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We study the single-impurity Anderson model by means of cluster perturbation theory and the variational
cluster approach (VCA). An expression for the VCA grand potential for a system in a noninteracting bath
is presented. Results for the single-particle dynamics in different parameter regimes are shown to be in good
agreement with established renormalization group results. We aim at a broad and comprehensive overview of the
capabilities and shortcomings of the methods. We address the question as to what extent the elusive low-energy
properties of the model are reproducible within the framework of VCA. These are furthermore benchmarked
against continuous-time quantum Monte Carlo calculations. We also discuss results obtained by an alternative,
i.e., self-consistent formulation of VCA, which was introduced recently in the context of nonequilibrium systems.
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I. INTRODUCTION

In recent years, both the applications for strongly correlated
quantum impurity models and the number of successful
approaches to harvest their physical results have grown
enormously. Those models were introduced to describe the
effects of magnetic transition-metal impurities immersed
in metallic hosts.1,2 Originally, they were derived to cap-
ture remarkable physical properties such as the resistance
minimum3,4 at a specific temperature scale TK (Ref. 5) or
the anomalous magnetic susceptibility and specific heat of
such materials. Today, a whole realm of applications for
quantum impurity models has opened. They describe the
physics of quantum dots and wires6–8 as well as molecular
electronics.9 Applications range from nanoelectronics all the
way to quantum information processing.10 Their properties
are essential for today’s technological applications in single-
electron transistors11 exhibiting the Coulomb blockade effect12

or in devices dominated by Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction.13–15 The behavior of various magnetic
phenomena and the fascinating branch of heavy-fermion
physics is described by strongly correlated quantum impurity
models.16,17 Recent studies have shown that the remarkable
material graphene exhibits Kondo physics,18 which may
be investigated theoretically by virtue of quantum impurity
models. These models have further been applied to understand
the adsorption of atoms onto surfaces.19–21 In addition, they
are of theoretical importance as solvable models of quantum
field theories.22,23 A renewed interest in understanding and
calculating dynamic quantities of these models was created
with the advent of dynamical mean-field theory (DMFT).24–26

In the foundations of this theory, quantum impurity models
have to be solved as an auxiliary problem.

A wide range of methods and approximations have been
suggested for the solution of quantum impurity models.
They, however, prove to be a very delicate subject because
standard perturbative approaches diverge.5 Prominent meth-
ods to gain physical conclusions include a self-consistent
perturbative expansion27 and Bethe ansatz techniques28 for
one-dimensional problems. The low-energy physics is very
well described by numerical renormalization group29 (NRG)
and in some limits also by functional renormalization
group30,31 (FRG) and density matrix renormalization

group32–34 (DMRG). There is a range of slave-particle
methods35,36 available as well as methods based on Hubbard’s
X-operator technique37,38 and calculations using variational
wave functions.21 Valuable physical insight has been gained
by using equation-of-motion techniques applying different
approximation schemes.39 For moderate system sizes, the
Hirsch-Fye quantum Monte Carlo41 (QMC) algorithm has
proven to achieve good results. In the past years, different
approaches to continuous-time QMC (Ref. 40) have been
applied very successfully to solve quantum impurity models
especially in application with DMFT. In this context, exact
diagonalization (ED) methods have been explored to solve
small systems.42

As of today, some limits of quantum impurity models are
understood with great precision, but there appear several gaps
to be bridged. The low-energy properties of these models
are reproduced very well by renormalization-group-based
approaches (i.e., NRG). These approaches in general have
trouble to capture the high-energy parts of the spectrum.
The same may be said about QMC methods, which if
applicable yield dynamic quantities in imaginary time. The
analytic continuation to the real energy axis is ill conditioned.
Spectra obtained by, for example, the maximum-entropy
method43,44 have a large uncertainty for higher energies. Exact
diagonalization methods, in principle, grant access to low- as
well as high-energy parts of the spectrum at the same time. Due
to the prohibitively large Hilbert space, however, only small
systems (about 10 to 20 sites) may be treated with this method,
the low-energy behavior of which is expected to deviate from
the one of the infinite lattice significantly. Nevertheless, the
advantage consists in the fact that the spectral properties may
be determined directly on the real energy axis. Aside from the
issue of the low-energy scale, also the flexibility to adapt to
various impurity configurations and geometries is limited in
many methods. NRG has been successfully applied only to the
one and two impurity cases so far. QMC approaches may suffer
from the sign problem for more complex multiband models.40

The region of large interaction strength is naturally difficult to
treat in standard perturbative/diagrammatic approaches (i.e.,
diagrammatic perturbation theory or FRG).

In this work, we test cluster perturbation theory45,46

(CPT) and the variational cluster approach47–49 (VCA) on the
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single-impurity Anderson model.1 The great flexibility and
versatility of CPT/VCA allows for obtaining approximate
single-particle dynamic quantities and static expectation val-
ues in all parameter regions of any lattice impurity model with
local interactions. However, these many-body cluster methods
can not be expected to describe the low-energy excitations as
accurately as specifically tailored methods do. It is, however,
interesting to see whether the correct low-energy behavior may
be reproduced at least to some extent. CPT as well as VCA
bare several advantages:50 (i) They yield spectra directly on
the real axis and (ii) also the high-energy incoherent part of
the dynamics becomes available. (iii) They are applicable in
all parameter regions and also at high interaction strengths.
(iv) They have the advantage of comparatively low com-
putational cost for a required resolution. Our main goal in
studying the well-understood single impurity is to benchmark
CPT/VCA for future application to the not-so-well-understood
case of multiband impurity models in various spatial geome-
tries. This paper also sets the foundations for a future extension
to nonequilibrium problems.

The text is organized as follows. The single-impurity
Anderson model is introduced in Sec. II. A short review
on CPT and VCA in this context is given in Sec. III. A
self-consistent formulation of VCA previously introduced
in the context of nonequilibrium problems51 is presented
in Sec. III 1. Some remarks about the choice of variational
parameters are provided in Sec. III 2. In Sec. IV, we discuss
the grand potential � for infinite fermionic systems in relation
with the VCA. Results for the single-particle dynamics of the
SIAM are provided in Sec. V. In this section, also the quality of
the low-energy Kondo physics is compared to benchmarking
results from NRG, DMRG, CT-QMC, Hartree-Fock, and
Bethe ansatz calculations. Finally, we summarize and conclude
our findings in Sec. VI.

II. SINGLE-IMPURITY ANDERSON MODEL

We consider the single-impurity Anderson model1 (SIAM)
in real space, in one dimension:

ĤSIAM = Ĥconduction + Ĥimpurity + Ĥhybridization. (1)

A tight-binding band of noninteracting s electrons with
nearest-neighbor 〈i, j 〉 hopping is described by

ĤNs

conduction = εs

Ns∑
i=1

∑
σ

c
†
iσ ciσ − t

∑
〈i, j〉 σ

c
†
iσ cjσ , (2)

where εs is the onsite energy of the particles, t is the
overlap integral between nearest-neighbor orbitals, and i, j ∈
{1, . . . ,Ns} where Ns is eventually taken to be infinity. The
operators c

†
iσ and ciσ , respectively, create and annihilate

electrons in orbital i with spin σ . The impurity Hamiltonian
consists of a single f orbital with local Coulomb repulsion U :

Ĥimpurity = εf

∑
σ

f †
σ fσ + U n̂

f

↑ n̂
f

↓ , (3)

with f †
σ creating an electron with spin σ and onsite energy εf

located at the impurity. The particle number operator is defined
as n̂

f
σ = f †

σ fσ . Finally, the coupling between a noninteracting

FIG. 1. (Color online) Illustration of the single-impurity An-
derson model. The model consists of a semi-infinite chain of
noninteracting s orbitals with nearest-neighbor hopping t and onsite
energy εs . The impurity f orbital is subjected to a local onsite energy
εf and local Coulomb interaction U and is hybridized with one of
the s orbitals (here, the one at the beginning of the chain) via a
hybridization matrix element V . This maps the impurity f orbital
onto site 0 and the impurity s orbital onto site 1 in this geometry,
and the rest of the conduction-band s-electron orbitals are mapped
onto sites 2 to ∞. The semi-infinite noninteracting chain is truncated
at some site L. This decomposes the model into two clusters: an
interacting cluster of variable size including the interacting impurity
f orbital and a semi-infinite chain of noninteracting s orbitals. In
CPT/VCA, these decomposed systems are coupled via a hopping
element t .

s orbital and the impurity f orbital is given by

Ĥhybridization = −V
∑

σ

c
†
1σ fσ + f †

σ c1σ , (4)

where V is the hybridization matrix element between the s and
the f orbitals of the impurity atom (see Fig. 1 for illustration).

We have set the chemical potential μ to the center (εs) of the
conduction-electron density of states and choose μ = εs = 0.
The resonance width � is defined as

� ≡ π V 2 ρs(0) = V 2

t
. (5)

For the model defined in Eq. (2), the local density of states
of the conduction electrons ρs(0) is given by ρs(0) = 1

π t
.

In the forthcoming discussion, we refer to the particle-hole
symmetric case when we furthermore set εf = −U

2 . All
calculations are performed with t = 1 and V = 0.3162, which
yields � = 0.1. All reported results, except for the CT-QMC
data in Sec. V F, are for zero temperature.

III. CLUSTER PERTURBATION THEORY/VARIATIONAL
CLUSTER APPROACH

A handle on dynamic single-particle correlations and
expectation values is given by the single-particle Green’s
function Gσσ ′

ij (ω), which we calculate within cluster pertur-
bation theory45,46 as well as the variational cluster approach.47

CPT and VCA have been previously applied inter alia to the
fermionic Hubbard model and VCA also with great success
to bosonic systems52–54 with broken-symmetry phases. The
groundwork of VCA lies within cluster perturbation theory,
which is a cluster extension of strong-coupling perturbation
theory, valid to first order in the intercluster hopping. The
main result of CPT is that the Green’s function of the physical
system G (which we call full Green’s function throughout this
text) may be obtained by a Dyson-type equation in matrix form

G−1 = g−1 − T. (6)
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Here, g denotes the Green’s function of a cluster which
comes about by tiling the lattice of the physical system into
smaller, numerically exactly solvable patches. This tiling is
done by removing the hoppings between sites connecting such
clusters. Therefore, the matrix T = g−1

0 − G−1
0 contains all

single-particle terms connecting clusters (i.e., the intercluster
hopping which will be referred to as Tinter below). The
subscript zero denotes the noninteracting Green’s function.
To apply this approach to the SIAM, we start by splitting the
physical model under consideration [Eq. (1)] into appropriate
pieces. Here, we consider a cluster decomposition consisting
of two parts. One part, consisting of a cluster of size L, which
contains the interacting impurity f orbital

Ĥinteracting = ĤL−1
conduction + Ĥimpurity + Ĥhybridization, (7)

and a second, infinitely large part, the environment, which
contains the rest of the conduction band

Ĥenvironment = Ĥ∞
conduction. (8)

The original Hamiltonian Eq. (1), defined on the semi-infinite
lattice, may now be rewritten as

ĤSIAM = Ĥinteracting + Ĥenvironment + Tinter. (9)

Here, Tinter is the part of T describing the hopping from the
interacting cluster to environment “cluster,” which is the only
term not included in the two clusters. For the SIAM, the two
bare Green’s functions ginteracting and genv {which correspond
to Ĥinteracting [Eq. (7)] and Ĥenvironment [Eq. (8)]} needed for
Eq. (6) may be evaluated separately. This is a bit different
from the usual application of CPT to translationally invariant
systems which normally leads to a single cluster having
discrete spectra, embedded in a superlattice. Therefore, the
application of CPT to this problem does obviously not suffer
from issues arising due to periodization prescriptions for the
Green’s function or self-energy.50 We are dealing with two
fundamentally different clusters, where one has a discrete [in-
teracting cluster, Eq. (7)] and the other a continuous spectrum
[environment, Eq. (8)]. Due to the continuous spectrum of
the environment, a numerically favorable representation of the
Green’s function of the physical system G in terms of the
Lehmann representation (see, for example, Ref. 55) is not
possible. For evaluating quantities from the Green’s function
G, one therefore has to use a direct numerical integration,
which works best on the Matsubara axis.

The cluster Green’s function ginteracting is determined by
exact diagonalization of Eq. (7). We apply the Lanczos
algorithm56 to find the ground state and a band Lanczos method
to obtain the Green’s function. The band Lanczos method is
initialized with a set of all annihilation and creation operators
under consideration applied to the ground state. Thereby, we
obtain the so-called Q matrices,57 which are used to calculate

the Green’s function

gσσ ′
interacting,ij (ω) =

∑
α

(∑
γ

Qσ
iγ

1

ω − λγ

Q
σ ′†
jγ

)
α

,

Q
σ†
iγ =

{
1√
d
〈γ |ĉσ†

i |�0〉 particle part,
1√
d
〈�0|ĉσ†

i |γ 〉 hole part,

λγ =
{
ωγ − ω0 particle part,

ω0 − ωγ hole part.

Essentially, this is the Lehmann representation for zero-
temperature Green’s functions. The sum over α denotes a sum
over a possibly d-fold degenerate set of ground states. The
sum over γ is over a set of orthonormal basis states having
one particle more than the ground state (particle part) and one
particle less than the ground state (hole part).

The Green’s function of the environment genv is given
analytically by the Green’s function of a semi-infinite tight-
binding chain58

genv,i,j (ω) = υ0,i−j (ω) − υ0,i+j (ω),

υi,j (ω) = −i sign[Im(ω)]√
4|t |2 − (ω − εs)2

(
−ω − εs

2|t |
(10)

+ i sign[Im(ω)]

√
1 −

(
ω − εs

2|t |
)2)|i−j |

,

where υi,j is the retarded/advanced Green’s function of the
infinite tight-binding chain if the infinitesimal imaginary part
(0+) of ω is positive/negative.

VCA, the variational extension of CPT, is based on the
self-energy functional approach (SFA).48,49 In the SFA, one
considers the Legendre-transformed Luttinger-Ward59 func-
tional F [�], which is a universal functional of the self-energy,
i.e., it does not depend on G0. F generates the Green’s function,
i.e.,

β
δF [�]

δ�
= −G[�], (11)

where β denotes the inverse temperature. Introducing the
(nonuniversal) self-energy functional

�[�,G0] = F [�] − Tr ln
[( − G−1

0 + �
)
G∞

]
(12)

(see Ref. 53 for a definition of G∞), one recovers Dyson’s
equation at its stationary point:

β
δ�[�,G0]

δ�
= −G[�] + (

G−1
0 − �

)−1 != 0. (13)

Equation (13) is an equation for the physical self-energy �

given the Luttinger-Ward functional F [�] and the free Green’s
function G0. The trace Tr is short for Tr ≡ 1

β

∑
ωn

tr, the sum
is over fermionic Matsubara frequencies, and the small form
trace tr denotes a sum over lattice sites and spin. The idea is
that, due to its universality, F [�] (and thus �[�,G0]) can be
evaluated exactly by exploiting a different system (so-called
“reference system”) which differs from the physical system by
single-particle terms only. This reference system Ĥ′ is simpler,
and thus exactly solvable. It is defined on a cluster tiling of
the original lattice and has the same interaction as the original
system Ĥ. The VCA reference system is chosen to be a cluster
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decomposition of the original lattice, as the one introduced for
CPT above. Comparing Eq. (12) for the full and the reference
systems yields

�[�,G0] = �′[�,g0] + Tr ln
[−(

g−1
0 − �

)]
− Tr ln

[−(
G−1

0 − �
)]

, (14)

where lowercase g denotes Green’s functions of the reference
system. Thus, the SFA/VCA approximation consists in solving
Eq. (13) in a restricted range of self-energies �, i.e., those
produced by the reference system. In this way, the space of
allowed � is spanned by the set of single-particle parameters
of the reference system x′. This means that the functional
�[�,G0] [Eq. (14)] becomes a function of those parameters:

�(x′) = �′(x′) + Tr ln[−G(x′)] − Tr ln[−g(x′)]. (15)

The stationarity condition determining the physical parameters
(13) is then given by

∇x′�(x′) != 0. (16)

The Green’s function of the physical system is obtained by
the CPT relation (6). The matrix T = g−1

0 − G−1
0 [Eq. (6)]

in VCA contains all single-particle terms not included in
the reference system (i.e., Tinter) as well as, in addition, the
deviation introduced by VCA, �x ≡ x′ − x of the single-
particle parameters of the reference system x′ with respect
to those of the original system x. In the following, we fully
adopt the zero-temperature formalism, in which according
expressions for the grand potential and related quantities may
be readily evaluated.

1. Alternative: Self-consistent VCA

In Ref. 51, we explored an alternative version of VCA
whereby the variational parameters x′ were determined by a
suitable self-consistent criterion, instead of looking for the
stationary point of the grand potential � [Eq. (16)]. This
alternative approach was introduced to treat systems out of
equilibrium, although it can equally be adopted in equilibrium.
The advantage of this approach is that the solution of a
self-consistent equation is numerically easier than the search
for a saddle point. The idea of this self-consistent approach
is to use a reference system which resembles the full system
best.

The strategy is to find those values x′ for the set of param-
eters of the reference system which let the expectation values
of their corresponding single-particle operators 〈Ô〉cluster,x′

coincide with those of the full system 〈Ô〉CPT,x,x′ . Here, the
angle brackets denote expectation values in the cluster and the
full system coupled by CPT or VCA, respectively. Consider
the onsite energies ε′

f and ε′
s as variational parameters. We will

look for those cluster parameters ε′
f and ε′

s , which fulfill the
relations 〈

n̂f
σ

〉
cluster,ε′

f ,ε′
s

!= 〈
n̂f

σ

〉
CPT,εf ,εs ,ε

′
f ,ε′

s

,

(17)
L−1∑

i

〈
n̂i

σ

〉
cluster,ε′

f ,ε′
s

!=
L−1∑

i

〈
n̂i

σ

〉
CPT,εf ,εs ,ε

′
f ,ε′

s

.

The sum is over all noninteracting sites included in the cluster.
This amounts to solving a system of nonlinear equations in

each step of the self-consistency cycle. In general, it is possible
to vary each single-particle parameter individually. For reasons
of keeping the numerics tractable, we use one ε′

s only, which we
take to be the same for each orbital in the chain. Extension to
a larger number of ε′

s is straightforward. To fix this parameter,
we require the average particle density on the noninteracting
sites to fulfill the condition (17). This corresponds to the
condition presented in Ref. 51 [see Eq. (13) therein]. In some
situations (see the following), we will alternatively consider
the hybridization matrix element V ′ and the intracluster
hopping t ′ as variational parameters, and proceed in an
analogous way. Specifically, the particle number expectation
values in Eq. (17) are replaced by hopping expectation values.
Again, for t ′ we use a single variational parameter for hopping
between all uncorrelated sites and fix it by requiring the mean
value of hopping in the cluster and the full system to coincide.
A discussion of this self-consistency condition in connection
with (cluster) DMFT is given in Ref. 51. We use an improved
multidimensional Newton-Raphson algorithm to find the roots
of the system (17). In some parameter regions, no solution is
found.

A comparison between results obtained via the usual SFA,
i.e., as stationary points of the grand potential �, which we
will now refer to as VCA�, to those obtained by the above-
mentioned self-consistent condition (VCASC ) will be given in
the results section (Sec. V).

2. Choice of variational parameters

In VCA, one can, in principle, optimize all possible single-
particle parameters which are present in the original model,
as well as additional ones. By adding bath sites not present
in the original model, one includes dynamical contributions
to the cluster Green’s function.48 The numerical difficulty
increases with the number of variational parameters. For
the VCASC case, a multidimensional root-finding algorithm
has to be adopted. For the VCA� case, a saddle point in
many dimensions has to be located. Since the allowed set
of variational parameters limits the search space for the
self-energies, one will find a solution in this restricted space
only. It is therefore desirable to vary as many single-particle
quantities as possible. A balance has to be found between a
large space of available self-energies and numerically feasible
multidimensional algorithms. Many works have addressed the
question of which parameters are the most important to vary
and how the choice of variational parameters will influence
or limit the results.50 As discussed in Refs. 60 and 61, it
is important to include an overall chemical potential as a
variational parameter in order to preserve thermodynamic
consistency. As a compromise, we will take two variational
parameters x = {εf ,εs}, which cover the overall chemical
potential. Note that this amounts to shifting an overall onsite
energy in the whole cluster plus an extra independent shift
at the correlated site. For the variation of onsite energies, we
observe the grand potential � to be maximal at the stationary
point, which is in agreement with results for other models.
Further parameters in the SIAM are the hopping t and the
hybridization V . As discussed, for example, in Ref. 62, the
variation of hopping parameters is not straightforward. For
the VCA� approach, we observe a maximum of � at �V =

235107-4



VARIATIONAL CLUSTER APPROACH TO THE SINGLE- . . . PHYSICAL REVIEW B 85, 235107 (2012)

−V in the center of two symmetric stationary points. The
two symmetrically lying minima are equivalent due to the
fact that the self-energy is an even power of V . As one
tunes the parameters away from particle-hole symmetry, this
stationary point is lost in the crossover region from the Kondo
plateau to a doubly or unoccupied impurity (see Sec. V C). In
this parameter region, the hopping t and hybridization V are
probably not appropriate to be used as variational parameters
within VCA�.

In the following, we always choose the set x = {V } or
x = {V,t} for calculations at particle-hole symmetry, which
also includes {εf ,εs}, since the variation of onsite energies
will always yield zero deviations from the physical parameters
and thus reproduce the CPT result here. For all other parameter
regions, it is sufficient to consider x = {εf ,εs} as variational
parameters.

IV. GRAND POTENTIAL FOR REFERENCE SYSTEMS
OF INFINITE SIZE

The reference system consists of two parts: a finite
interacting system and a noninteracting system of infinite size,
the environment. �′(x′) is given by the sum of the grand
potentials of the interacting cluster (�′

interacting) and of the

environment (�′
env) {which correspond to Ĥinteracting [Eq. (7)]

and Ĥenvironment [Eq. (8)]}. Here, we outline how to determine
the grand potential for such kinds of reference systems. For
the Green’s function G within the CPT/VCA approximation,
the Dyson equation is given in Eq. (6). The Green’s function
and T have the block structure

G =
(

Gcc Gce

Gec Gee

)
, T =

(
Tcc Tce

Tec 0

)
.

Up to this point, all matrices involving environment indices
have infinite size. As far as the Green’s function itself is
concerned, this is no problem as we are primarily interested in
Gcc for which the Dyson equation reduces to

Gcc = gcc + gccTccGcc + gccTceGec,

Gec = geeTecGcc,

and therefore

Gcc = gcc + gcc�̃ccGcc, �̃cc := Tcc + TcegeeTec.

A bit more tedious is the elimination of the explicit dependence
on the environment part of G, as far as the grand potential,
Eq. (15), is concerned. We start out from a form of the grand
potential functional given by Sénéchal:50

�� := � − �′ = −Tr ln(1 − Tg). (18)

In Appendix A, it is shown that �� can be expressed solely
in terms of cluster quantities

�� = −Tr ln(1cc − �̃ccgcc). (19)

Along the lines outlined in Ref. 50, the resulting integral can
be regularized and expressed as

� − �′
env = �′

interacting + tr(T) − 1

π

∑
σ

∫ ∞

0
dω

× ln
∣∣det

(
1cc − �̃σ

cc(iω)gσ
cc(iω)

)∣∣. (20)

The quantities �′ are the grand potentials of the uncoupled
reference system. The constant infinite contribution �′

env is
absorbed into the definition of �. It plays no further role as it
does not depend on the variational parameters. This integral
may be evaluated as suggested in Ref. 50 by integrating from
0 to �1, from �1 to �2, and from �2 to ∞. �1 and �2

represent two characteristic scales in the problem (for example,
the smallest/largest eigenvalue of the Hamiltonian matrix).
For the last part of the integral, a substitution ω̃ = 1

ω
is per-

formed. We use an adaptive Gauss Legendre integrator for the
evaluation.

V. RESULTS

We have evaluated several benchmarking dynamic quanti-
ties of the SIAM. In the following, results for the impurity
density of states will be presented and compared to ED,
NRG, and DMRG data. We will elaborate on the strengths
and weaknesses of the methods as well as the comparison
of CPT to VCA. Furthermore, we will discuss the relation
between VCASC, where the variational parameters are deter-
mined self-consistently via Eq. (17) and VCA�, where the
variational parameters are defined at the stationary point of
the grand potential. We will show that the Kondo resonance
is reproduced within the framework of CPT/VCA and that
the variational results fulfill certain analytic relations such as
the Friedel sum rule [Eq. (23)]. The method will be shown
to provide reasonably accurate results in a wide range of
parameter regimes of the model. Low-energy properties related
to the Kondo temperature TK will be discussed in context
with renormalization group results. The imaginary frequency
Green’s function and self-energy will be compared to CT-QMC
results.

A. Even-odd effect: Choice of the impurity position

CPT/VCA rely on the Green’s function of an interacting
cluster of size L which is obtained by exact diagonalization.
Due to this fact, it is unavoidable that some effects of the
finite-size cluster influence the solution of the full system
(except in the case of vanishing interaction strength, i.e.,
U = 0.) Therefore, suitable clusters have to be chosen on a
basis of physical results. Some aspects of this are discussed
by Balzer et al.60 in the context of DMFT and VCA and
by Hand et al.63 in the context of DMRG. In this work,
we consider interacting clusters of even size only. For these
systems, the ground state does in general not suffer from spin
degeneracy. Furthermore, the spatial position of the impurity
is important. This can be inferred from the bath’s density
of states, which vanishes for ω = 0 at every second site. It
may also be seen in the structure of the ground state, for
which the size of the degenerate sectors alternates with the
geometrical size of the cluster. Throughout this work, we
position the impurity f orbital at the beginning of the infinite
chain, although essentially the same results are achieved by
attaching it to an s orbital at site two, four, etc., inside the
chain.
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B. Spectral properties

The single-particle spectral function Aσ
ii is obtained from

the retarded Green’s function Gσ,ret
ii (see, e.g., Ref. 64):

Aσ
ii(ω) = − 1

π
Im

[
Gσ,ret

ii (ω)
]
. (21)

The diagonal element at the impurity f orbital Aσ
ff (ω)

describes the impurity density of states ρσ
f (ω). A physical

property of the SIAM, which poses a challenge to numerical
methods, is the Kondo-Abrikosov-Suhl resonance often re-
ferred to as the Kondo peak.4 It arises in the parameter regime
where the magnetic moment of the impurity is screened by the
conduction electrons to form a singlet state.65 The particle-hole
symmetric model lies in the center of this Kondo region.
This quasiparticle excitation is, for example, not captured in
mean-field approaches. With increasing interaction strength
U , the numerical solution becomes increasingly challenging.

In this section, we elaborate on the results for the density
of states in the particle-hole symmetric case. A comparison
of the local single-particle spectral function at the impurity
f orbital as obtained by exact diagonalization and VCA� is
shown in Fig. 2. The ED result is for a 10-site system with
open boundary conditions. The VCA� result is for an infinite
reference system, where the interacting part of the reference
system was taken to be of size L = 10. An ED treatment of a
finite-size SIAM can not reproduce the low-energy resonance
at zero energy in the single-particle spectral function (see also
Appendix B). It consists, in the particle-hole symmetric case,
for an even number of sites (and open boundary conditions),
of symmetrically lying excitations which shift closer to zero
for increasing system size and represent a large energy scale.
For an odd number of sites, a pole in the local single-particle
Green’s function of the impurity f orbtial will be present at
ω = 0. CPT as well as VCA are able to reproduce finite spectral
weight at ω = 0 (even for 0+ → 0) since these methods are

FIG. 2. (Color online) Comparison of the local single-particle
spectral function at the impurity f orbital at particle-hole symmetry
as obtained by exact diagonalization (ED) of a 10-site chain (black
line) and VCA� (cyan line). VCA� was used with two variational
parameters: the hopping t and the hybridization V considering a
length of the interacting part of the reference system of L = 10. All
data shown are for an interaction strength of U/� = 12. All results
have been obtained for a large numerical broadening 0+ = 0.05. The
inset shows a zoom to the low-energy region.

formulated for an infinite system. The finite-size structure in
the high-energy incoherent part of the spectrum, owing from
the excitations of the interacting part of the reference system,
is strongly reduced in VCA�.

Results for the single-particle spectral function (21) of
the impurity f orbital are shown in Fig. 3 for four different
interaction strengths U/� = 4, 8, 12, and 20. As a reference,
the spectra obtained with NRG and DMRG from Peters34 are
plotted. Renormalization group approaches such as NRG are
especially suited to reproduce the low-energy quasiparticle
excitations of this model and therefore serve as a reference
for our data. The spectra of Peters were obtained for a flat
conduction electron density of states, which was mapped by
linear discretization in energy space onto the corresponding
orbitals of a semi-infinite chain. Our model is based on a
semicircular density of states of the conduction electrons. The
low-energy part of the spectra is comparable because we have
chosen the only relevant parameter for the low-energy part of
the spectrum: � accordingly. This parameter fully determines
the influence of the conduction electrons on the impurity f

orbital for low energies and therefore the low-energy part
of the spectrum. The high-energy part of the spectrum may
deviate slightly and is not directly comparable, but yields a
crude reference. In addition, we have chosen here a very large
numerical broadening of 0+ = 0.05 for reasons of comparison
only. This value was used in the DMRG calculations and is
needed there to obtain spectra using the correction vector
method. This influences the width and the height of the
Kondo resonance, located at ω = 0. The CPT spectral weight
at ω = 0 appears too broad in the plot in comparison with
the NRG result. This is only partly due to a large numerical
broadening. Due to the nature of the CPT method, we can not
expect it to reproduce the low-energy spectrum as well as RG
calculations do. The height of the Kondo resonance appears
too small in this figure because of the large 0+. It converges
with 0+ → 10−6 to the result predicted by scattering theory
(see Fig. 5 and Sec. V C). The high-energy incoherent parts of
the spectrum located at ω ≈ −εf and ω ≈ −εf + U develop
more and more with increasing length of the interacting part
of the reference system L. A comparison of the center of
gravity of the high-energy incoherent part of the spectrum
of the L = 14 site CPT result and the 50-site DMRG result
is in reasonable agreement. There are spurious structures
in the spectral density, originating from the cluster Green’s
function of the finite system, preventing continuous spectra to
form. We would like to note that the accurate determination
of the Green’s function of the reference system is of prime
importance. An inaccuracy in pole positions or pole weights
for very small but nonvanishing weights will yield spurious
artifacts in the spectra in the vicinity of ω = 0.

To improve on the result of CPT, we considered the hopping
matrix element t and the hybridization matrix element V as
variational parameters. The parameters used for the evaluation
of the reference system were determined with two different
methods. VCA� results are depicted in the plot for a length
of the interacting cluster of L = 10. As shown in the figure,
this method strongly reduces the finite-size peaks in the high-
energy incoherent part of the spectrum. The width of that part
of the spectrum is reproduced correctly for high values of U

where the full width at half maximum (FWHM) within VCA

235107-6



VARIATIONAL CLUSTER APPROACH TO THE SINGLE- . . . PHYSICAL REVIEW B 85, 235107 (2012)

−15 −5 0 5 15
0

0.5

1

1.5

2

2.5

3

ω/Δ

ρ f

U/Δ=12

−15 −5 0 5 15
0

0.5

1

1.5

2

2.5

3

ω/Δ

ρ f

U/Δ=20

−15 −5 0 5 15
0

0.5

1

1.5

2

2.5

3

ω/Δ

ρ f

U/Δ=8

−15 −5 0 5 15
0

0.5

1

1.5

2

2.5

3

ω/Δ

ρ f
U/Δ=4

U/Δ=20

 

 CPT, L=14
VCA

Ω
(V,t), L=10

VCA
SC

(V,t), L=10

DMRG (Peters 2011)
NRG (Peters 2011)

(a)

(c)

(b)

(d)

FIG. 3. (Color online) Single-particle spectral function at the impurity f orbital at particle-hole symmetry for different interaction strengths
U . The interaction strengths shown are U/� = 4 in the upper left figure (a), U/� = 8 in the upper right figure (b), U/� = 12 in the lower
right figure (c), and U/� = 20 in the lower right figure (d). Each plot shows the results obtained by CPT for a length of the interacting part of
the reference system of L = 14 (dashed red line), VCA� with two variational parameters: the hopping t and the hybridization V , which are
determined by the stationary point of the grand potential � at a length of the interacting part of the reference system of L = 10 (blue line),
VCASC with the same variational parameters determined self-consistently at a length of the interacting part of the reference system of L = 10
(cyan line). All results have been obtained for a large numerical broadening 0+ = 0.05. As a reference, the NRG and DMRG results of Peters
(Ref. 34) are plotted in yellow and dashed-dotted dark brown lines, respectively.

is given by ≈ 1.9�. This comes very close to the expected 2�

(Refs. 21 and 66) of the high-energy atomic excitations. VCA
improves the spectral properties of the Kondo resonance with
respect to CPT, bringing it closer to the 50-site DMRG result.
The data obtained using the self-consistent VCA approach
VCASC agree very well with the result based on VCA� on
the position of the spectral features. The respective weight,
however, disagrees for low values of interaction strength U ,
which is due to the different values predicted for the variational
parameters by the two procedures. One should note that the
two broad Lorentzian high-energy peaks (in VCA� as well as
VCASC ) consist of many excitations which will be revealed
upon repeating this calculation with smaller 0+.

A spatially resolved image of the spectral function, calcu-
lated with CPT, for the parameter set used in Fig. 3(c) is shown
in Fig. 4. The qualitative picture would be the same in VCA;
merely, the structures are slightly shifted. This view reveals
how the perturbation, introduced by the impurity, is fading
away slowly in an alternating fashion. At every second site

away from the impurity, a dip at ω = 0 is present, which is
usually referred to as Fano dip.

A more detailed look on the spectral region of the Kondo
resonance is provided in Fig. 5. The CPT/VCA� data are
compared to NRG and FRG data as well as results obtained
from a restricted Hartree-Fock calculation from Karrasch
et al.31 The CPT/VCA results are plotted for lengths of the
interacting part of the reference system L = 2, 4, 6, 8,and 10
for two different sets of parameters. The results for higher L

are always located towards the center of the figure. The results
corresponding to the resonance at ω = 0 were obtained for
the particle-hole symmetric model. For this set of parameters,
we used the hybridization V as a variational parameter. The
second peak shown centered around ω/� ≈ 0.8 corresponds
to a parameter set right at the border of the Kondo region. The
variational parameters used away from particle-hole symmetry
are x = {εf ,εs}. One can see that the CPT result is not
converged for the L = 10 site interacting clusters yet. In
contrast, the VCA� result seems to converge much faster.
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FIG. 4. (Color online) The local density of states [Eq. (21)] is
shown resolved in real space. The spectrum was obtained using CPT
on a L = 14 site interacting cluster. The impurity parameters were
U/� = 12, εf /� = −6, and the numerical broadening was set to
0+ = 0.05. The spectrum shown in Fig. 3(c) corresponds to the data
shown for the impurity f orbital located at site 0 in the plot. The
density plot is shown with a logarithmically scaled coloring from
blue indicating zero to red indicating high values.

Although in the plot it looks like the VCA result does not
improve much upon a restricted Hartree-Fock calculation, we
will show in the following that CPT/VCA yields results in all
parameter regimes of the SIAM which can not be reproduced
within a mean-field treatment.

The variational parameters obtained for the two sets of
parameters shown in Fig. 5 are presented in Fig. 6. In addition
to the VCA� parameters, which were used for the results
above, the variational parameters obtained in VCASC are also
depicted. We plotted the difference of the parameter of the
reference system x′ to the physical parameter x: �x. All
deviations �x appear to converge to zero with increasing
length L of the interacting part of the reference system. Notice
that the self-consistent approach always leads to a �x of
greater magnitude with respect to VCA�. Remarkably, the
spectra obtained by VCA� and VCASC for the parameter
set x = {εf ,εs} are in very good agreement even though the
variational parameters are rather different. The most striking
difference is that the self-consistent approach yields a negative
�εf , while the �-based VCA yields a positive �εf . This
is, however, compensated by the different �εs . Using the
hybridization V as a variational parameter, the �V obtained
by VCA� and VCASC agree rather well. Remarkably, the
resulting density of states is very different, which shows that
the calculation is extremely sensitive to this parameter.

The low computational effort of CPT/VCA proves ad-
vantageous for calculating spectra. The VCA procedure (for
a 12-site interacting cluster) usually converges in minutes
to hours on a standard workstation PC, while more de-
manding numerical methods often need days to a week to
converge. Furthermore, the spectra are exactly determined
from the Lehmann representation, and no ill-posed analytical
continuation is required in comparison to methods working
in imaginary time or imaginary frequency space. To our
knowledge, the most accurate spectra available for this model
so far are published in Ref. 67.

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

ω /Δ

ρ f

 

 

NRG
FRG
RHF
CPT
VCA

Ω

3.06

3.08

3.1

3.12

3.14

3.16

3.18

−0.2 0 0.2 0.4 0.6 0.8 1

FIG. 5. (Color online) Magnification of the Kondo resonance
in the density of states of the impurity f orbital. Shown are
calculations for two different sets of parameters. The resonance at
ω = 0 corresponds to the particle-hole symmetric model: U/� = 20,
εf /� = −10, while the resonance away from zero corresponds to a
set of parameters right at the edge of the Kondo region: U/� = 20,
εf /� = 0. For comparison, we show NRG (yellow line) and FRG
(dark brown line) data as well as results obtained from a restricted
Hartree-Fock calculation (blue line) from Karrasch et al. (Ref. 31).
(The NRG results are partially hidden by the FRG results.) The
CPT result (cyan line) is shown for lengths of the interacting
part of the reference system L = 2, 4, 6, 8, and 10. Results for
higher L are always located towards the center of the plot. In the
particle-hole symmetric case, VCA� (magenta line) was performed
with variational parameters x = {V } for L = 2, 4, 6, 8,and 10. Away
from particle-hole symmetry, VCA� was performed with variational
parameters x = {εf ,εs} for the same lengths of the interacting part of
the reference system L. For the CPT/VCA calculations, a numerical
broadening of 0+ = 10−6 was used. The inset shows a zoom to the
top region of the peaks.

Overall, one may conclude that CPT, VCA�, and VCASC

reproduce a Kondo resonance, which fulfills the Friedel sum
rule [Eq. (23)] for 0+ → 10−6. The VCA results improve
drastically upon the CPT data, which may be seen in a
much faster convergence in L and a suppression of finite-size
effects, especially in the high-energy part of the spectrum,
which in addition has the expected width within VCA. VCA�

and VCASC agree rather well on the position of the spectral
features. However, they assign very different spectral weight
to them at low values of interaction strength U .

C. Impurity density of states and occupation

The occupation of the impurity f orbital is given at T = 0
by 〈

nf
σ

〉 = 1

2
+ 1

π

∫ ∞

0
dω Re

[
Gσ

ff (iω)
]
. (22)

This integral may be evaluated from the imaginary frequency
Green’s function, which in turn is directly accessible within
CPT/VCA.

To see whether CPT/VCA are good approximations in all
parameter regions of the SIAM, we vary the onsite energy
of the impurity εf at fixed interaction strength U . The local
impurity density of states at the chemical potential (ω = μ =
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FIG. 6. (Color online) Evolution of the variational parameters for
the data shown in Fig. 5. Shown is the difference of the parameters
of the reference system x′ to the physical parameter x: �x = x′ −
x. Parameters obtained by VCA� (crosses) are compared to those
obtained by VCASC (circles). The variational parameters �εf (dark
brown line) and �εs (yellow line) correspond to the calculation away
from particle-hole symmetry in Fig. 5, while the parameter �V (olive
line) corresponds to the calculation at particle-hole symmetry. Lines
are only guides to the eye.

0) and the impurity occupation number are plotted for various
lengths of the interacting part of the reference system L =
2, 4, 6,and 8 for the same model parameters. The VCA� result
is shown in Fig. 7, a VCASC calculation in Fig. 8, and the CPT
data in Fig. 9.

We start out by discussing the VCA� result (Fig. 7). The
variational parameters x used within VCA� are the onsite
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FIG. 7. (Color online) Density of states of the impurity f orbital
(solid lines) obtained via VCA� at ω = 0 and average occupation of
the impurity (dashed lines) for different lengths of the interacting
part of the reference system L = 2, 4, 6,and 8 (blue, green, red,
and cyan lines) as a function of the impurity onsite energy εf . The
Coulomb interaction U is kept constant at U/� = 20. The numerical
broadening used is 0+ = 10−6. The set of single-particle parameters
considered for variation within VCA� is x = {εf ,εs}. Note that here
the point εf = −U

2 corresponds to the particle-hole symmetric case.
The Friedel sum rule [Eq. (23)] was applied to the L = 8 result (dotted
violet line). It is fulfilled to a very good approximation in the Kondo
region and far outside of it. Small deviations from the Friedel sum
rule arise at the crossover region to an empty or doubly occupied
impurity. The inset shows a zoom to the Kondo plateau.
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FIG. 8. (Color online) Density of states of the impurity f orbital
(solid lines) obtained via VCASC at ω = 0 and average occupation of
the impurity (dashed lines) for different lengths of the interacting
part of the reference system L = 2, 4, 6,and 8 (blue, green, red,
and cyan lines) as a function of the impurity onsite energy εf . The
Coulomb interaction U is kept constant at U/� = 20. The numerical
broadening used is 0+ = 10−6. The set of single-particle parameters
considered for variation within VCASC is x = {εf }. Note that here the
point εf = −U

2 corresponds to the particle-hole symmetric case. The
Friedel sum rule [Eq. (23)] was applied to the L = 8 result (dotted
violet line). It is fulfilled in a region of nf � 0.4 and nf � 1.6.

energy of the impurity εf and the onsite energies of the
uncorrelated cluster sites εs . The density of states ρf (0)
display a pronounced plateau which is related to the existence
of a quasiparticle peak (Kondo resonance) pinned at the
chemical potential. The parameter regions leading to an empty
(−εf < 0) or to a doubly occupied (−εf > U ) impurity do not
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FIG. 9. (Color online) Density of states of the impurity f orbital
(solid lines) obtained via CPT at ω = 0 and average occupation of
the impurity (dashed lines) for different lengths of the interacting
part of the reference system L = 2, 4, 6, and 8 (blue, green, red,
and cyan lines) as a function of the impurity onsite energy εf . The
Coulomb interaction U is kept constant at U/� = 20. The numerical
broadening used is 0+ = 10−6. Note that here the point εf = −U

2
corresponds to the particle-hole symmetric case. The Friedel sum
rule [Eq. (23)] was applied to the L = 8 result (dotted violet line).
It is drastically violated. However, the results are far from converged
for the small lengths of the interacting part of the reference system
considered here.
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show a pinning of the Kondo resonance at the Fermi energy,
as expected. In the half-filled region which lies in-between,
virtual spin fluctuations lead to a pronounced quasiparticle
peak at the chemical potential. We observe that the result
converges with increasing length of the interacting part of
the reference system L to the physically expected result. Due
to the variational parameters considered, the deviations of the
results as a function of L are rather small as compared to CPT,
where the results change significantly with increasing size of
the reference system (see Fig. 9). We expect CPT calculations
in the empty or doubly occupied regions to converge rather fast
(within a few sites), while calculations in the Kondo regime,
and particularly in the crossover region, may fully converge
only at very large (i.e., exponentially) sizes of the reference
system.63 This is inferred from the spin-spin correlation
function in the cluster which is observed to decay sufficiently
fast outside the Kondo plateau (i.e., it is effectively zero at the
boundary of the cluster) but shows long-range correlations
inside the plateau. The VCASC results are obtained with
one variational parameter x = {εf }. The reason for not using
x = {εf ,εs} again is that the result is almost the same as that
obtained with VCA� (see Fig. 7). However, in some (small)
parameter regions, the numerical evaluation becomes difficult.
The VCASC data shown in Fig. 8 show a clear improvement as
compared to CPT but does not reach the quality of the VCA�

result in terms of convergence in system size.
The Friedel sum rule5,68,69 (FSR) provides an exact relation

between the extra states induced below the Fermi energy by
a scattering center and the scattering phase shift. It also holds
true for interacting systems. This gives a relation between the
f -orbital occupation 〈nf 〉, and the density of states at the
Fermi energy:

ρf (0) = 1

π�
sin2

(
π〈nf 〉

2

)
. (23)

In our case, the mean occupation in the Kondo regime is
〈nf 〉 ≈ 1. Since both the occupancy of the f orbital and the
magnitude of the local density of states at the Fermi energy
can be evaluated independently, we can check the validity
of the Friedel sum rule in our approximation. Results are
shown in Fig. 7 applied to the L = 8 site VCA� data. The
VCA� results fulfill the Friedel sum rule almost in the whole
Kondo region. At the crossover to an empty or doubly occupied
impurity, the Friedel sum rule is not fulfilled exactly any more
but approximated very well. Further outside, the agreement is
again excellent. The variational parameters of VCA are crucial
to fulfill the Friedel sum rule as can be seen from a CPT
calculation (Fig. 9), which violates it in all parameter regions.
It appears that VCA� with variational parameters x = {εf ,εs}
naturally drives the system to fulfill this condition. The VCASC

result (Fig. 8) violates the sum rule too. This is not a feature
of VCASC in general, but has to do rather with the choice of
variational parameters, which was just x = {εf } in this case.
The VCASC result for two variational parameters x = {εf ,εs}
looks qualitatively like the respective VCA� result.

Scanning the interaction strength U at fixed impurity onsite
energy εf confirms the presence of the Kondo behavior. Shown
in Fig. 10 are results obtained with VCA� using the same
variational parameters x = {εf ,εs} as above. In the weakly
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FIG. 10. (Color online) Density of states of the impurity f orbital
at ω = 0 for different lengths of the interacting part of the reference
system L = 2, 4, 6, and 8 (dark brown, cyan, olive, and magenta
lines) as a function of the interaction strength U . The impurity onsite
energy εf is kept constant at εf /� = −10. The numerical broadening
is chosen to be 0+ = 10−6. The set of single-particle parameters
considered for variation within VCA� is x = {εf ,εs}. The inset shows
the CPT results.

correlated part (U/� � 5), the density of states at the chemical
potential is low. The intermediate region (5 � U/� � 15)
signals the crossover to the Kondo regime. For larger U ,
the Kondo regime is reached with an impurity occupation of
〈nf 〉 ≈ 1, which may be inferred from the Friedel sum rule. In
the inset of the figure, the CPT results for the same lengths of
the interacting part of the reference system L are shown. The
CPT results are by far not converged for the interacting cluster
sizes considered here. This emphasizes the importance of the
variational parameters.

Our results in Figs. 7 and 10 agree very well with those of
calculations based on X-operator technique exercised by Lobo
et al.38 In their work, a strong-coupling perturbation theory is
applied starting from the Anderson molecule as a basis and
using the Friedel sum rule as a condition to fix the position of
an infinitely narrow conduction band.

Analytic considerations (see Appendix B) allow insight into
the behavior of the Friedel sum rule in ED, CPT, and VCA.
There, it is shown that ED always has to violate the Friedel sum
rule, while CPT always fulfills it in the particle-hole symmetric
case. This comes about in the first place because the height
of the Kondo resonance at ω = 0 does not depend on the
self-energy. A pinning of the Kondo resonance, however, can
only be achieved via the improved self-energy contributions
obtained within VCA.

The results of this section clearly show that VCA is able
to capture the basic physics of the SIAM in every parameter
region. The improvement obtained by going over from CPT to
VCA is crucial to fulfill exact analytic relations. Moreover,
we have shown that CPT/VCA is clearly superior to ED
calculations. VCA is, even at small L, capable of fulfilling the
FSR also away from particle-hole symmetry due to a pinning
of the Kondo resonance at the Fermi energy. This pinning can
be attributed to the better approximation of the self-energy of
VCA with respect to CPT.
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FIG. 11. (Color online) In this plot, a “phase diagram” of the
SIAM is shown. The quantity on the z axis is the density of states in
the impurity ρf at ω = 0 (i.e., the height of the Kondo resonance). The
results are obtained with VCA� for a set of variational parameters x =
{εf ,εs}, L = 6, and 0+ = 10−6. The black line indicates the different
regions obtained from an atomic-limit calculation. In the right cone,
local moments are to be expected. While in the upper region, the
impurity is expected to be empty and in the lower half to be doubly
occupied. The blue curve shows the onset of a spurious magnetic state
as obtained by a mean-field treatment (see text).

D. Crossover diagram

To delve into the CPT/VCA results for the whole parameter
range of the SIAM, a “phase diagram” is presented in this
section. This should be understood to be a mere scan of the
parameters U and εf because the model does not undergo
a phase transition. The density of states of the impurity
at the chemical potential ρf (0) is shown in Fig. 11 in a
density plot. This figure essentially shows the height of
the Kondo resonance as a function of interaction strength
and onsite energy of the impurity. The different regimes
of the SIAM, as obtained by an atomic-limit calculation,
are indicated as black lines. These lines divide the physics
into regions where the impurity is doubly, singly, or not
occupied. In the singly occupied region (U

2 > |εf + U
2 |), local

moments and their screening are expected to appear. This
region, which bestrides the cone enclosed by black lines, is
the region where Kondo physics may take place within this
approximation. The parameter regions where the impurity is
empty or doubly occupied lie above and below this cone.
More sophisticated methods will lead to a smearing out of
the border of these regions and introduce a crossover area
with competing effects. A boundary expected between a
single resonance and a spurious local moment behavior where
the single resonance is split into two for spin up and spin
down, respectively, is obtained by mean-field theory.65 In
the mean-field approach, the density-density interaction of
the impurity Hamiltonian is replaced by a spin-dependent
density exposed to the mean contribution of the other spins’
density. The mean-field boundary is then obtained by replacing
the mean-field parameters 〈nf

↑〉 and 〈nf

↓〉 by the particle
number n and magnetization m. Setting the magnetization
to m = 0+ in the self-consistent equations yields the implicit
result Uc = π�[1 + cot(π 〈nf 〉

2 )2] and εf,c = �{cot(π 〈nf 〉
2 ) +
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FIG. 12. (Color online) Average particle density in the impurity
〈nf 〉 as a function of U and εf for the same parameters as in Fig. 11.

π
2 (1 − 〈nf 〉) [1 + cot(π 〈nf 〉

2 )2]}. The plot shows that the
Kondo plateau is reproduced very well by VCA�. The results
appear almost converged for lengths L ≈ 6 of the interacting
part of the reference system. Increasing L yields better results
in the crossover region. Results obtained by means of CPT do
not reproduce the Kondo plateau very well for small L.

The average impurity occupation for the same parameter
region is shown in Fig. 12. The result obtained with VCA�

clearly shows the Kondo plateau where the impurity is singly
occupied. The parameter regions of a doubly occupied or
empty impurity lead to a density of states in the impurity
which is zero at the chemical potential (compare to Fig. 11).

The results of this section have been obtained using VCA�

with variational parameters x = {εf ,εs}. It should be noted that
using only x = {εf } already yields good results. As mentioned
in Sec. V C, CPT needs very large values L to yield the same
quality of the results as VCA does with much smaller values
of L.

E. Low-energy properties, Kondo temperature

In this section, we examine the low-energy properties of the
symmetric SIAM. In the strong-coupling limit, a single scale,
the Kondo temperature TK , governs the low-energy physics.5

The Kondo temperature TK is known from Bethe ansatz results
for the particle-hole symmetric SIAM (Refs. 70 and 71)

TK =
√

�U

2
e−γ π

8�
U , γ = 1. (24)

This scale, which is inversely proportional to the spin-flip rate
of the impurity, divides the physics of the SIAM into two
regions: a local moment behavior of the impurity, where the
spin is free, and a low-temperature region where the local spin
and the conduction electrons become entangled and form a
singlet state.72

Quantities which depend inversely on TK are the effective
mass m∗ and the static spin susceptibility χm. The Kondo
temperature may furthermore be extracted from the width or
weight of the Kondo resonance in the local density of states of
the impurity f orbital. We investigate and compare the results
for the scale TK obtained from the direct determination of
TK (from the FWHM and the spectral weight of the Kondo
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resonance) and the inverse quantities m∗ and χm. We find
that the results of all four measurements turn out to yield the
correct qualitative behavior in VCA� . However, in a region
where the dependence of TK is exponentially dependent on
the interaction strength U , the exponential prefactor is not
predicted correctly. Therefore, we introduce a scaling factor
γ [Eq. (24)], which turns out to be the same for all four ways
of determining TK . In particular, this factor is independent
of the set of model parameters used. The scaling factor
may be calculated semianalytically for a reference system
consisting of a two-site interacting cluster and the semi-
infinite environment within VCA� and VCASC (x = {V }). The
calculation for VCA� leads to an integral expression for the
stationary point of the grand potential � with respect to �V

from which the optimal �V can be obtained numerically (see
Appendix C). The Kondo scale may be determined from the
so-obtained values of V ′(U ) = �V (U ) + V by

TK (U ) ∝
(

V ′(U )

U

)2

. (25)

This leads to a perfect exponential behavior as defined in
Eq. (24) with

γ = 0.6511.

The issue of obtaining an exponential scale but not the correct
exponent for the functional dependence on U is common
to various approximate methods [for example, variational
wave functions where the issue was cured by introducing
an extended ansatz by Schönhammer,73 saddle-point ap-
proximations of a functional integral approach,74 or FRG
(Ref. 75)]. A faint analogy may be drawn here to Gutzwiller
approximation, where an exponential energy scale in U arises
by a renormalized hybridization parameter V ,76 which is also
the case for VCA�.

The self-consistent calculation for VCASC also leads to
an integral expression for the determination of �V . This
expression is obtained by requiring the expectation values of
the hopping from the impurity f orbital to the neighboring
site in the reference system to be the same as the expectation
value in the physical system. This procedure does not yield
an exponential scale in U . The optimal cluster parameter V ′
shows spurious behavior as a function of U . We conclude
that VCASC with x = {V } can not reproduce the low-energy
properties of the SIAM even qualitatively, while VCA� yields
the correct behavior apart from an exponential factor.

1. Effective mass–quasiparticle renormalization

The effective mass m∗ is defined as the quasiparticle
renormalization31

m∗(U )

m∗(0)
= 1 − d

[
Im�σ

ff (iω,U )
]

d ω

∣∣∣∣
ω=0+

= d
[
ImGσ

ff (iω,U )
]

d ω

∣∣∣∣
ω=0+

×
(

d
[
ImGσ

ff (iω,0)
]

d ω

∣∣∣∣
ω=0+

)−1

, (26)
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FIG. 13. (Color online) Effective mass m∗ of the Kondo reso-
nance [Eq. (26)] as a function of interaction strength U . We plot CPT
results for lengths of the interacting part of the reference system
L = 2, 4, 6, 8, and 10 (magenta), the L → ∞ extrapolated CPT
result (olive line), as well as VCA� results (blue line). The data
points for the CPT resulting in the low-U region are not shown
to avoid messing up the plot. The variational parameter used for
the VCA� result was x = {V }. The VCA� data were obtained for
L = 6. For CPT as well as VCA�, we used a numerical broadening
of 0+ = 10−6. For comparison, the results obtained by NRG (yellow
line) and FRG (dark brown line) are shown (Ref. 31).

where we introduced the dependence on the interaction
strength U explicitly. In the Kondo regime, this quantity
becomes inversely proportional to the Kondo temperature.

We want to answer the question as to whether the
Kondo scale is approximately captured by CPT/VCA or not.
Therefore, we compare the functional form and the exponent
obtained from the effective mass and the analytic result for TK

[Eq. (24)]. The result for the effective mass obtained within
VCA� is shown in Fig. 13. The variational parameter used was
x = {V }. The functional form is reproduced well by VCA�

(i.e., it starts out quadratically and goes over to an exponential
behavior in the Kondo region). However, the exponent ( π

8�
)

is not reproduced correctly. VCA� yields a lower exponent of
≈ (γ π

8�
). The factor γ is defined in Appendix C, determined

from a semianalytical calculation of TK within VCA� . This
additional factor is the same for all initial parameters (within
the Kondo regime), it is particularly independent of �. If
plotted over a scaled U axis U ′ = 1

γ
U , the VCA� result would

lie on top of the NRG data. However, using larger sizes of the
interacting part of the reference system does not lead to much
better results regarding γ . It is to be expected that a significant
improvement can only be obtained using exponentially large
L. The CPT result shows a very different convergence behavior
in L, which is rather slow.

An attempt was made to extrapolate the CPT data to L →
∞ by a simple 1

L
scaling. It is interesting to observe that this

extrapolated curve coincides nicely with the VCA result (L =
6) in the low-U region. However, we expect this extrapolation
based on small L to be insufficient to capture the exponential
scaling of the data in L. Note that since in CPT the self-energy
is taken from the cluster, the CPT results for the effective mass
coincide with ED results for systems of size L.
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FIG. 14. (Color online) VCA� results for the spectral weight
(blue) and full width at half maximum (olive) of the Kondo resonance
as a function of interaction strength U . The variational parameter used
was x = {V }. A length of the interacting part of the reference system
of L = 6 sites and a numerical broadening of 0+ = 10−6 were used
for this calculation. Data points marked with a circle were used for
the fit of the exponential function in the Kondo region. The black
line shows the Kondo temperature TK as obtained by Bethe ansatz
calculations [Eq. (24)].

2. Kondo spectral weight and half width

Since the height of the Kondo resonance is fixed by the
Friedel sum rule (23), the width and the weight (area) of the
peak are proportional to the Kondo temperature TK . Obtaining
the spectral weight or FWHM of the Kondo resonance from
the spectrum introduces a large uncertainty. Nevertheless, we
made an attempt to get an idea of the behavior of TK . We
fixed the spectral weight by the first minimum to the left and
to the right of the central peak (see also Ref. 63). In general,
the effective mass and static spin susceptibility will yield more
reliable results, but it is instructive to compare these four ways
of determining TK .

Shown in Fig. 14 is the evolution of the spectral weight and
the FWHM of the Kondo resonance with increasing interaction
strength U . The data were acquired using VCA� with a
variational parameter x = {V } for the particle-hole symmetric
SIAM. Within the uncertainty, the same exponential behavior
for the Kondo temperature TK is obtained as by calculating the
effective mass in VCA�.

3. Static spin susceptibility

The static spin susceptibility χm is given by the linear
response to an applied magnetic field B in the z direction:

χm(U ) = −d(〈nf

↑〉 − 〈nf

↓〉)
d B

∣∣∣∣
B=0

. (27)

In the Kondo regime, this quantity too becomes inversely
proportional to the Kondo temperature. For the calculations in
this section, we introduce an additional spin-dependent term
in the impurity Hamiltonian [Eq. (3)]

Ĥmagnetic =
∑

σ

σ
B

2
f †

σ fσ . (28)
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FIG. 15. (Color online) The static spin susceptibility χm

[Eq. (27)] is shown as a function of interaction strength U . The
variational parameter used was x = {V }. The data were obtained for
L = 6 sites and 0+ = 10−6. For comparison, the results obtained by
NRG (blue line) and FRG (green line) are shown (Ref. 31).

The static spin susceptibility χm as obtained with VCA� is
shown in Fig. 15. The variational parameter used was x = {V }.
As a reference, the results of NRG and FRG (Ref. 31) are
shown. The behavior of the VCA result is good for small
interaction strength U . The VCA result shown for L = 6
appears already converged while the CPT result would require
much larger systems.

We would like to highlight that VCA� reproduces an energy
scale TK . Results from direct calculation of TK , calculation of
the effective mass m∗, and the static spin susceptibility χm

yield the correct functional form, but not the right exponent.

F. Benchmarking CPT/VCA against continuous-time
quantum Monte Carlo

In this section, we compare CPT/VCA results to QMC data.
We obtained the Monte Carlo results using the continuous-time
quantum Monte Carlo (CT-QMC) code of the TRIQS (Ref. 77)
toolkit and its implementation of the hybridization expansion
(CT-HYB) (Ref. 78) algorithm using Legendre polynomials.79

This method enables access to very low temperatures and is
especially suited to obtain low-energy properties.40 The CT-
QMC data provide statistically exact and reliable results to test
our data.

All CT-QMC calculations were done for a single-impurity
orbital at U = 0.8 and εf = −0.4. We used a semicircular
hybridization function with half bandwidth D = 2 and V =
0.3162. This setup corresponds to the same model under
investigation here. The value for the interaction strength
U = 0.8 was chosen because of the relatively low expected
Kondo temperature of βK = T −1

K ≈ 100. For all calculations,
1.2 × 109 MC updates where conducted, with a sweep size of
100 updates, plus a 10% thermalization period.

To ensure that the Kondo resonance is correctly reproduced
by CT-QMC, we evaluated the Matsubara Green’s function
for various values of inverse temperature β. The height of the
Kondo resonance is given by the Friedel sum rule [Eq. (23)]
to be Im[Gff (iωn = 0)] = −10 for the parameters used here
(� = 0.1). To obtain Im[Gff (iωn = 0)], we extrapolate twice,
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FIG. 16. (Color online) CT-QMC result for the imaginary part
of the impurity Green’s function extrapolated to iωn = 0. An
extrapolation to zero temperature is attempted, which yields a good
agreement with the result predicted by the Friedel sum rule (green
circle) within the uncertainty (red triangle). The inset shows the
imaginary part of the impurity Green’s function for various β (see
legend) and the extrapolated points at iωn = 0.

first in iωn → 0 for each β, then we use these results and
extrapolate to T → 0. The extrapolation to iωn → 0 is done
linearly using the first two Matsubara frequencies. The imagi-
nary part of Gff (iωn) and the extrapolated value to iωn → 0
are shown in the inset of Fig. 16 for β ∈ [10,1200]. Those
extrapolated values are plotted as a function of temperature
(Fig. 16). These data points are then extrapolated to T → 0
using a fit by a rational model function. The result clearly
shows the onset of the Kondo resonance when the temperature
is lowered below the Kondo temperature TK . The extrapolation
to T = 0 shows very good agreement {Im[Gff (iωn = 0)] ≈
−10.1} with the result expected from the Friedel sum rule
within the uncertainty. It is important to note that the CT-QMC
results converge very nicely in β. Although for higher β, lower
Matsubara frequencies become available, the overall shape of
the Green’s function does not change significantly.

Therefore, we may compare the T = 0 CPT/VCA results
for the Green’s function and self-energy to the CT-QMC data.
The Matsubara Green’s functions of the impurity f orbital
Gff (iωn) obtained by CT-QMC (β = 400), CPT, and VCA are
shown in Fig. 17. We use β = 400 as a compromise between
low temperatures and still reliable CT-QMC results (within
manageable computation time). The β = 400 result was
obtained using 65 Legendre coefficients. A detailed analysis
has shown that this number is sufficient to get high-frequency
moments of the self-energy � accurately. The VCA� results
were obtained with one variational parameter x = {V } for U =
0.8, � = 0.1, and 0+ = 10−6 in the particle-hole symmetric
case. For the CPT calculation, we used the same parameters.
For both methods, we considered lengths of the interacting
part of the reference system of L = 2, 4, 6, 8,and 10. The
VCA result lies near the CT-QMC data but underestimates
the slope of the curve at low iωn. The VCA result provides a
huge improvement upon CPT for the lengths of the interacting
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FIG. 17. (Color online) Comparison of the Matsubara impu-
rity Green’s function Gff (iωn) obtained by CT-QMC (β = 400),
CPT, and VCA�. The CPT/VCA results were obtained for L =
2, 4, 6, 8,and 10. The real part shown in the lower part of the figure
is zero. The Friedel sum rule prediction of Im[Gff (iωn = 0)] = −10
is fulfilled by all methods. The legend of this figure serves as well as
legend for Figs. 18 and 19. That is why the last entry {large iωn exp.
[see Eq. (29)]} is displayed in the legend but is missing in the graph
of this figure.

part of the reference system shown here. The real part of
Gff (iωn) is exactly zero within CPT/VCA, as it is supposed
to be. Note that the value of Gff (iωn = 0) which is fixed
by the Friedel sum rule is exactly reproduced within CPT
and VCA for the particle-hole symmetric case. The same is
shown for the self-energy of the impurity f orbital �ff (iωn)
in Fig. 19. From the imaginary part of �ff (iωn), one can infer
the convergence of the CPT/VCA result with larger length of
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FIG. 18. (Color online) Comparison of the self-energy of the
impurity �ff (iωn) times energy ωn obtained by CT-QMC (β =
400), CPT, and VCA�. The CPT/VCA results were obtained for
L = 2, 4, 6, 8,and 10. CPT as well as VCA� become exact for
high Matsubara frequencies. An expansion of �(iωn) for large iωn

[Eq. (29)] is additionally shown [straight line at −( U

2 )2]. The legend
for this figure is the same as for Fig. 17 and is displayed there.
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the interacting part of the reference system L. The real part
of the self-energy {Re[�ff (iωn)] = μ = −ef = U

2 = 0.4} is
again exactly reproduced within CPT/VCA.

In the following, we discuss the self-energy �(iωn) for
the two interesting cases of very-low and very-high Matsubara
frequency. We start out by conducting an expansion of the self-
energy �(z) for high Matsubara frequencies (z = iωn → ∞),
which shall be outlined here briefly. The self-energy matrix is
defined by

�(z) = G−1
0 − G−1 = z − T − G−1.

Here, T is the one-particle part of the Hamiltonian. In the
particle-hole symmetric case considered here, it contains all
the hoppings as well as the onsite energy of the impurity
εf = −U

2 . We conduct a series expansion in powers of z−1

of �(z). Apart from the real constant Tii , all z-dependent
terms of �ii(z) are antisymmetric in z. Therefore, even powers
in z±2l , l > 0 vanish. Expanding the Green’s function G(z)
yields, for the self-energy �(z),

�(z) = −T − z

∞∑
m=1

(−1)m Xm,

X =
∞∑

n=1

z−n Cn,

(Cn)ij = 〈�0| ai(�Ĥ)na†
j |�0〉

+ (−1)n〈�0| a†
j (�Ĥ)nai |�0〉 ,

where �Ĥ = Ĥ − ω0 and ω0 is the ground-state energy of Ĥ.
Collecting powers of z yields a cumulantlike expansion for the
self-energy �(z):

�(z) =
∞∑

n=1

z−n �n, where

�0 = −T + C1 and �1 = C2 − C2
1 .

Here, we consider the zeroth and first order in z−1 only and
obtain, for �(iωn),

�ff (iωn) = U

2
− i

ω

(
U

2

)2

+ O
(

1

iωn

)3

, (29)

where the self-energy at the impurity f orbital �ff is the
only nonvanishing matrix element of �ij . This result is
plotted as a reference in Fig. 19. Due to the nature of the
CPT/VCA approximation, these methods always yield the
exact self-energy for high Matsubara frequency as shown in
Fig. 18.

The low-energy properties examined in the previous section
depend basically on the slope of the Matsubara Green’s
function at (iωn) = 0+. The results shown in Figs. 17 and
19 show that this slope is underestimated by CPT/VCA in
comparison to CT-QMC, at least at the small lengths of the
interacting part of the reference system available.

The above results suggest a possible application of VCA as
an impurity solver for zero-temperature DMFT. The results
would not suffer from a bath truncation error as in exact
diagonalization-based DMFT. A big advantage would be the
low demand on computational power of VCA as well as
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FIG. 19. (Color online) Comparison of the imaginary part of
the self-energy of the impurity Im[�ff (iωn)] obtained by CT-QMC
(β = 400), CPT, and VCA�. The CPT/VCA results were obtained
for L = 2, 4, 6, 8,and 10. An expansion of �(iωn) for large iωn

[Eq. (29)] is shown in addition (magenta line which diverges at
zero). CPT/VCA always reproduces the exact self-energy for high
Matsubara frequencies. The legend for this figure is the same as for
Fig. 17 and is displayed there.

the approximate reproduction of the main features of the
local density of states (i.e., Kondo resonance and high-energy
incoherent part of the spectrum).

G. Introducing a symmetry-breaking field

We explore the possibility to improve the VCA results
achieved by varying the internal single-particle parameters
of the model by introducing a symmetry-breaking “spin-flip
field” at the impurity f orbital. The term added to the impurity
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FIG. 20. (Color online) Grand potential � − �′
0,env [Eq. (20)] as

a function of the interaction strength U/� (see legend). The data
were obtained by studying a L = 4 site interacting cluster coupled to
a semi-infinite lead. The numerical broadening used was 0+ = 10−6.
The crosses indicate the respective minimum of the grand potential.
There exists a critical Uc/� ≈ 4.3 above which a finite B ′

x is preferred
by the system.
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FIG. 21. (Color online) The splitting of the Kondo resonance
caused by an applied magnetic field in the x direction is shown
for different values of the auxiliary field B ′

x . The plots were obtained
using VCA (i.e., the physical field Bx is always zero). Instead of taking
the parameter B ′

x at the stationary point of the grand potential (this
value would be B ′

x/� ≈ 1.9 for the parameters used), we explicitly
plug in a fixed value for B ′

x . The length of the interacting part of the
reference system used was L = 6 for the model parameters U/� =
12. The numerical broadening used was 0+ = 10−6.

Hamiltonian (3),

Ĥflip = Bx (f †
↑ f↓ + f

†
↓ f↑ ), (30)

explicitly breaks the conservation of spin in the cluster
solution. We are interested in the model with a physical
parameter Bx = 0 so this variable may only attain a finite
value as a variational parameter B ′

x in the reference system. We
investigate the particle-hole symmetric model at V = 0.3162
and t = 1. Our findings indicate that any finite value of B ′

x

splits the Kondo resonance and has thus to be discarded on
physical grounds for the system under investigation.

While this prevents the application of this field to improve
the VCA results, it gives very nice insight in the physics
of the SIAM as described by CPT/VCA. We find that a
critical interaction strength Uc depending on the length of the
interacting part of the reference system exists, which separates
solutions which would prefer a finite B ′

x from those which
would prefer B ′

x = 0. The critical interaction strength for
L = 4 is given by Uc/� ≈ 4.3. The grand potential � − �′

0,env
is plotted for various interaction strengths U in Fig. 20. For
an analogous calculation for L = 6 site interacting clusters,
a value of Uc/� ≈ 4.1 is achieved. The mean-field result
would yield a critical interaction strength Uc/� = π for the
parameters used here. We interpret this value as a signature of
the onset of local moment behavior. The values for Uc are of
course not to be taken literally, they depend very much on the
finite size of the cluster under investigation.

The splitting of the Kondo resonance caused by a nonzero
variational field B ′

x is shown in Fig. 21. The value of U/� = 12
used for this calculation lies in the region above Uc where the
system prefers a nonzero field B ′

x .

VI. CONCLUSIONS

In this work, we have applied the variational cluster
approach (VCA) to the single-impurity Anderson model. We
devised a cluster tiling applicable to this nontranslationally
invariant model, which leads to a cluster with a discrete
spectrum and an environment having a continuous spectrum.
We have derived an expression for the change of the grand
potential originating from the coupling of the impurity to the
semi-infinite bath.

We have compared results for the single-particle dynamics
to data obtained by exact diagonalization and cluster pertur-
bation theory (CPT). We found that the variational extension
made by the VCA is vital for a good reproduction of the
expected behavior of the SIAM. The CPT/VCA spectra both
yield a Kondo resonance in the impurity density of states with
the correct height as predicted by the Friedel sum rule. A
close look at the Kondo resonance shows that the VCA is
able to reproduce the resonance and the functional behavior
for the Kondo temperature in a remarkable way. The Kondo
temperature is expected to show exponential behavior in
interaction strength in the Kondo regime. VCA yielding an
exponential behavior, however, tends to underestimate the ex-
ponent. Comparison of dynamic quantities to continuous-time
quantum Monte Carlo solidifies the origins of this behavior.
The high-energy incoherent part of the spectrum shows strong
finite-size effects within CPT which are partly removed by
virtue of the VCA. VCA furthermore reproduces the expected
position and width of the high-energy part of the spectrum.
For the asymmetric model, the Friedel sum rule is fulfilled
in all parameter regions implying that the Kondo resonance
is pinned at the chemical potential in the Kondo region. In
addition, a self-consistent formulation of the VCA, previously
introduced in the context of nonequilibrium problems,51 was
explored. Results obtained by the self-consistent approach
show agreement with results obtained by VCA based on the
grand potential for the density of states of the impurity f

orbital. Thereby the positions of the spectral features agree
very well with the traditional VCA result, while the spectral
weight distribution may deviate especially for small values
of interaction strength. Comparison to results obtained from
Bethe ansatz, renormalization group approaches, and data
obtained from X-Operator based calculations show reasonable
agreement for all quantities investigated.

In conclusion, while there are certainly more accurate
methods to deal with a single-quantum-impurity model,23

especially at low energies, our work shows that VCA is
a flexible and versatile method which provides reasonably
accurate results with modest computational resources. Here,
the VCA self-consistency condition proves to be crucial.
This allows us to obtain the same accuracy that CPT would
provide with a much larger, inaccessible, interacting cluster
size. One of the advantages is the flexibility of the method,
i.e., it is straightforward to extend it to many impurities,
nonequilibrium problems,51 etc. In the spirit of NRG,29 one
could improve on the present results by carrying out an
appropriate unitary transformation on the bath such that
the bath hoppings decay with increasing distance from the
impurity. In this work, we do not include such an improvement
and choose a constant hopping sequence [Eq. (2)] since our
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goal is to benchmark VCA/CPT only. Nevertheless, a hybrid
approach combining NRG and VCA would be an interesting
extension of this work.
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APPENDIX A: GRAND POTENTIAL

Here, we outline the proof of Eq. (19). We start out from
Eq. (18), i.e.,

�� = −Tr ln(1 − Tg).

Taylor expansion yields

�� =
∞∑

n=1

1

n
{Tr [(Tg)n]cc + Tr [(Tg)n]ee}. (A1)

Due to Tee = 0, each term gee in the first trace occurs only in
the form

g̃cc := TcegeeTec.

The expressions in the second part of Eq. (A1) can be modified
by a cyclic permutation of the factors in the argument of the
trace

Tr (Tecgcc . . . Tcegee) = Tr (gcc . . . TcegeeTec),

in which gee again only occurs in the dressed form g̃cc. If we
replace all occurrences of TcegeeTec by g̃cc, then there are no
matrices Tce and Tec, respectively, left. Hence, we can as well
introduce in Eq. (18) the following replacements:

gee → g̃cc, Tce → 1cc, Tec → 1cc, 1 → 1cc,

as it leads in the series expansion to the same expressions. The
argument in Eq. (18) then assumes the form

1 − Tg = 1 −
(

Tcc 1cc

1cc 0cc

)(
gcc 0cc

0cc g̃cc

)
=

(
b −g̃cc

−gcc 1

)
,

with the abbreviation b := 1 − Tccgcc. Prompted by the Schur
complement, the matrix can be factorized into upper and lower
triangular block matrices(

b −g̃cc

−gcc 1

)
=

(
b 0

−gcc 1 − gccb
−1g̃cc

)(
1 −b−1g̃cc

0 1

)
,

such that the determinant is easily computed since the
determinant of the second matrix is 1 and the determinant
of the first matrix is simply the product of the determinants of

the diagonal blocks, resulting in

det

(
b −g̃cc

−gcc 1

)
= det(b) det

(
1 − b−1g̃ccgcc

)
= det(b − g̃ccgcc)

= det(1 − (Tcc + TcegeeTec)gcc).

The final result for Eq. (18) reads as

�� = −Tr ln(1cc − �̃ccgcc).

APPENDIX B: BEHAVIOR OF THE FRIEDEL SUM RULE
WITHIN ED, CPT, AND VCA

It is possible to gain a somewhat deeper understanding of
the behavior of the FSR within ED/CPT/VCA by considering
the local Green’s function at the impurity f orbital

Gff (z) = [z − εf − �(z) − �(z)]−1, (B1)

where �(z) is the contribution due to the single-particle
terms of the hybridization and �(z) the self-energy due to
the local interaction (for details, see Appendix C). In the
following, we consider the particle-hole symmetric case. We
are interested in the behavior of the retarded Green’s function
Gret

ff (ω) = Gff (ω + i0+) at the Fermi energy (ω = 0), which
we investigate by taking the limit on the Matsubara axis
Gret

ff (0) = limν→0+ Gff (iν). We expand the self-energy �(iν)
up to linear order in ν and rewrite the expression using the
definition of the effective quasiparticle mass m∗ [see Eq. (26)]
as

�(iν) ≈ −εf + iIm[�(0)] + iν
∂Im[�(iν)]

∂(iν)

∣∣∣∣
0+

+ iO[(iν)2]

≈ −εf + iν(1 − m∗).

Inserting into Eq. (B1), we obtain

Gret
ff (0) = lim

ν→0+
Gff (iν)

= lim
ν→0+

(i{m∗ν − Im[�(iν)]} − Re[�(iν)])−1. (B2)

We will now investigate two separate, general cases of an
ED and a CPT/VCA treatment of the Green’s function. From
Eq. (B2), it is easy to see that the remnant m∗ of the
impurity self-energy and therefore the self-energy itself does
not contribute to the Friedel sum rule. In outlining how to
notice this, we simultaneously show that a discrete spectrum
of the conduction band (as obtained for example in ED) will
not fulfill the Friedel sum rule. Consider an arbitrary discrete
spectrum of the conduction electrons with hybridization

�(iν) = V 2
∑

μ

αμ

iν − ωμ

,

with excitation energies ωμ. Splitting into real and imaginary
parts and inserting into Eq. (B2) gives

Im
[
Gret

ff (0)
]

= lim
ν→0+

−(m∗ + V 2A(ν))ν
(m∗2 + 2m∗V 2A(ν) + V 4A(ν)2)ν2 + V 4B(ν)2

,

A(ν) =
∑

μ

αμ

1

ω2
μ + ν2

, B(ν) =
∑

μ

αμ

ωμ

ω2
μ + ν2

.
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Upon neglecting the weak dependence of A(ν) and B(ν) on ν,
one obtains, in this case, in the limit ν → 0: Im[Gret

ff (0)] → 0
if all ωμ �= 0 or Im[Gret

ff (0)] → −∞ if any ωμ = 0. We would
like to further illustrate this for the specific model considered
in this work (i.e., an impurity coupled to a semi-infinite chain
with open boundary conditions)

H = −V (c†f c0 + c
†
0cf ) − t

L−1∑
i=0

(c†i ci+1 + c
†
i+1ci ),

where we suppressed spin indices. We obtain by using the
equation of motion for the local impurity f -orbital Green’s
function

ω Gff (ω) = ω 〈〈cf ; c†f 〉〉
= 〈[cf ,c

†
f ]+〉 − 〈〈[cf ,H]−; c†f 〉〉

for an even number of sites (including the impurity)

Im[�even(iν)] = −V 2

ν
RL(ν,t),

and for an odd number of sites

Im[�odd(iν)] = −V 2ν RL(ν,t),

where RL(ν,t) is a rational function which is well behaved
upon taking the limit ν → 0+ [i.e., it approaches a constant
limν→0+ RL(ν,t) = fL(t)] and the real part is always zero.
Upon inserting into Eq. (B2), one can easily verify that for
an even number of sites, this yields zero spectral weight at
the Fermi energy, while for an odd number of sites it yields
−∞ (i.e., there is a pole exactly at ω = 0). Therefore, the ED
results alternate with even/odd system size between ρeven

f (0) =
0 and ρodd

f (0) = ∞. This result shows that the FSR is always
violated in ED because a finite value of the impurity density
of states at the Fermi energy may only be obtained using an
artificial numerical broadening. It furthermore shows that all
terms involving m∗ go to zero and can not contribute to the
sum rule.

Now we turn to the case of CPT/VCA, where the conduction
electron hybridization takes the form [see Eq. (10)]

�(iν) = i
V 2

2t2
(ν −

√
4t2 + ν2)

for the model considered in Eq. (1) (i.e., a semicircular density
of states of the conduction electrons). The CPT/VCA Green’s
function of the physical system is then given upon insertion of
this � into Eq. (B2):

Im
[
Gret

ff (0)
] = lim

ν→0+

−1(
m∗ − V 2

2t2

)
ν + V 2

2t2

√
4t2 + ν2

,

which yields upon expansion of the square root up to linear
order in ν

Im
[
Gret

ff (0)
] = lim

ν→0+

−1(
m∗ − V 2

2t2 + 1
4t

)
ν + V 2

t

,

and when the limit ν → 0 is taken

Im
[
Gret

ff (0)
] = − t

V 2
= − 1

�
,

which is exactly the value predicted by the FSR [Eq. (23)]:

Im
[
Gret

ff (0)
] = −π

1

π�
sin

(
π

2

)2

= − 1

�
.

This result is independent of the size of the reference system.
Away from particle-hole symmetry (occupation of the f orbital
not one), the calculation becomes more tedious. The numerical
VCA calculations, however, show that a pinning of the Kondo
resonance at the Fermi energy is obtained in contrast to CPT
at small L.

APPENDIX C: SEMIANALYTICAL EXPRESSIONS FOR
VCA OF THE TWO-SITE PROBLEM

To gain a better understanding of the behavior of the
low-energy properties of the SIAM, we solve a small system
semianalytically. We obtain the scaling of the Kondo temper-
ature TK with interaction strength U within VCA� as well as
VCASC. A reference system consisting of a two-site cluster
and an infinite environment is used.

The Kondo scale will be determined from the effective mass
[Eq. (26)] using the self-energy of a two-site cluster [Eq. (C3)],
which leads to

m∗(U ) = 1 + 1

36

(
U

V ′

)2

. (C1)

The Kondo scale TK is inversely proportional to m∗(U )
[Eq. (25)]. Therefore, within this approximation, the behavior
of the optimal cluster parameter V ′ governs the low-energy
physics.

To determine the optimal hopping V ′, the Green’s function
of the reference system g is calculated as

g−1(z) =
⎛
⎝ z − �′(z) V ′ 0

V ′ z 0
0 0 G′−1

ee (z)

⎞
⎠.

The CPT/VCA Green’s function G,

G−1(z) =
⎛
⎝ z − �′(z) V 0

V z t

0 t G′−1
ee (z)

⎞
⎠,

is obtained by Eq. (6) using

T =
⎛
⎝ 0 �V 0

�V 0 −t

0 −t 0

⎞
⎠.

Here, G11 = Gff [Eq. (C2)] corresponds to the impurity f

orbital, G22 = Gss the second site in the interacting part of the
reference system, and G33 = Gee [Eq. (10)] the semi-infinite
environment. The cluster parameter V ′ is given by the physical
parameter V plus the variation �V . Note that in here we
work with the reduced expressions for � and G justified in
Appendix A. Schönhammer and Brenig calculated the Green’s
function of the correlated orbital for this model perturbatively
and showed that their expression becomes exact in the limit of
vanishing bandwidth.21 This is exactly the case considered
here, where the impurity f orbital is coupled to a single
noninteracting site providing a bath with vanishing bandwidth.
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FIG. 22. (Color online) Left: Optimal parameter V ′ of the reference system as obtained by the semianalytical equations for VCA� [Eq. (C4)]
and VCASC [Eq. (C5)]. As a reference, the L = 2 data of our numerical simulation are shown too. Right: The effective mass [Eq. (C1)] obtained
by the optimized parameter V ′ of the reference system (see left figure). Additionally shown are the Bethe ansatz (Ref. 5) [Eq. (24)] and NRG
(Ref. 31) result as a reference.

They obtained

gff (z) = 1

z − �′(z) − �′(z)
, (C2)

where the hybridization �′(z) in our case is given by

�′(z) = V ′2

z
,

and the self-energy �′(z) is given by

�′(z) =
U 2

4

z − 9�′(z)
. (C3)

From this, all elements of the cluster Green’s function may be
obtained by the equation-of-motion technique.

To be able to calculate the grand potential �, the ground-
state energy of the interacting part of the reference system
ω′

0 needs to be obtained (which can be done, for example, by
diagonalization of the Hamiltonian matrix or by an integral
over the Green’s function):

ω′
0 = − 1

4 (U +
√

U 2 + 64V ′2).

Using the expression for the CPT/VCA Green’s function g and
the ground-state energy and taking the derivative of the grand
potential (20) with respect to �V , one is able to obtain an
integral expression, which allows us to determine V ′ within
VCA�:

d �(�V )

d (�V )
= ∇�V ω′

0(�V ) − 1

π

∫ ∞

0
dω

× Re{tr [[1 − T(�V )g(iω,�V )]−1

× ([∇�V T(�V )g(iω,�V )]

+ [T(�V )∇�V g(iω,�V )])]} != 0. (C4)

The resulting V ′(U ) is shown in Fig. 22 (left) and is used
to calculate the effective mass [Eq. (C1)] shown right in the
figure. The effective mass shows exponential behavior, but the
exponent does not match the Bethe ansatz result as discussed
in Sec. V E.

Next, we attempt to obtain the VCASC solution for the
two-site problem. The only variational parameter is V and
therefore we determine the expectation value of

∑
σ 〈f †

σ c1σ 〉
self-consistently. Here, 1 denotes the impurity’s s orbital. Since
we are considering a spin-symmetric model, we sum over both
spin directions and denote this expectation value as 〈f †c〉 in
the following. The hopping expectation value is given by

〈f †c〉 = − 2

π

∫ ∞

0
dω Gf c(iω).

Evaluation of this expectation value in the cluster yields

〈f †c〉cluster

= − 2

π

∫ ∞

0
dω

× 4(�V + V )[9(�V + V )2 + w2]

36(�V + V )4 + [U 2 + 40(�V + V )2]w2 + 4w4
.

Evaluation of this expectation value in the total system gives

〈f †c〉CPT = − 2

π

∫ ∞

0
dω

× 8V

8V 2 + w[U 2+36(�V +V )2+4w2](w+√
4t2+w2)

9(�V +V )2+w2

.

Upon requiring the two expectation values to coincide

〈f †c〉cluster
!= 〈f †c〉CPT, (C5)

the optimal value of �V is obtained numerically. The resulting
V ′(U ) is plotted in Fig. 22 (left) and is used to calculate
the effective mass [Eq. (C1)] shown right in the figure.
The effective mass does not show exponential behavior in
VCASC.
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