principles
calculations.31 The two electrodes are assumed to be locally
in equilibrium at two different chemical potentials μL and
μR under finite bias μL − μR = eV , where V is the applied
voltage. Under this assumption electrons will flow from the
electrode with higher chemical potential to that with a lower.
For simplicity’s sake we assume that the voltage drop occurs
linearly across the barrier, which is accounted for in the Hamil-
tonian via an external potential term

∑
i eVic

†
i ci . The elec-

tronic temperature is taken into account via the Fermi-Dirac
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FIG. 2. (Color online) Density of states in the barrier for weak (a)
and strong (b) scattering. Both low and high impurity concentration
are shown.

distribution functions fL/R = [1 + exp (E − μL(R))/kT ]−1.
The atoms are at zero temperature and stay fixed at their
equilibrium positions. In the electrodes the on-site energy
ε0 = 0 eV can be considered as a reference. Then in the
barrier we choose ε = 9 eV. For the impurity we consider two
cases: (i) weak scattering (ε′ = 6 eV) and (ii) strong scattering
(ε′ = 3 eV). Hopping is the same between all sites t = 1 eV.
The simplest structure has five layers in the barrier where the
impurity layer is in the middle. Two impurity concentrations
are considered low: (p = 1%) and high (p = 20%). We
calculate the I -V curves when we apply voltage of up to
1.0 V symmetrically. The system is considered to be at low
temperature.

The density of states (DOS) of the electrodes consists of
a metallic band centered at 0 with a dispersion of ±6 eV. At
finite bias the left band is shifted down by −V/2 and the
right up by V/2. The DOS in the barrier (Fig. 2) shows
the onset of the conduction band at around 3 eV. Then the
impurity bands appear around 6 and 3 eV for weak and
strong scattering, respectively. For weak scattering it overlaps
with the conduction band and the net effect is to modify the
conduction band minimum. For strong scattering it appears
as a separate band. The impurity band is small and narrow
at low concentrations and becomes larger and wider at high
concentrations. The tail of the impurity band will influence
the transmission and we expect larger effect when the impurity
band is closer to the Fermi level and resonance scattering when
the impurity band falls in the bias window.

We calculate the current using (i) the standard CPA
approach with vertex corrections to infinite order and (ii)
nonequilibrium CPA. For our toy model the various quantities
are scalars which commute with each other. Due to this
simplification it is possible to derive a formula for the vertex
corrections to any finite order and also sum all the corrections
exactly to infinite order. The first-order correction becomes

T (1) = 〈|tl|2〉
∫

dk‖Ḡ
†
la(k‖)�a(k‖)Ḡal(k‖)

×
∫

dk‖Ḡlb(k‖)�b(k‖)Ḡ†
bl(k‖). (50)

If we continue to write explicitly the higher order VCs, a
patten emerges (after some lengthy algebra) which allows us

to calculate the higher order corrections recursively as follows:

T (n) = T (n−1)Ql,
(51)

Ql = 〈|tl|2〉
[∫

dk‖|Ḡll(k‖)|2 −
∣∣∣∣
∫

dk‖Ḡll(k‖)

∣∣∣∣
2
]

,

which implies that the vertex corrections to infinite order can
be summed exactly as a geometric progression

〈T 〉 = T 0 + T (1)/(1 − Ql) (52)

and if the term |Ql| < 1 the sum converges.
An additional advantage of the toy model of a single-band

model and one impurity layer is that we can obtain an analytical
expression for �. Following the NE-CPA method we solve
Eqs. (47) and (48) analytically using the linear dependence of
F̄ on �

F̄ll = α + β�,

� = α
(
V A

l − �
)(

V B
l − �†)[(V A

l − �
)
Ḡll + Ḡ

†
ll

(
V B

l − �†)
−β

(
V A

l − �
)(

V B
l − �†) − 1

]−1
, (53)

where the coefficients are

α =
∫

dk‖
(2π )2

F 0
ll (k‖){1 + 2Re[�Ḡll(k‖)] + |�Ḡll(k‖)|2},

(54)

β =
∫

dk‖
(2π )2

G0
ll(k‖)Ḡ†

ll(k‖)[1 + �Ḡll(k‖)].

The I -V curves calculated using both approaches are shown
in Fig. 3 for the strong-scattering case with high impurity
concentration. In the first case we calculate the current due to
the bubble term plus vertex corrections to infinite order. The
contribution from different orders of the VCs is also plotted
for comparison. From the results several observations can be
made: (i) When the impurity band is far from the bias window
CPA alone gives a reasonable result and the VCs converge
very quickly. (ii) However, if the the impurity band is in the
bias window CPA captures only a very small part of the part of
the contribution to the current. Also the higher order vertex

FIG. 3. (Color online) Current density as a function of applied
bias (a) and transmission as a function of energy (b) for strong
scattering and high impurity concentration. The result for CPA, CPA
with VCs to finite order, CPA with VCs to infinite order, and NE-CPA
are plotted. The line of the CPA with full VCs coincides with the
NE-CPA line.
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corrections are by no means small, which means that the
expansion is not perturbative. In particular for strong scattering
summation to infinite order is necessary to correctly describe
the transmission. This confirms the importance of the vertex
corrections.9,10 (iii) NE-CPA always gives the same result as
the standard CPA with VCs to infinite order.

IV. CONCLUSIONS

In summary, we propose a nonequilibrium formulation of
CPA for electron transport. This approach makes use of the
fact that the nonequilibrium current is linear with respect to the
NEGF and therefore the average current is simply expressed
through the GF of the effective medium. This removes the
need to calculate vertex corrections to infinite order. The
single-step NE-CPA formalism is equivalent to CPA plus

vertex corrections to infinite order. This is demonstrated in
a model calculation of a tunnel barrier with an impurity layer
for a range of concentrations and scattering strengths. The
NE-CPA is formulated in matrix form and therefore it is
easily extendable to general LCAO Hamiltonians, including
magnetic. Indeed the approach would show its true worth when
implemented within the framework of more realistic electronic
structure calculations.
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