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Path to poor coherence in the periodic Anderson model from Mott physics and hybridization
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We investigate the anomalous metal arising from hole-doping the Mott insulating state in the periodic Anderson
model. Using dynamical mean-field theory we show that, as opposed to the electron-doped case, in the hole-
doped regime the hybridization between localized and delocalized orbitals leads to the formation of composite
quasiparticles reminiscent of the Zhang-Rice singlets. We compute the coherence temperature of this state,
showing its extremely small value at low doping. As a consequence the weakly doped Mott state deviates from
the predictions of Fermi-liquid theory already at small temperatures. The onset of the Zhang-Rice state and of the
consequent poor coherence is due to the electronic structure in which both localized and itinerant carriers have
to be involved in the formation of the conduction states and to the proximity to the Mott state. By investigating
the magnetic properties of this state, we discuss the relation between the anomalous metallic properties and the
behavior of the magnetic degrees of freedom.
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I. INTRODUCTION

The rise of the field of strongly correlated materials revealed
a number of unexpected intriguing phenomena which cannot
be explained within the standard theory of solids.1 The
paradigm of correlation effects is based on the Mott insulating
state and the Mott-Hubbard metal-insulator transition,2,3 but a
key role is also played by high-temperature superconductivity
in copper oxides4,5 and the unconventional superconductivity
at the edge of a magnetic phase observed in heavy fermions.6,7

More recently, the partnership between exotic superconductiv-
ity, strong correlations, and magnetism has been strengthened
by discoveries in the iron-based superconductors,8 in the
alkali-doped fullerides,9,10 and possibly also in the molecular
conductors based on aromatic molecules.11–13

A common companion of Mott physics and anomalous
superconductivity is the deviation from the standard Fermi-
liquid (FL) theory in the metallic phase, or non-Fermi-liquid
(NFL) behavior.14 The FL theory describes a system of
interacting fermions as a collection of renormalized nonin-
teracting quasiparticles which propagate coherently in the
solid.15 The main qualitative effect of the electron-electron
correlations is to enhance the effective mass and accordingly
reduce the coherence of the Fermi gas. This is reflected in a
reduction of the coherence temperature, the scale at which the
thermal fluctuations destroy the coherent motion. However in
many compounds, most notably heavy-fermion materials and
underdoped cuprates, this picture breaks down and the carriers
can no longer be described as long-lived excitations as they
acquire a finite lifetime. This behavior directly influences the
transport properties leading to anomalies in the temperature
dependence of the resistivity.

In this paper we present a general mechanism based on
Mott physics and multiband effects which leads to a metallic
state with an extremely small FL coherence temperature.
Empirically, this system will display a NFL behavior already
at exceedingly small temperatures. The key element is the

hybridization between a strongly correlated band and a weakly
interacting band that leads to the formation of hybrid entities.
The binding with the localized f electrons hinders the motion
of the carriers leading to a coherence temperature which is
much smaller than the (already renormalized) scale predicted
by FL theory on the basis of mass renormalization.

Our approach is based on the periodic Anderson model
(PAM), a widely accepted correlated electron model for the
description of heavy-fermion physics. In its minimal form
the PAM describes a set of nondispersive strongly correlated
electrons, hybridizing with a band of conduction electrons.
In a general framework the PAM provides a more detailed de-
scription of the electronic configuration of correlated materials
with respect to the Hubbard model, by taking into account the
effects of the inclusion of noncorrelated bands. We solved
the PAM using dynamical mean-field theory (DMFT),16 one
of the most powerful and reliable tools to study correlated
materials.

Following previous studies17–19 we investigate the model
around the Mott insulating state which takes place for large
interactions and odd integer total occupation. The doping-
driven transition has been thoroughly investigated in Refs. 17
and 19, and a NFL behavior in the hole-doped side has
been demonstrated in Ref. 18. Here we extend this work by
analyzing the coherence-incoherence crossover which leads
to the NFL behavior and its dependence on doping. We will
therefore focus on the scattering properties of the system
and we will detail their relation with the magnetic degrees
of freedom. Finally we establish a connection between the
finite-temperature breakdown of the FL and the competition
between antiferromagnetic and ferromagnetic short-ranged
correlations.

The paper is structured as follows. In Sec. II we introduce
the PAM and the related DMFT equations. In Sec. III we
briefly discuss the doping-driven Mott transition in the PAM.
In Sec. IV we present the main results of this work, namely
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the strongly incoherent nature of the low-temperature metallic
state. A phase-diagram of the model is presented at the end
of this section. In Sec. V we study the magnetic properties of
the model. Finally, we present a magnetic phase-diagram of
the model which illustrates how magnetic competition helps
stabilize the incoherent behavior at low temperature.

II. MODEL AND THEORETICAL FRAMEWORK

A. The periodic Anderson model

The periodic Anderson model describes a set of nondis-
persive strongly correlated electrons, locally hybridizing with
a band of conduction electrons. The model Hamiltonian is
written in the following form:

H = H0 + Hfp + HI ,

H0 = −
∑
〈ij〉σ

tijp
+
iσ pjσ + εp

∑
iσ

npiσ + εf

∑
iσ

nf iσ ,

(1)
Hfp = Vfp

∑
iσ

(f +
iσ piσ + p+

iσ fiσ ),

HI = U
∑

i

(
nf i↑ − 1

2

)(
nf i↓ − 1

2

)
.

The operators piσ (p+
iσ ) destroy (create) conduction band elec-

trons with hopping amplitude tij and energy εp. The operators
fiσ (f +

iσ ) destroy (create) electrons in the nondispersive orbital
with energy εf . The terms proportional to Vfp describe the
hybridization between the two species. The interaction term HI

describes the strong on-site Coulomb repulsion experienced by
f -orbital electrons.

The noninteracting lattice Green’s function reads

Ĝ−1
0σ (k,iωn) =

(
iωn + μ − εf −Vfp

−Vfp iωn + μ − εp − ε(k)

)

with ε(k) the dispersion of the conduction electrons: ε(k) =∑
〈ij〉 e

−ik·(ri−rj ) tij . The corresponding interacting Green’s
function can be expressed by means of the following matrix
Dyson equation:

Ĝσ (k,iωn)−1 = Ĝ−1
0σ (k,iωn) − �̂σ (k,iωn), (2)

where

�̂σ (k,iωn) =
(

�f σ (k,iωn) 0

0 0

)
(3)

is the self-energy matrix �̂σ . The noninteracting nature of
the conduction band is reflected in the existence of only one
nonzero self-energy for the f electrons. Nevertheless, it is
useful to define an effective self-energy also for the conduction
electrons as

�pσ (k,iωn) = V 2
fp

iωn + μ − εf − �f σ (k,iωn)
. (4)

This function describes the dressing of the p electrons as
an effect of both their hybridization with the correlated f

electrons and, indirectly, of the Hubbard repulsion on the latter.
In particular, the appearance of a finite imaginary part in the
zero-frequency limit signals the breakdown of a FL picture for
the conduction electrons.

Since �pσ arises due to both the hybridization and the
interaction U , it is not expected to vanish in the noninteracting
limit U = 0. On the other hand, it is easy to realize that in this
limit the pure hybridization cannot lead to a finite imaginary
part of �pσ at zero frequency, and that any breakdown of the
FL behavior can descend only from correlation effects.

B. DMFT equations

The PAM has been studied using a large variety of
numerical20–24 and analytical methods.25–28 To access the
nonperturbative regime of the PAM, we investigate the solution
of the model using the DMFT, which has been used to
solve this model since its early stages.29,30 Within DMFT
a lattice model is mapped onto an effective single-impurity
problem, fixed by a self-consistency condition which enforces
the equivalence between the two models as far as the local
physics is concerned.16,31 The scheme is equivalent to a local
approximation on the self-energy, which becomes momentum
independent.

The DMFT equations can be obtained using a quantum
cavity method. The effective action of the single f -orbital
impurity problem is obtained integrating out all lattice degrees
of freedom except for a chosen site (labeled conventionally as
site i = 0) and keeping only the first term in the expansion16,32

in terms of many-particle Green’s functions:

Seff = −
∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

f +
0σ (τ )G−1

0σ (τ − τ ′)f0σ (τ ′)

+U

∫ β

0
dτ [nf 0↑(τ ) − 1/2][nf 0↓(τ ) − 1/2]. (5)

The action Seff is expressed in terms of the local Weiss field
G−1

0σ (iωn), describing the quantum fluctuations at the correlated
f orbital. The Weiss field satisfies a self-consistency equation
which depends on the lattice under consideration. In this work
we consider a Bethe lattice with semielliptical density of states
of half-bandwidth D (fixing the energy unit of the problem),
D(ε) = 2

πD2

√
D2 − ε2. In this case the self-consistency is

particularly simple and reads

G−1
0σ (iωn) = iωn + μ − εf − V 2

fp

iωn + μ − εp − D2

4 Gpσ (iωn)
,

(6)

where Gpσ is the conduction electron local Green’s function.
The functional form of G−1

0σ mirrors in the DMFT equations
the relation between the two orbitals in the lattice problem.
The fluctuations at the f orbital are in fact composed of
two contributions: (a) the on-site quantum fluctuations and
(b) indirect delocalization through conduction band propor-
tional to squared hybridization amplitude.

The DMFT solution requires therefore computing the
impurity Green’s function

Gimp(iωn) = −i〈f f +〉Seff , (7)

where the symbol 〈 〉Seff indicates the average with respect
to the effective action (5). From the knowledge of the
impurity Green’s function it is straightforward to determine the
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self-energy,

�(iωn)σ = �imp
σ (iωn) = G−1

0σ (iωn) − Gimp
σ

−1(iωn),

and finally to evaluate the local Green’s function,

Gpσ (iωn) =
∫

dε
D(ε)

iωn + μ − εp − �pσ (iωn) − ε
.

Then a new Weiss field can be computed and the procedure
can be iterated until convergence is achieved.

The solution of the effective impurity problem, i.e., Eq. (7),
is the bottleneck of the DMFT algorithm. In this work we
use a combination of numerical techniques:16 Hirsch-Fye
quantum Monte Carlo (QMC)34,35 and exact diagonalization
(ED) methods, both in the full diagonalization and Lanczos
algorithm implementations, at zero36 and finite temperature.37

The ED method is based on a discretization of the effective
bath on an adaptive energy grid. In this paper we present
full ED calculations in which the bath is described by 7
energy levels and Lanczos calculations with 8 levels. The
ED calculations have been cross-checked against the density
matrix renormalization group, which allows substantially
increasing the number of bath levels.38–40

III. THE HOLE-DOPED MOTT INSULATOR

The PAM has been largely investigated in proximity to the
Kondo insulator regime.42–44 The Kondo insulator is a band
insulator realized at even integer total filling (ntot = 2). In this
regime the system has two hybridized bands with a central
Kondo peak, corresponding to the resonant scattering of the
conduction electrons on the localized moments and split by
an indirect gap 
ind [see Fig. 1(a)]. Upon doping the Kondo
resonance remains pinned at the chemical potential, and the
system behaves like a heavy-fermion liquid.

In this work we focus on a different model regime, namely
the correlated metal obtained by a state with odd total
occupation (ntot = 1 or 3) and large enough interaction. In
the case of ntot = 1 or 3, an important role is played by the
ratio U/
, where 
 = |εp − εf | is the charge-transfer energy,
i.e., the separation in energy between the two electron orbitals.
Two regimes can be distinguished:45 (a) for 
 smaller than
U the model is in the so-called charge-transfer (CT) regime,

(a)
(b)

FIG. 1. (Color online) Schematic representation of the doped
Kondo (a) and doped Mott (b) insulators, inspired by Ref. 33. A
schematic picture of the band structure is reported on the left side
of each figure. The hybridized bands are indicated with thick (blue
online) lines; dashed lines are used for the bare bands (Vfp = U = 0).
On the right sides we sketched the corresponding density of states. A
lighter color indicates the more correlated character of the hybridized
bands.

which is expected to capture the properties of intermediate
to late transition-metal oxides. Nevertheless in these systems
the nonlocal hybridizations become important and require
the introduction of other terms in the Hamiltonian to be
properly described. (b) For 
 larger than U the model is in
the Mott-Hubbard (MH) regime, which models the properties
of early transition-metal oxides and heavy-fermion systems,
usually dominated by local physics. In this work we shall
focus on this latter model regime and study the doping of a
Mott insulator.

In the simplest sketch of this regime, the noncorrelated band
has a lower energy than the correlated one (which however is
dispersive only because of the hybridization with the itinerant
fermions). The latter band is in turn split by the Mott gap
[see Fig. 1(b)]. Similarly to the Kondo insulating regime, a
heavy-fermion state is obtained upon finite doping as soon as
the system develops a coherent Kondo resonance signature of
the insulator-metal transition.

In the following we shall briefly review the formation of
a correlated metallic state by hole doping.17,19 Without loss
of generality, we fix the energy of the correlated orbitals at
the Fermi level εf = 0 and εp = −1, so that 
 = 1. For U =
Vfp = 0 the model describes a system with completely filled
conduction band np = 2 and half-filled correlated orbitals with
nf = 1. For finite values of the hybridization the correlated
electrons can move with an effective hopping of the order
of teff � V 2

fp/
, corresponding to the indirect delocalization
through the conduction band (see top panel of Fig. 2). The
hybridization modifies the orbital’s occupation, pushing a
substantial amount of the p-electron states to the Fermi level,
so that np < 2 and consequently nf > 1 and the relevant
carriers are hybrid in nature. However, the f and p character
of the model solution can still be used to indicate the projection
onto the correlated and noncorrelated orbital, respectively.
Upon increasing the interaction strength (see central panel of
Fig. 2) we first observe the formation of a correlated metallic
state. This is characterized by the presence in the density of
states (DOS) of a metallic feature at the Fermi level, flanked

FIG. 2. (Color online) Evolution of the f - (solid line) and
p-orbital (dashed line) projections of the DOS. Data from QMC cal-
culations at T = 0.0125, Vfp = 0.9, ntot = 3, analytically continued
on the real axis using maximum entropy method (Ref. 41). The figure
qualitatively illustrates the Mott metal-insulator transition driven by
correlation in the PAM.
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by the two precursors of the Hubbard bands. A Mott insulating
state is then obtained further increasing the correlation U . The
system opens a spectral gap at the Fermi energy (see bottom
panel of Fig. 2) with a width controlled by the correlation U .19

To fix ideas, in the remaining part of this work we shall set the
correlation and the hybridization to, respectively, U = 2.0 and
Vfp = 0.9. This choice of the model parameters corresponds
to a Mott insulating state for ntot = 3. Similar results can be
obtained for different values of correlation and hybridization.

The Mott insulator can be destabilized in favor of a cor-
related metallic phase by either adding or removing electrons
(creating holes). As first noticed in Ref. 17 the two transitions
have a different character, ultimately related to the different
role played by the noninteracting band in the two cases. Doping
with electrons, the extra carriers populate essentially the
correlated orbitals while the p band remains almost filled and
its role is to allow the delocalization of correlated electrons. In
other words, in this regime there are no multiband effects and
the hybridization plays a minor role. Therefore the f electrons
behave essentially as in a single-band Hubbard model with an
effective hopping of the order of teff .

In the hole-doped regime the electronic configuration is
substantially different. The holes are essentially associated
with the absence of p electrons, and they tend to bind to the
local moments of the almost half-filled correlated orbitals.19

It is already apparent that this state cannot be described by a
single-band model. This effect is evident in the behavior of the
interorbital moment-moment correlation

〈mzpmzf 〉 = 〈(np↑ − np↓)(nf ↑ − nf ↓)〉
reported in Fig. 3, which shows how the moment of the
doped p holes aligns with the moment of the localized
f electron. The doping-driven metalization appears as the
process of delocalizing a multiband “Zhang-Rice-like” singlet
state, formed by an itinerant hole bound to a localized spin,
similar to that proposed in the framework of the high-Tc

superconductors.46 The low-energy properties of this metallic
state cannot be straightforwardly interpreted in terms of a

FIG. 3. (Color online) Left panel: Renormalization constant Z as
a function of the doping δ = |3 − ntot|. Data are from Lanczos ED
at T = 0, U = 2, Vfp = 0.9 and increasing size of the effective bath
Ns = 8 (diamonds, circles) and 10 (triangles, squares). Right panel:
Moment-moment correlation −〈mzpmzf 〉 as a function of the doping
δ in the hole-doped regime. Data are from full ED calculations (see
Appendix A) for T = 0.008 and for the same model parameters.

single-band Hubbard model,17,19 and it leads to remarkable
properties.

A first partial indication of the anomalous nature of this
state comes from an evaluation of the quasiparticle weight
Z = [1 − ∂Im�f (iω)/∂ω]−1

|ω→0
, which measures the degree of

metallicity of a system, being zero for a Mott insulator and
one for a noninteracting metal. The results (see Fig. 3) show
that Z is substantially smaller for the hole-doped than for the
electron-doped case, already signaling that the Zhang-Rice
liquid is a poorer metal than a standard correlated metal. In the
following we will show that the difference goes well beyond
the quasiparticle renormalization.

IV. THERMAL BREAKDOWN OF THE FERMI LIQUID

Fermi-liquid theory is the standard paradigm for metallic
systems and describes correlated Fermi systems as a collection
of noninteracting renormalized quasiparticles. DMFT studies
of various correlated models have shown that even very close
to the Mott transition the correlated metallic state is typically
a Fermi liquid with a reduced effective hopping proportional
to the quasiparticle weight Z. This scale also controls the
coherence temperature above which the coherent motion of
the carriers is destroyed by thermal fluctuations.

In this section we will show that the correlated metallic state
of the PAM in the weakly hole-doped regime turns out to be
very fragile with respect to small temperatures. More precisely,
our system will be a Fermi liquid only below an extremely
small coherence temperature which, for small doping, can
be substantially smaller than the renormalized Fermi energy
controlled by Z. Therefore the corresponding metallic state
cannot be described in terms of long-lived quasiparticles but is
rather a liquid of short-lived singlet-like electronic excitations.

To substantiate this discussion we study the evolution of
the imaginary part of the conduction electron self-energy
Im�p(iωn). The results of our calculations for δ = 0.1 are
presented in Fig. 4. A Fermi-liquid state corresponds to a
linear behavior of Im�p(iωn) at low frequency, observed only
at the lowest investigated temperature, T = 0.0005. When we
increase T at values of the order of T = 0.0007, two orders
of magnitude smaller than the renormalized Fermi energy, the

0 0.025 0.05 0.075 0.1 0.125
ω

n

0

0.1

0.2

0.3

0.4

0.5

0.6

Im
Σ p(i

ω
n)

T=0.0017
T=0.0010
T=0.0007
T=0.0005

FIG. 4. (Color online) Evolution of the imaginary part of the con-
duction electron self-energy Im�p(iωn) for increasing temperature.
Data are from finite-temperature Lanczos ED with doping δ = 0.1.
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FIG. 5. (Color online) Main panel: Imaginary part of the conduc-
tion electron self-energy Im�p(iωn) for increasing value of the hole
doping and T = 0.001. Data are from Lanczos ED calculations. Inset:
Comparison of the Im�p(iωn) behavior from different numerical
methods for δ = 0.05. The other model parameters are the same as in
the main panel. The QMC and full ED calculations are performed at
T = 0.008. DMRG is a T = 0 calculation performed with a cluster
of Ns = 30 sites and plotted down to the position of the lowest energy
pole.

conduction electron self-energy does not vanish in the ω → 0
limit, signaling a departure from the Fermi-liquid paradigm.
Further increasing the temperature leads to an enhancement of
this anomaly.

In Fig. 5 we follow the evolution of Im�p(iωn) for
increasing doping at T = 0.001. For small doping we have
a clear NFL increase at small frequency which survives up to
δ � 0.16. For larger doping the system is not strongly sensitive
to the Mott-Hubbard physics and the standard Fermi-liquid
behavior is restored around δ = 0.2.

The violation of the Fermi-liquid paradigm can be summa-
rized by the temperature dependence of σ (T ) = Im�p(iωn →
0), reported in Fig. 6. This quantity is related to the scattering
rate of the carriers. In a metallic regime σ (T ) is expected to
vanish at low temperature. While for large doping (right panel)
σ (T ) vanishes as T → 0 (even if for δ = 0.15 some anomaly
is observed at intermediate temperature), the small-doping
data clearly confirm the NFL behavior down to very small

0 0.005 0.01 0.015
T

0

0.1

0.2

0.3

0.4

0.5

0.6

 σ

0 0.005 0.01 0.0150

0.1

0.2

0.3

0.4

0.5

0.6
δ=0.070
δ=0.050
δ=0.015

0 0.005 0.01 0.015
T

0.1

0.2

0.3

0.4

0.5

0.6
δ=0.15
δ=0.45

FIG. 6. (Color online) σ = Im�p(iωn → 0) as a function of the
temperature for different values of the doping. The data shown are
from full ED calculations.

FIG. 7. (Color online) Scaling of the inverse lifetime τ−1 as a
function of T 2 in the low-temperature limit. Data are from Lanczos
ED calculations. Lines are guides to the eye.

temperature, even if strictly at T = 0 the vanishing σ would
be recovered.

Finally, Fig. 7 depicts the inverse lifetime τ−1 = Zpσ of
the doped carriers, where Z−1

p = 1 − Im�p(iω1)/πT . In a
Fermi liquid τ−1 grows as T 2 ∼ ω2 at low temperature. Our
calculations for small doping show a decay faster than T 2

which strengthens the picture of an incoherent metallic state.
Once again, a Fermi-liquid behavior is established only at
extremely low temperatures if the doping is small, while the
large-doping data recover the standard behavior.

The increasing scattering rate as a function of decreas-
ing temperature is usually associated with scattering with
impurities.14 In this spirit, in the following we will interpret
our results as the scattering of the carriers with fluctuating
local moments. This effect can be understood as the result
of the competition between the aforementioned tendency to
form local Zhang-Rice singlets, driven by the hole doping,
and the incoherent nature of the scatterer provided by the
f -electron local moments, driven by Mott physics. At large
doping the increased number of available holes of p type
helps the formation of a many-body coherent state without
breaking the local binding with f moment. This argument
will be substantiated by the calculations that we report in the
following sections.

A. The coherence temperature

The analysis of the self-energy and of the carrier lifetime
clearly shows the existence of a small doping-dependent
energy scale associated with the appearance of an incoherent
metal. We expect this scale to influence also other observables,
such as the local spin susceptibility:

χloc(T ) =
∫ β

0
〈Szf (τ )Szf (0)〉dτ.

This quantity describes the response to a local magnetic field
and easily discriminates between a Fermi liquid, in which the
zero-temperature limit is a constant (Pauli susceptibility), and
a paramagnetic Mott insulator in which it diverges as 1/T

(Curie behavior).
The results are reported in Fig. 8. In the Mott insulating

state (δ = 0) the magnetic moments of the localized f

electrons essentially behave as free spins; we thus obtain
the typical Curie behavior with a 1/T dependence for the
spin susceptibility. The slightly hole-doped regime does not

235110-5



AMARICCI, DE’ MEDICI, SORDI, ROZENBERG, AND CAPONE PHYSICAL REVIEW B 85, 235110 (2012)

✶✶✶✶✶✶✶✶✶ ★★★
★★

★
★

★
★★

0 0.005 0.01 0.015
T

0

20

40

60

80

100

χ lo
c

0 0.005 0.01 0.0150

20

40

60

80

100 δ=0.45✶

δ=0.2
δ=0.15
δ=0.1
δ=0.05
δ=0.02

MI

FL

FIG. 8. (Color online) Local spin susceptibility χloc as a function
of the temperature and increasing value of the hole doping. Data are
from Lanczos ED (open symbols) and full ED (pluses, crosses, and
stars) calculations.

show the behavior of a standard metal; namely χloc keeps on
increasing down to the lowest investigated temperature T �
10−3D without any sign of saturation. The enhancement of the
spin susceptibility signals the presence of unquenched local
moments and can be associated with a protracted screening
effect.47 Only for larger doping, the susceptibility saturates to
large constant value at very low temperature.

The presence of enhanced low-T spin susceptibility coex-
isting with a (bad) metallic behavior substantiates the idea
that the hole-doped system can be regarded as formed by
nearly free (incoherent) moments, and an underlying metallic
host formed by the doped holes which are prevented from
coherently delocalizing by local coupling to f moments. This
interpretation leads us to estimate the coherence temperature
Tcoh from

χ−1
loc (T ) ∝ T + Tcoh. (8)

We plot the resulting values, obtained with different
numerical methods, in Fig. 9. In the same plot we report
the crossover points estimated from the temperature evolution
of the imaginary part of the self-energy �p (red crosses).
The good agreement of these points with the extrapolated

Σ

FIG. 9. (Color online) Coherence temperature scale Tcoh as
extrapolated from the inverse local spin susceptibility χ−1

loc (T ). The
extrapolations from different numerical methods are found to be in
satisfactory agreement.

FIG. 10. (Color online) Phase diagram of the PAM near the Mott
insulating state as a function of temperature and hole doping. The
diagram is obtained from Im�p(iωn → 0). The dotted line indicates
the crossover temperature scale Tcoh.

data validates the physical interpretation of the coherence
temperature. It is unfortunately very hard to identify the
functional form of the coherence temperature due to the
smallness of the scale involved and the numerical uncertainties.
However, the data are compatible with an exponential behavior
of the form Tcoh � Be−A/δ , which has been obtained within
the 1/N approximation in the infinite-U Kondo limit.48

The phase diagram in the doping-temperature plane, pre-
sented in Fig. 10, can help us to summarize the scenario
emerging from our calculations. The diagram reveals the
character of the DMFT solution in proximity to the Mott
insulating state through the behavior of the Im�p(iωn →
0). Using the finite-temperature Lanczos ED method we
investigated a smaller temperature scale with respect to that
studied in Ref. 18. A large value of the Im�p(iωn → 0)
testifies to a NFL behavior and the results clearly show that
the highly incoherent state emerges from the Mott state and
occupies a sizable region of the phase diagram. The NFL
region is separated from the coherent metal by a crossover
taking place at Tcoh defined above, which therefore confirms its
meaning as the temperature in which the metal loses coherence.

V. MAGNETIC PROPERTIES

A. External magnetic field

We have shown that hole-doping the Mott insulating phase
of the periodic Anderson model leads to peculiar charge
carriers, so that the motion of the created p holes occurs
through the formation of Zhang-Rice singlets, in which the
spins of the conduction electrons are antiferromagnetically
correlated with the localized spins. As a consequence, we
expect that a magnetic field can have important and surprising
effects on this phase, showing a further difference with respect
to a standard Fermi liquid.

In the model regime investigated in this work, the main
source of magnetism comes from the f electrons. The
conduction band is almost completely filled, so that the
magnetization of the few singly occupied orbitals, favored
by hole doping, is not expected to contribute significantly to
the magnetic properties of the system.

Nevertheless, conduction band electrons can be indi-
rectly affected by the magnetic polarization of the f -orbital
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FIG. 11. (Color online) Imaginary part of the majority-spin p-
electron self-energy for increasing external magnetic field B. The
data are from QMC solution at T = 0.016 and δ = 0.05.

moments, through their local binding. To illustrate this point,
we show in Fig. 11 the evolution of the low-energy part
of Im�p(iωn) as a function of a uniform magnetic field B.
Apparently the NFL state turns into a normal metallic state by
the action of an external magnetic field. It is however worth
noting that the Fermi liquid is recovered for B � 0.05D, a
huge value if compared with experimentally accessible fields.
This large value is a direct consequence of the large (order one)
value of Vfp, chosen to emphasize the hybridization effects and
their role in the conduction properties of the model. Smaller
and more realistic values of this parameter are expected to
reduce the critical field by reducing the charge fluctuations at
correlated f orbitals.

The crossover to a Fermi-liquid state driven by external
magnetic field is not surprising in light of our analysis. Upon
increasing the magnetic field a larger and larger number
of local f moments are polarized. When the moments are
aligned, the p holes can move essentially freely in the
ferromagnetic background without breaking the singlet state
with the localized spins. Therefore the source of scattering
disappears and the metallic state recovers the Fermi-liquid
coherence. In other words the polarization of f -orbital local
moments allows the conduction electron cloud to dynamically
screen the correlated electrons local moments, dramatically
increasing the coherence scale of the system.

The coherent motion of the doped carriers with the opposite
spin of the localized momenta (majority spin) should then be
balanced by the insulating nature of the minority spin carriers.
This effect is illustrated in Fig. 12. In this figure we show the
behavior of both spin species’ conduction electron Green’s
function for the same strengths of the external magnetic
field as used in Fig. 11. The left panel shows the increasing
metalization of the majority spin charge carriers, whereas in
the right panel we show how minority spins are driven towards
an insulating state by increasing magnetic field.

B. Antiferromagnetic ordering

At low temperature, we expect the development of antifer-
romagnetic (AFM) correlations as a result of superexchange
between neighboring f electrons assisted by the hybridization
with p orbital states. In this section we investigate the onset
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FIG. 12. (Color online) Imaginary part of conduction band
electron Green’s function ImGpσ (iωn) for T = 0.016, δ = 0.05 and
increasing strength of external magnetic field. Data from QMC
calculations.

of an AFM long-range ordered state and its effect on the
coherence scale using the extension of the DMFT equations to
long-range order detailed in Appendix B.

To begin with we report in Fig. 13 the staggered magne-
tization mAF = 1/N

∑
i(−1)i〈nf i↑ − nf i↓〉 as a function of

the temperature for various doping. The transition appears
to be of second order in the whole doping region. The Néel
temperature TN , extracted from a power-law fit of the data, is
maximum at zero doping and decreases by adding holes, as in
the single-band Hubbard model. 53

The onset of an AFM ordering of the local f moments
reinstates the Fermi-liquid properties in the tiny hole-doped
regime. This effect is illustrated in the left panel of Fig. 14,
where we present the evolution of the imaginary part of
�pσ (iωn) from the paramagnetic NFL phase to the AFM
ordered phase. The large finite intercept present in the NFL
phase is driven to zero in the AFM ordered phase. Nevertheless,
the metallic character of the solution is preserved across the
transition, as illustrated in the right panel of the same figure
by comparing the imaginary parts of the conduction electron
Green’s functions in the two phases. The ordering of the local
moments in a Néel state allows the doped charge carriers to
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FIG. 13. (Color online) Main panel: Staggered magnetization
mAF as a function of temperature and increasing value of hole doping.
The data are from full ED calculations.
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FIG. 14. (Color online) Conduction electron self-energy
Im�pσ (iωn) (left panel) and Green’s function ImGp(iωn) (right
panel). Data from full ED calculations for δ = 0.01 and T = 0.005.

form coherent electronic waves (with doubled wave vector)
and to get delocalized. However, as mentioned above, the AFM
state is only stable in a small window of doping and the NFL
remains stable for a wide range of parameters.

C. Magnetic stability

The common wisdom about systems of concentrated
impurities described by the PAM is that long-range magnetic
ordering is likely to set in, especially if the metallic state
is weakened by correlations as in our case. Our results for
the AFM state suggest instead a remarkable stability of the
incoherent metallic state as the long-range order is confined
to low temperature and small doping concentration. In this
section we discuss the physical origin of this surprising result.

At small doping near the Mott insulating state neighboring
f -orbital electrons develop AFM correlations as a result of
superexchange. These processes are of the fourth order in
the hybridization with a leading energy scale of the order43

JSE ∝ Weff
2/U ∼ V 4

fp/
2U . On the other hand it is easy
to realize that at large doping ferromagnetic correlations are
expected because of the fact that the doped carriers are locked
in singlets with the localized f spins. In an AFM or disordered
background, the motion of the p holes requires breaking the
singlet and it is therefore strongly inhibited, leading to the lack
of coherence that we discussed at length. Moreover it leaves
a local moment unscreened, increasing the fluctuations in the
local magnetization. Conversely, a ferromagnetic alignment of
the localized spins allows for an unperturbed delocalization of
the carriers, with a mechanism which is closely reminiscent
of the double exchange,49–51 where the coupling between
conduction electrons and localized spins is given by the
ferromagnetic Hund’s coupling.

Therefore, upon increasing the doping the tendency to form
AFM ordering is contrasted by the increased relevance of the
kinetic energy and eventually it becomes more favorable to
sacrifice the gain in superexchange energy in order to gain the
kinetic energy associated with the ferromagnetic background.
This leads, most importantly, to an intermediate region
between the two regimes in which the local magnetization
is strongly fluctuating.

FIG. 15. (Color online) Intensity plot of Im�p(ω → 0) as a
function of external magnetic field B and T at fixed doping δ = 0.01.
For visualization, the data have been normalized to max{Im�p(ωn)}
at each (B, T ). Dashed lines are drawn to better visualize the crossover
regions in the phase diagram.

From this discussion it is natural to associate the fluctua-
tions of the local magnetization with the scattering mechanism
that leads to the poor coherence. To test this idea we study the
response of the system in the AFM ordered metallic phase
to the application of a uniform magnetic field B which will
clearly favor the ferromagnetic tendency.

The results are summarized in the phase diagram of
Fig. 15, determined again using Im�p(iωn → 0). Details of
the calculations are given in Appendix B. Doping is fixed
to δ = 0.01, safely into the AFM ordered region in the limit
B → 0.

The phase diagram shows that the AFM order survives the
effects of the external magnetic field up to small strengths (B �
0.01). In this region the solution keeps the coherent metallic
character enforced by the long-range magnetic ordering.
Nevertheless, for larger values of the magnetic field the system
is driven to an incoherent state with finite-temperature NFL
behavior, as indicated by the increased scattering (light color).
In this regime the large applied field tends to magnetically
polarize the AFM ordered f moments, producing their strong
frustration and ultimately leading to the formation of an
incoherent magnetic background for the motion of the doped
carriers. Further increasing the strength of the magnetic field
triggers the formation of a ferromagnetic ordering of the f

moments and a fully polarized (coherent) metallic state (right
dark-colored area).

The most striking observation is that the present diagram
faithfully mirrors the diagram as a function of doping, clearly
suggesting that the evolution of the conduction properties as
a function of doping is associated with the transition from the
AFM state to the ferromagnetic regime and that the poorly
coherent metal is established precisely in the intermediate
region, dominated by the local spin fluctuations which appear
as the source of the scattering mechanism which opposes the
coherent motion of the holes.

VI. CONCLUSIONS AND PERSPECTIVES

In this work we presented a detailed dynamical mean-field
theory study of the properties of the unconventional metallic
state obtained by doping with holes the Mott insulator in the
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periodic Anderson model. We discuss in detail the non-Fermi-
liquid behavior of the system and the mechanism that is behind
the suppression of the coherence scale.

In this regime the holes have mainly p character, but they
tend to bind to the correlated f electrons to form a Zhang-
Rice-like singlet state. The formation of this composite object
leads to a highly incoherent metallic state which deviates from
a standard Fermi liquid above a coherence temperature which
decreases very rapidly upon reducing doping, and it is much
smaller than the effective Fermi energy that one could estimate
from the degree of correlation of the system, i.e., Tcoh � ZD.

We characterize this anomalous behavior by studying the
scattering properties of the carriers and by computing the
inverse lifetime and local spin susceptibility, which allow us to
quantitatively estimate the coherence temperature characteriz-
ing the breakdown of the standard Fermi liquid and to describe
the onset of an incoherent metal with finite lifetime.

The highly incoherent metal is unstable towards antifer-
romagnetic ordering only at very small doping, while at
large doping ferromagnetic correlations develop and favor a
regular metallic behavior supported by a mechanism which
reminds us of double-exchange physics. The intermediate
region, where the motion of the holes is not coherent, is
therefore dominated by large fluctuations of the f spins, which
provide the scattering channel responsible of the finite lifetime
of the carriers.

The relation between magnetic fluctuations and the break-
down of the standard FL scenario is emphasized by observing
that an external uniform magnetic field, which obviously
destroys AFM ordering favoring a ferromagnetic alignment,
mirrors the effect of doping and leads again to a wide region of
high incoherence between the two magnetically ordered states.

We emphasize that the path to poor coherence discussed in
this paper only depends on two general features of strongly
correlated materials, namely the Mott physics which leads
to the localization of carriers and the multiorbital physics
necessary to the local singlet formation. In this light, we
expect that the mechanism outlined here can be a rather
general source of violation of the Fermi-liquid paradigm and
incoherent behavior, and it can be relevant for example to
heavy fermions, but also, with some important differences
related to the d-wave symmetry of the Zhang-Rice singlets, to
the cuprate superconductors.

Finally, a natural question to address is to what extent our
findings can be considered the local portrait of the presence
of a quantum critical point, hidden by the absence of spatial
fluctuations. Indeed, the existence of a quantum critical point
in the PAM, although in a different model regime, has already
been pointed out in Ref. 52, using cluster extension of the
DMFT. The development of our work along this direction, in
order to clarify the fate of the small coherence scale in the
presence of short-range spatial fluctuations, is left for future
research.
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APPENDIX A: TWO-ORBITAL EFFECTIVE
IMPURITY MODEL

The calculation of physical quantities internal to the local
“pf dimer,” such as the moment-moment correlation function
〈mzpmzf 〉, can be performed within single-site DMFT using
an alternative formulation of the effective impurity problem
in which the local p orbital is not integrated out in the
construction of the effective action. Thus the original lattice
system is reduced to the problem of a single dimer embedded
in an electronic bath. The corresponding effective action has a
2 × 2 matrix structure in the orbital space and reads

Ŝ ′
eff = −

∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

ψ+
0σ (τ )Ĝ−1

0 (τ − τ ′)ψ0σ (τ ′)

+U

∫ β

0
dτ [nf 0↑(τ ) − 1/2][nf 0↓(τ ) − 1/2].

The Weiss field Ĝ−1
0 (iωn) describes the local quantum fluctu-

ations at the tagged dimer. The Bethe lattice self-consistency
becomes

Ĝ−1
0 (iωn) =

(
iωn + μ − εp − D2

4 Gp(iωn) −Vfp

−Vfp iωn + μ − εf

)
.

The DMFT algorithm for the two-orbital representation
proceeds as in the standard case. The effective two-orbital
impurity problem is solved to determine the impurity Green’s
functions:

Gimp
α (iωn) = −i〈α α+〉Ŝ ′

eff

with α = p, f . Next, the conduction electron self-energy �p

can be determined using the Dyson equation and used to
evaluate the local Green’s function Gp which is necessary
to update the local Weiss field. The whole algorithm is iterated
until convergence is reached.

APPENDIX B: LONG-RANGE ORDER

The DMFT equations can be extended to describe phases
with long-range magnetic ordering.16 Here we derive the
equations for the antiferromagnetic order in the two-orbital
effective problem, considering also the effect of a uniform
magnetic field. Similar equations can be derived for the
single-orbital effective model.

On a bipartite lattice crystal as our Bethe lattice, we can
define two sublattices A and B, such that nearest-neighbor
hopping always connects one A site with a B site. Then we can
introduce a four-component spinor with orbital and sublattice
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indices so that the bare lattice propagator takes the form

Ĝ−1
0kσ =

⎛
⎜⎜⎜⎝

αA −ε(k) −Vfp 0

−ε(k) αB 0 −Vfp

−Vfp 0 iωn − εf + μA 0

0 −Vfp 0 iωn − εf + μB

⎞
⎟⎟⎟⎠

with αs = iωn − εp + μs and s = A,B. The corresponding
Green’s functions are obtained via the Dyson equation with the
diagonal self-energy matrix with components {0,0,�Aσ ,�Bσ }.
The p-electron local Green’s functions, required to close the
DMFT equations, now read

GpAσ (k,iωn) =
∑

k

ζBσ

ζAσ ζBσ − ε(k)2
,

where

ζsσ = αs − V 2
fp

γsσ

, γsσ = iωn − εf + μs − �sσ (iωn).

In the case of antiferromagnetic ordering it is not necessary
to take explicitly into account both sublattices. Observing that

�Aσ (iωn) = �B−σ (iωn) = �σ (iωn)

and thus
ζAσ = ζB−σ = ζσ , (B1)

we can eliminate one of the two sublattices and recover a 2 × 2
formalism with a Weiss field given by

Ĝ−1
0σ (iωn) =

(
ασ − D2

4 Gp−σ (iωn) −Vfp

−Vfp iωn + μσ − εf

)
.

The local conduction electron Green’s function Gpσ (iωn)
can be expressed in terms of the following Hilbert transform:

Gpσ (iωn) = ζ−σ

∫
R

dε
ρ0(ε)

ζσ ζ−σ − ε2
,

which closes the set of DMFT equations.
In the presence of a uniform magnetic field B in the ordered

phase of the system, the symmetry relation Eq. (B1) between
the two sublattices does not hold. Therefore the DMFT solution
requires us to explicitly consider the two sublattices, and the
self-consistency equations for the four components of the
Weiss field G0σs(iωn) (s = A,B and s = B,A) reads

G−1
0σs = iωn + μsσ − εf − V 2

fp

iωn + μsσ − εp − D2

4 Gpσs(iωn)
,

where the coupling to the magnetic field B has been included
in a redefinition of the chemical potential μs σ = μsσ + σB/2.
This means that at each iteration we need to solve two impurity
models, one for each sublattice, and that the solution of one
sublattice will determine the Weiss field for the other.
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