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Applications of existing precise electronic-structure methods based on density functional theory are typically
limited to the treatment of about 1000 inequivalent atoms, which leaves unresolved many open questions in
material science, e.g., on complex defects, interfaces, dislocations, and nanostructures. KKRnano is a new
massively parallel linear scaling all-electron density functional algorithm in the framework of the Korringa-
Kohn-Rostoker (KKR) Green’s-function method. We conceptualized, developed, and optimized KKRnano for
large-scale applications of many thousands of atoms without compromising on the precision of a full-potential
all-electron method, i.e., it is a method without any shape approximation of the charge density or potential.
A key element of the new method is the iterative solution of the sparse linear Dyson equation, which we
parallelized atom by atom, across energy points in the complex plane and for each spin degree of freedom using
the message passing interface standard, followed by a lower-level OpenMP parallelization. This hybrid four-level
parallelization allows for an efficient use of up to 100 000 processors on the latest generation of supercomputers.
The iterative solution of the Dyson equation is significantly accelerated, employing preconditioning techniques
making use of coarse-graining principles expressed in a block-circulant preconditioner. In this paper, we will
describe the important elements of this new algorithm, focusing on the parallelization and preconditioning and
showing scaling results for NiPd alloys up to 8192 atoms and 65 536 processors. At the end, we present an
order-N algorithm for large-scale simulations of metallic systems, making use of the nearsighted principle of the
KKR Green’s-function approach by introducing a truncation of the electron scattering to a local cluster of atoms,
the size of which is determined by the requested accuracy. By exploiting this algorithm, we show linear scaling
calculations of more than 16 000 NiPd atoms.
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I. INTRODUCTION

The microscopic understanding of multicomponent, pat-
terned, or nanostructured solids with internal interfaces, struc-
tural and compositional disorder, point and extended defects
is a central issue in material science, nanoelectronics, surface
science, and chemistry. This understanding is of particular
importance for the description of samples and ultimately of
devices, the properties of which are determined by spatial
extents on the nanoscale. In this case, the local properties
depend on the shape, size, local chemical composition of
small clusters, precipitates, formed filaments, or even sin-
gle defects that interfere or even determine immediately
the device functionality. Conversely, defects also provide a
powerful toolbox to actively design system properties. From
the theoretical point of view, the microscopic properties are
determined by the electronic structure that is treated success-
fully ab initio by the density functional theory (DFT) using
appropriate approximations to the unknown exchange and
correlation functional. The treatment of nonideal structures
such as interfaces, dislocations, or, e.g., amorphous systems or
compositionally disordered systems, is, however, significantly
more difficult since the symmetry is typically distinctively
reduced as compared to the ideal periodic crystals. In addition,
computational schemes have to account for the vastly enhanced
chemical and structural complexity in the samples.

In order to face those challenges, two approaches are most
commonly used for the ab initio description of nonideal
systems: One approach is known as the coherent-potential

approximation1 (CPA) in which the scattering of the electrons
in a random alloy is replaced by the scattering of an effective
potential that has the same scattering properties as the alloy
in average. Extensions have been developed such as the
nonlocal CPA (Ref. 2) to include short-range compositional
corrrelations. The incorporation of longer-ranged spatial cor-
relation effects, finite-size effects, as well as more complex
defects on a sufficiently accurate level is not straightforward.
Aside from that, during the last decades, supercell techniques
have been most commonly and successfully used in treating
nonideal structures.3,4 Here, a priori the geometrical and
chemical freedom is not limited but, on the downside, the
number of atoms in the supercell has to be often increased
up to thousands or tens of thousands of atoms to both obtain
statistically relevant results and minimize spurious interactions
with periodic images. The ab initio description of such large-
scaled systems presents a highly demanding computational
task and is often not addressable on conventional computers.

The ongoing development of supercomputers, which nowa-
days combine the power of hundreds of thousands of proces-
sors, moves the computation of more than thousands of atoms
per supercell into the bounds of possibility. The challenge is
to invent efficient algorithms, i.e., algorithms which minimize
communication between processors, and, which come up for
the low memory resources typical for supercomputers. One
approach which guarantees a high scalability is based on
Kohn’s nearsightedness principle, in other words, neglect-
ing a priori long-range interactions. This principle is the
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fundamental assumption for the first-principles linear scaling
methods such as CONQUEST,5 ONESTEP,6 SIESTA,7 OPENMX,8

LSMS,9 or LGSF.10 While those methods can be applied to
a broad class of materials, the prerequisite of the presence
of exclusively short-ranged electronic interactions can limit
the applicability to, e.g., metallic systems where long-range
interactions are crucial.

In this paper, we will present the newly developed first-
principles Green’s-function method KKRnano, which can
be used to treat systems with both short- and long-range
interactions and which is especially designed for the treatment
of many thousands of atoms on massively parallel super-
computers with up to 100 000 processors. We will show, as
proposed in Refs. 11–13, how several important techniques
are combined to achieve an efficient quadratic or even
linear scaling and thus a massively parallel algorithm within
the all-electron full-potential Korringa-Kohn-Rostoker (KKR)
method. Further, we will focus on the optimization of the
computationally most demanding part, the iterative solution
of the Dyson equation, by initial guess and preconditioning
techniques without compromising on the accuracy.

II. KORRINGA-KOHN-ROSTOKER
GREEN’S-FUNCTION METHOD

In a Green’s-function method, the energy-resolved electron
density can be obtained directly from the Green’s function by

n(r,E) = − 1

π
Im G(r,r,E). (1)

The Green’s function G(r,r′,E) is the solution of the
Schrödinger equation with a δ function as source term, which
reads in atomic units as[ − ∇2

r + V (r) − E
]
G(r,r′; E) = −δ(r − r′). (2)

Equivalently, G can be given by an integral equation, which
is computationally easier to solve than (2) and is from now on
referred to as Dyson equation

G(r,r′; E)

= Gr (r,r′; E) +
∫

dr′′Gr (r,r′′; E)�V (r′′)G(r′′,r′; E),

(3)

where Gr(r,r′; E) is the Green’s function of an arbitrary
reference system and �V (r) = V (r) − V r(r) represents the
difference of the potential between the real and the reference
systems. In the KKR method, the spatial integration in Eq. (3)
is performed over space-filling Voronoi cells, and the scattering
events are described by an angular momentum expansion in
l and m around the site-centered coordinates Rn. From now
on, the index L will be used to abbreviate l and |m| � l with
Lmax = (lmax + 1)2 possible combinations, where lmax denotes
the maximal angular momentum contribution considered.

Within multiple-scattering theory, a clear separation be-
tween single-site and multiple-scattering quantities appears:

G(Rn + r,Rn′ + r′; E)

= δnn′
Gn

s (r,r′; E) +
∑
LL′

Rn
L(r; E)Gnn′

LL′(E)Rn′
L′(r′; E),

(4)

where Gn
s and Rn

L are the single-site Green’s function and
wave functions, which can be obtained locally on each site
n with respect to a given local potential and thereby can be
parallelized trivially in real space over sites. The expression
of both single-site quantities and further details on the full-
potential algorithm are given in Refs. 11 and 14. The remaining
task is to determine the multiple-scattering Green’s-function
matrix elements Gnn′

LL′(E), which obey the algebraic Dyson
equation

Gnn′
LL′(E)

= G
r,nn′
LL′ (E) +

∑
n′′,L′′L′′′

G
r,nn′′
LL′′ (E) �tn

′′
L′′L′′′ (E) Gn′′n′

L′′′L′(E),

(5)

where G
r,nn′
LL′ (E) are the structure constants of the reference

system and �tnLL′ is the difference of the t matrices between
the real and the reference systems:

�tnLL′(E) =
∫

n

dr jl(r
√

E) YL(r)V n(r)Rn
L′(r; E)

−
∫

n

dr jl(r
√

E) YL(r)V r,n(r)Rr,n
L′ (r; E). (6)

Here, R
r,n
L and V r,n are the wave function and the potential

of the reference system. YL denote spherical harmonics and
jl spherical Bessel functions. The integration in Eq. (6) is
restricted for both integrals to the local site, which directly
leads to an efficient parallelization of the computational work
over sites. The computationally most demanding part remains
the solution of the Dyson equation (5), on which this paper
focuses.

It is important to note that the energy integration over the
spectral density (1) can be considerably accelerated by taking
advantage of the analytic properties of the Green’s function in
the complex plane and by using an electronic temperature T

introduced by the Fermi-Dirac distribution fT (E):

n(r) = − 1

π
Im

∫ ∞

EB

dE fT (E) G(r,r,E), (7)

as shown by Wildberger et al..15 Here, EB is chosen to lie
between core states (E < EB), which are obtained locally
in an atomiclike approach with wave functions satisfying
atomic boundary conditions, and valence states (E > EB).
The Fermi function fT (E) = (1 + exp(E−EF

kBT
))−1 has poles at

the Matsubara energies Ej = EF + (2j + 1)iπkBT , whereas
the Green’s function is analytic away from the real axis and
consequently rather smooth in the complex plane. This allows
for a considerable reduction of integration points. Instead of
using many hundreds of energy integration points along the
real axis, by applying the artificial energy broadening to the
complex contour integration, high accuracy can be reached
considering only 20 to 40 energy points. Furthermore, the
calculation of the Green’s function at complex energy points
on the integration contour and at the Matsubara poles is crucial
since the iterative schemes to solve the Dyson equation work
increasingly faster with larger distances from the real axis.11

III. TB-KKR GREEN’S-FUNCTION METHOD

Tight-binding (TB) schemes within ab initio electronic-
structure methods have been very successfully realized in
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the TB linear muffin-tin orbital method16 and, e.g., for
interfaces and surfaces within the principal layer technique.17

In this paper, we make use of the related tight-binding or
screened KKR methods as developed by Zeller et al..18 Within
this approach, an advantageous two-step procedure can be
introduced instead of solving the Dyson equation (5) directly:
First, the free-space Green’s function g0 is related to the one
of a cluster of hard repulsive spheres, which are placed in the
same geometry as the lattice sites of the actual system:

G
r,nn′
LL′ (E)

= g
0,nn′
LL′ (E) +

∑
n′′,L′′L′′′

g
0,nn′′
LL′′ (E) t

r,n′′
L′′L′′′(E) G

r,n′′n′
L′′′L′ (E). (8)

Instead of the slow spatial decay of the free-space scattering
matrix g0 with respect to the distance between Rn and Rn′

, the
reference cluster scattering matrix Gr decays exponentially
fast with increasing distance within the energy interval of the
valence states.18 This allows for the introduction of a radial
cutoff without loss of accuracy, resulting in a finite number Ncl

of interacting atoms within this cluster. The computation of (8)
can be performed locally for each site and its individual cluster
of atoms, and it is therefore ideally suited to be distributed to
independent processes. The second step is the connection of
this reference system to the actual system via

Gnn′
LL′(E,k)

= G
r,nn′
LL′ (E,k) +

∑
n′′,L′′L′′′

G
r,nn′′
LL′′ (E,k) �tn

′′
L′′L′′′ (E) Gn′′n′

L′′′L′(E,k),

(9)

where we introduced here the k dependency induced by the
periodic boundary conditions of the supercell. Consequently,
in Eq. (9). the indices n and n′ are now restricted to sites
within the supercell of a total number of sites N . Since the
introduction of empty cells is a frequently used procedure
in KKR schemes, the number of sites of the supercell N is
allowed to be greater than the number of atoms of the supercell
Nat, i.e., N � Nat. Accordingly, we are using N for the number
of sites throughout this paper. Regarding (9), it is important to
note that the matrix Gr is now sparse in the space of sites with
only ∝ NclN nonzero entries. This sparsity enables us to store
this matrix for large systems on supercomputers and reduces
the amount of floating-point operations, which are two crucial
steps towards an efficient large-scale algorithm.

IV. ITERATIVE SOLUTION OF THE DYSON EQUATION

In order to identify and discuss the computational bottle-
neck arising from the solution of the Dyson equation (9), we
reformulate the problem in the following. For this purpose, we
drop the angular momentum and atomic-site indices as well as
energy and k-point dependencies from here on.

Starting from the Dyson equation (9),

G = Gr + Gr�t G, (10)

it is clear that Gr fulfills

(I − Gr�t) G = Gr. (11)

Instead of directly solving (11) for G, we avoid the
matrix-matrix multiplication of Gr and the inverted matrix

(1 − Gr�t)−1 and exploit in the following that both �t and
(�t)−1 are block diagonal. With the identity

Gr = −(I − Gr�t) �t−1 + �t−1, (12)

it follows after multiplication with (1 − Gr�t)−1

G = −(�t)−1 + (�t)−1[(�t)−1 − Gr]−1(�t)−1. (13)

Since the �t matrices are block diagonal, all matrix-matrix
multiplications in Eq. (13) are computationally inexpensive.
The CPU time-consuming part of (13) to compute the inverse
of

M = (�t)−1 − Gr (14)

is often referred to as KKR matrix or scattering path operator,
the direct inversion of which requires O(N3) floating-point
operations. Although optimized sparse solvers can reduce
the computational effort considerably, they require extensive
communication if parallelized. The iterative inversion can
be an efficient, alternative scheme for sparse and parallel
calculations as it takes advantage of the sparsity and can be
parallelized without any demands for communication during
the inversion step. In order to conduct the iterative inversion,
M and its inverse

X = M−1 = [(�t)−1 − Gr]−1 (15)

can be set into relation as

�t M X = �t. (16)

Inserting the actual expression (14) of M leads to

X = �t + �t GrX, (17)

which can be solved using the scheme

X(ν+1) = �t + �t GrX(ν) (18)

in an iterative cycle X(0) → X(1), X(ν) → X(ν+1), where
ν is the iteration index and X is a quadratic matrix of
size N (lmax + 1)2 × N (lmax + 1)2. However, the convergency
properties of such simple schemes are usually rather poor,
which is motivating the choice of more sophisticated methods
as, e.g., the generalized minimal residual19 (GMRES) or the
quasi-minimal residual (QMR) method.20 Both algorithms are
formulated to solve a set of linear equations

A X = B. (19)

In this context, Eq. (18) can be reformulated as

(�t Gr − I )X = −�t, (20)

the solution X of which we obtain in this representation by an
iterative transpose free QMR (TFQMR) solver.21

At this point, the computation time of the algorithm
scales ∝N2NclNit, where Nit stands for the number of
TFQMR iterations required to converge X down to the
predefined accuracy. An important property of the linear matrix
equation (20) is that it decouples in N (lmax + 1)2 problems,
i.e., N (lmax + 1)2 vectors each of the size N (lmax + 1)2 can
be iterated independently and together build the full solvent
matrix X. In the following, X will stand for the solvent of
one of those subproblems and is then accordingly referred to
as vector. Beyond that, it is partly of conceptual advantage to
group the (lmax + 1)2 vectors X representing the same atom
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index into one matrix. For the discussion of scaling behavior,
it is important to note that we find, in agreement with Refs. 11
and 22, that Nit depends only weakly on the system size for
N > 1000 and it is assumed to be constant from now on.
However, depending on the temperature T , for the energy point
closest to the real axis up to Nit ≈ 1000 iterations might be
needed. For efficient computing, it is crucial to come up with
schemes which reduce this factor considerably, such as finding
a good starting vector as initial guess and/or preconditioning
the matrix A = (�t Gr − I ) in Eqs. (19) and (20), respectively.
In the following, we will describe the implementation of both
techniques and its performance acceleration focusing on one
of the N (lmax + 1)2 equivalent problems solving (20).

In order to validate and show the increase in computational
efficiency of the new concepts, which will be presented
throughout this paper, KKRnano is applied to three dif-
ferent test systems with different physical properties. First,
Ge1Sb2Te4 is a phase-change material and crystallizes in the
rocksalt lattice structure. The chemical composition is defined
by two fcc sublattices, where one is fully occupied by Te
and the other is disordered and is hosting 25% Ge, 50%
Sb, and 25% vacancies. As a second system, we consider
a semiconductor, pure Si in a diamond structure. In order
to probe our method for purely metallic and spin-polarized
samples, we append this set of sample systems with a
quasirandom alloy of Ni and Pd crystallizing in the fcc
structure. While the NiPd alloy is treated with a lmax = 3,
the Si as well as Ge1Sb2Te4 structures are described by an
angular momentum cutoff of lmax = 2.

A. Initial guess

The default choice of the starting vector X(0) in the TFQMR
package21 is 0 + 0i for all entries of X(0). Obviously, this
starting point is usually far from the required solution, which
motivates us to introduce a (in general, arbitrary) starting
vector X(0):

X = X(0) + X̃, (21)

where X̃ is the difference between the solution X and the
starting vector X(0). Subtracting X(0) on both sides of (18)
suggests the definition of

�t ′ = �t − X(0) + �t GrX(0), (22)

which leads to the effective iterative expression

X̃(ν+1) = �t ′ + �t GrX̃(ν), (23)

with X̃(ν) = X(ν) − X(0). The matrix �t ′ directly determines
the quality of the starting solution X(0). Comparing (22) with
(18) shows that �t ′ expresses the perturbation remaining
from the difference between the initial guess and the required
solution. In fact, the calculation of the norm ‖�t ′‖ directly
corresponds to the check for quality by calculating the residual
norm of the present iteration in the usual TFQMR procedure.
For small ‖�t ′‖, i.e., a reasonably good initial guess, the
solution is expected to be computed in fewer iterations, as
will be shown in the following.

Such a starting vector X(0) can be obtained by different
physically motivated approaches:

(i) The solution of an ersatz geometry as a small locally
defined cluster or a coherent potential or virtual-crystal
approximation with an optionally smaller angular momentum
cutoff.

(ii) The extrapolation of the solution at the previ-
ously calculated energy points (E − 1,E − 2, . . .) of the
same self-consistency step (s), X

(0)
(s) (E) = f [X(s)(E − 1),

X(s)(E − 2), . . .].
(iii) The result of the previous self-consistency step (s − 1),

but same energy point E: X
(0)
(s) (E) = X(s−1)(E).

While the solution of an ersatz geometry can give an
excellent initial guess for a class of materials as, e.g., the
solution in a local cluster for semiconducting samples, the
quality of the initial guess can be significantly worse in
metallic systems. Moreover, the calculation of a precise initial
guess can become computationally expensive and slows down
the algorithm considerably. The extrapolation from previous
energy points is computationally cheap. However, we find that
the accuracy of such an extrapolation is rather limited. It is
more advantageous to use the result of the previous DFT self-
consistency cycle. This gives an initial guess, which exhibits
usually already at the first self-consistency steps s, a quality
of (‖X(s)‖ − ‖X(s−1)‖)/‖X(s)‖ ≈ 10−2. Keeping in mind the
architectures of modern supercomputers, for this approach the
memory limitations can be a bottleneck as for each atomic site
the information on X(s−1) with size N (lmax + 1)2 × (lmax + 1)2

has to be stored for each energy and k point. Therefore,
in KKRnano contributions to represent X(0) that are larger
than a specified cutoff are accordingly stored in a highly
sparse representation. By applying the initial guess, the overall
performed TFQMR iterations (Fig. 1) exhibit for all cases a
significant reduction in the number of iterations by a factor γ

FIG. 1. (Color online) Reduction of the number of required
iterations by application of the third initial guess strategy as described
above for the system Ge1Sb2Te4. The reduction ratio γ is defined
as the ratio of the sum of all iterations needed for all sites, k
and energy points, as well as lm components with and without
application of the initial guess. Here, we considered system sizes
from N = 64 to 512 and display γ as a function of the degree
of convergency of the self-consistency steps, which is represented
by the rms error, the variance of actual (s), and previous (s − 1)
potential ∝‖V(s)(r) − V(s−1)(r)‖, from which X

(0)
(s) = X(s−1) is taken.

The average reduction is plotted as a straight line.
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of 0.45 to 0.95. As intuitively expected, the increase in quality
of the initial guess for almost converged self-consistency
iterations leads to a reliable incremental reduction of required
TFQMR iterations.

B. Block-circulant preconditioning

In addition to the initial guess, the number of TFQMR
iterations can be considerably reduced by application of
preconditioning schemes. Here, the main challenge is finding
a good approximation P to the matrix A in Eq. (19) that can be
inverted easily. With the help of such an approximate matrix

P = P1 P2, (24)

a modified linear matrix equation

A′ Y = B ′ (25)

is solved, where A′ = P −1
1 AP −1

2 , B ′ = P −1
1 (B − AX(0)), and

Y = P2(X − X(0)). X(0) denotes an optional initial guess to
the solution X of AX = B. The residual vector r ′(ν) for the
preconditioned system of TFQMR iteration ν then reads as
r ′(ν) = B ′ − A′Y (ν). When a sufficiently small residual vector
r ′(ν) is obtained, the solution of the original system can be
calculated as

X(ν) = X(0) + P −1
2 Y (ν). (26)

The residual of the original system translates as

r (ν) = P1r
′(ν). (27)

For our purposes, we limit the preconditioning to right
preconditioning by setting P1 = I , which then leaves the
required size of the minimal residual unchanged to the one
of the original system. If the initial guess X(0) is zero, the
additional computation consists of two steps:

(i) To calculate A′Y = AP −1
2 Y , the preconditioning matrix

P −1
2 is applied to Y before every matrix multiplication with A.

This step must be performed in every TFQMR iteration.
(ii) The solution of the original system X is obtained from

Y by Eq. (26).
The remaining and most challenging task is to find an easily

invertible matrix P2 approximating A. One approach is to
obtain P −1

2 by applying a sparse complete (LU) or incomplete
(ILU) factorization of the matrix A, i.e. a decomposition
as product of lower and upper triangular matrices, which
would be functional also for cells with large relaxations or
amorphous systems. However, since we aim to develop a
highly parallelized code and ILU preconditioners are difficult
to parallelize efficiently, we come up with a different scheme.
A prerequisite for this alternative scheme is to restrict the
approach to systems with structural relaxations of at most
5% of the lattice constant. Under this assumption, we can
exploit the fact that in such lattices, Gr, and partly also �t ,
are roughly periodic on a smaller length scale than the size of
the actual supercell. This idea is the basis for preconditioning
by a block-circulant matrix, which was recently introduced by
Bolten et al..23 We will show that this scheme is optimally
suited to obtain efficiently a high-quality preconditioning
matrix in KKRnano.

In all cubic or rectangular lattices, the supercell can be
partitioned into Mx

bl, M
y

bl, and Mz
bl blocks in the x, y, and

z directions in real space. Those in total Mbl = Mx
blM

y

blM
z
bl

blocks build a new coarse basis for the supercell, where
each block contains Nbl = N/Mbl atoms. [See Fig. 2(a)
for a two-dimensional example of this spatial construction.]
The matrix A = (�tGr − I ) can then be composed out of
Mbl × Mbl submatrices and reads in full representation as

Ann′
LL′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
a

nbln
′
bl

LL′
)

11

(
a

nbln
′
bl

LL′
)

12 . . .
(
a

nbln
′
bl

LL′
)

1Nbl(
a

nbln
′
bl

LL′
)

21 (a
nbln

′
bl

LL′ )22 . . .
(
a

nbln
′
bl

LL′
)

2Nbl

...
...

. . .
...(

a
nbln

′
bl

LL′
)
Nbl1

(
a

nbln
′
bl

LL′
)
Nbl2

. . .
(
a

nbln
′
bl

LL′
)
NblNbl

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the submatrices (a
nbln

′
bl

LL′ )ij are of dimension Nbl(lmax +
1)2 × Nbl(lmax + 1)2 and nbl is accordingly running from
1 to Nbl. In this representation, the diagonal submatrices
(i = j ) cover the intrablock interactions, while the interblock
interactions are accounted for by the off-diagonal submatrices
(i 
= j ).

Although chemical or geometrical disorder on the lattice
leads to a clear distinction between individual subblocks, we
assume that average subblocks are in coarse approximation
suitable to describe the entire lattice. By dropping the internal

indices of the submatrices aij = (a
nbln

′
bl

LL′ )ij , all submatrices
are replaced by a set of averaged submatrices ai , where the
averaging process is carried out for each element separately.
The mean submatrix carrying the intrablock interaction then
reads as

a1 = 1

Mbl

Mbl∑
j

ajj . (28)

However, for a generalization of (28) to interblock interactions,
it is convenient to use not the row index i of submatrices
directly, but instead a local relative index il(j ): From here on,
each il(j ) marks a subblock of specific relative geometrical
position to the central subblock i = j of column j [for an
illustration of this definition, see Fig. 2(c)]. This relative
geometrical position of the block with respect to the diagonal
block is given by �il (j ) = (�x

il (j ),�
y

il (j ),�
z
il (j )). For example,

in Fig. 2(c), the block neighboring the diagonal block in the
x direction would be addressed by �2 = (1,0,0). By utilizing
this notation, we can generalize (28) to

ail (j ) = 1

Mbl

Mbl∑
j

ail (j )j , (29)

which is for the intrablock interaction il(j ) = 1 equivalent
to Eq. (28). This averaging operation (29) is schematically
visualized in Figs. 2(d) and 2(e). With this set of averaged
blocks, we can proceed representing the full matrix Ann′

LL′ by a
block-circulant matrix. It is important to note that in practice
we restrict the number of considered off-diagonal subblocks
as indicated in Fig. 2(a) to M ′

bl < Mbl, which is equivalent to
introducing a number of zero matrices on the block-circulant
matrix A. M ′

bl is often and throughout this paper chosen
such that nearest- and next-nearest-neighbor subblocks are in-
cluded. This cutoff is justified by the fact that through the use of
screened reference potentials, blocks being geometrically far
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FIG. 2. (Color online) In all five panels, a two-dimensional supercell (boundary marked with gray dashed lines) is drawn and the five
different conceptual steps needed for the block-circulant preconditioning scheme are illustrated. (a) Shows the supercell on the level of
atoms, which is here exemplified by a two-dimensional disordered lattice of two arbitrary types of atoms (light and dark blue) with overall
N = 64 atoms. In addition, the supercell is partitioned into Mbl = 16 subblocks, where each subblock contains Nbl = 4. The borders of the
subblock are indicated by blue lines. Then, overall Mx

bl = 4 and M
y

bl = 4 subblocks in the x and y directions are required to represent the full
supercell. (b) Illustrates how those subblocks are labeled over the entire supercell by the index j from j = 1 to j = Mbl = Mx

blM
y

bl. In addition,
it is shown how this index j is related to the position (xj , yj ) in real space. In (c), the interblock interactions of subblock j = 6, which is
highlighted by thick blue lines in (b) and (c), are depicted in the space of the row index il(j ). For the sake of simplicity, index il(j ) is running
exclusively over nearest-neighboring subblocks. Further, the relative geometrical position of the interacting blocks �x

il (j ) and �
y

il (j ) are specified
for this simplified example. (d) Schematically shows the full interaction matrix of the supercell from all Mbl = 16 blocks amongst each other,
highlighting two selected types of interaction il(j ) = 1 (orange colors) and il(j ) = 2 (blue colors), where the variations in color represent
variations in the individual interactions. In direct contrast, (e) depicts the consequence of averaging the full interaction matrix to effective
interactions by means of Eq. (29), which are accordingly represented by uniform colors. Note that (d) and (e) are schematical illustrations
being not one-to-one related to (a)–(c).

from the centered diagonal block have small elements and can
be neglected for the construction of the preconditioning matrix.

The averaged block matrices are now used to set up a block-
circulant matrix, which is utilized as preconditioning matrix
P2. For a fast computation of the inverse of P2, an important
property of circulant matrices is exploited: Given a Fourier
transform defined as

αj =
∑

i

ai e−2πi�il (j )kj , (30)

where

kj = (kx,ky,kz) =
(

xj − 1

Mx
bl

,
yj − 1

M
y

bl

,
zj − 1

Mz
bl

)
. (31)

An illustration of the definition of the spatial indices xj , yj ,
and zj can be found in Fig. 2(b) and the blocks αj are of size

Nbl(lmax + 1)2 × Nbl(lmax + 1)2. This Fourier transform (30)
of a circulant or block-circulant matrix P2 creates a block-
diagonal representation of P2, (P2)k, in reciprocal space.23

The submatrices of (P2)k, αj , can now be block-wise inverted
by means of LU decomposition. These are fast operations due
to the small block sizes, e.g., for Nbl = 10 atoms and lmax = 3
the blocks have a size of 160 × 160. The required matrix for
preconditioning P −1

2 is then constructed out of

(P2)−1
k =

⎛
⎜⎜⎜⎜⎜⎜⎝

α−1
1 0 . . . 0

0 α−1
2

...
...

. . . 0

0 . . . 0 α−1
Mbl

⎞
⎟⎟⎟⎟⎟⎟⎠

. (32)
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Multiplication of (P2)−1
k as operated in Eq. (26) as well

as in every multiplication involving A′ is then conducted
in reciprocal space. Therefore, first a fast Fourier transform
(FFT) is applied straightforwardly to Y , Y �−→ Yk, then the
matrix multiplication (P2)−1

k Yk is done, and as a last step,
the back transformation (P2)−1

k Yk �−→ P −1
2 Y gives the desired

preconditioned vector P −1
2 Y .

After having introduced the preconditioning scheme, it is
worthwhile commenting on the choice and construction of
subblocks. Depending on the system size and complexity of
the lattice, subblocks can be defined in several ways. To operate
with small preprocessing times, which scale cubically with the
number of atoms in the subblocks, in practice we choose block
sizes not larger than 16 atoms. For cubic cells, Nbl is usually
set to, e.g., Nbl = 4 for fcc or Nbl = 8 for rocksalt structures,
while for structures incorporating additional interstitial sites,
such as zinc blende or diamond, typically Nbl = 16 is selected.

The performance acceleration, or the reduction of the
required number of TFQMR iterations, respectively, is shown
in Fig. 3(a) for a sample system, i.e., a Si432 unit cell, at the

FIG. 3. (Color online) (a) Convergency of the norm of the residual
vector |r| as a function of the number of TFQMR iterations combining
the initial guess approach and block-circulant preconditioning (BCP)
for an arbitrary column of a matrix corresponding to Si432. Four
different qualities of starting vectors rated by the initial residual
|r (0)| = AX(0) − B are shown for comparison with (thick lines) and
without (thin lines) applied preconditioning. Note that a log-log scale
is used. In (b) and (c), the CPU time required to obtain convergency
is shown for all qualities of initial guesses used in (a) in consistent
color coding. Timings with and without applied preconditioning are
shown in (c) and (b), respectively. Note that the scale is different in
(b) and (c). For the sake of comparison, the CPU time required to set
up the BCP is specified in (c). The CPU time to apply the initial guess
is for all scenarios negligibly small and not shown.

FIG. 4. (Color online) Sum of TFQMR and TFQMR+BCP
iterations over all lm components and one arbitrary atom in the
test system Ni5Pd251. Here, all 27 energy integration points are
considered and no initial guess has been used. A random displacement
from the ideal atomic sites on the order of 1% has been introduced
on all sites. The inset shows the distribution of the energy points
along the integration contour. The color-coded points illustrate the
corresponding positions of energy points in the main graph.

energy point closest to the real axis. This point is of particular
importance as the convergence at this energy point is most
demanding. For all scenarios with different qualities for the
initial guesses, convergency to sufficiently small norms |r (ν)| of
the residual vector r (ν) is reached strikingly faster than without
block-circulant preconditioning. By applying block-circulant
preconditioning, at least a factor of 20 less TFQMR iterations
have to be performed. To obtain a more general picture, Fig. 4
shows the required number of TFQMR iterations at different
energy points. Here, the large variability over a range of 100
to 10 000 iterations is clearly visible for the unpreconditioned
approach. Preconditioning leads to a significant reduction by
a factor of 2 to 50 and to a much smaller spread of the
number of iterations between 60 to 200 from the first to the last
energy point.

This reduction of the number of iterations raises the
question as to whether it can be translated into an overall
speedup of the algorithm since additional computational
work has to be performed: On the one hand, the setup
of the calculation with initial guess and the creation of a
preconditioning matrix P −1

2 is performed once prior to the
start of the iterative procedure. On the other hand, P −1

2 is
applied at each iterative step. While the setup of the initial
guess requires only negligibly more computational overhead,
Figs. 3(b) and 3(c) display the timings for both preconditioning
steps. Apparent from Fig. 3(c), about 25% of the total time
of the iterative solution with block-circulant preconditioning
(BCP) is consumed to generate P −1

2 . However, comparing the
timing with and without the BCP in Figs. 3(b) and 3(c) reveals
that the extra amount of computational work is well invested.
The strongly reduced number of iterations [even though each of
them takes longer due to the multiplication with P −1

2 according
to (25)] translates for this particular energy point and system
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into a significant speedup of the algorithm by a factor 6 to 9
as shown in Figs. 3(b) and 3(c).

Overall, and for many different metallic and semicon-
ducting systems including small relaxations on the order of
5% of the lattice constant, we observe in total a speedup
by block-circulant preconditioning by a factor of 3 to 10,
depending predominantly on the temperature and distribution
of energy points.

It is important to note that the presented introduction of
the iterative solution of the Dyson equation does not limit
the accuracy of the calculations: For example, with respect
to the total energy, an error per atom on the order of one
μeV is reached usually already by stopping the iterative steps
for residuals on the order of 10−7|b|. Therefore, we find that
calculations with KKRnano fully maintain the high accuracy
as established with existing full-potential KKR methods.14

V. PARALLELIZATION AND SCALING

During the past decade, a rapid trend to parallelism
evolved in high-performance computing. This development
is still ongoing and manifests in the fact that nowadays
the fastest supercomputers contain hundreds of thousands of
processing units (cores). In order to guarantee the portability
of KKRnano to existing and future platforms of that kind,
we have developed and optimized our code on two modern
computing architectures available at the Forschungszentrum
Jülich, which are both among the 40 fastest computers in
the world (Ref. 24). Those supercomputers are an IBM Blue
Gene/P [JUGENE (Ref. 25)] with 294 912 cores, four cores per
node, 2048 MB memory per node, and the JUROPA system26

with 17 664 cores, eight cores per node, 24 GB memory per
node. Based on these facts and the demand for portability
to other platforms, we define three essential goals for the
parallelization of KKRnano:

(i) parallelization up to at least 10 000 processors;
(ii) memory demand below the limit of 512 MB per

message processing interface (MPI) process;
(iii) OpenMP parallelization.

While massive parallelization and low memory demands
are obvious prerequisites to perform calculations on JUGENE,
an additional level of OpenMP parallelization gives us the
flexibility to operate in a shared memory approach and use
considerable more memory, e.g., on JUGENE 2048 MB of
memory or on JUROPA up to 24 GB of memory. To achieve
these goals in KKRnano, four levels of parallelization are
realized, which are schematically shown in Fig. 5. While the
base frame of our method is the parallelization over atoms,
which is always active, the other levels of parallelization
can be used optionally. In the following, we will briefly
describe the important steps of all levels of parallelization
and independently illustrate their efficiency.

A. Atom parallelization

The entire program has been parallelized in real space
over Voronoi cells. Those cells are constructed around the
atomic sites and, if present in the lattice, around vacancies
and/or interstitials. Although not all cells in general must

FIG. 5. (Color online) Schematic workflow and nested paral-
lelization of four levels of hierarchy as implemented in KKRnano.
Starting with a serial process (gray), the computational work is dis-
tributed to the real-space parallelization (black). Here, three branches
correspond to three atoms. These processes are further split, e.g., into
two processes distributing operations over energy integration points
(blue). Subsequently, those processes can be further split in spin-up
and spin-down processes (red) in case of spin polarization. While up
to this point all parallelization has been implemented in a distributed
memory approach using MPI 2.0, the inner nested parallelization
(orange) of the solution of the Dyson equation is based on OpenMP
parallelization, which is in this example split into two threads.

contain atoms, we will for the sake of simplicity refer to this
parallelization scheme as atom parallelization.

KKRnano is constructed such that the loop over atoms
takes the highest hierarchy, which is the natural choice for the
implemented iterative scheme. In order to be able to distribute
the memory to the MPI processes, the number of processors
Np has to be equal or larger than the number of lattice sites
in the supercell N . The computationally most demanding
part, the iterative solution of the Dyson equation, can be
split straightforwardly in terms of the atom parallelization
as explained above. In nonideal structures, which explicitly
include relaxations, each atomic site might have a different
surrounding. For the screened KKR method, this requires
the computation of the reference structure constants for all
clusters. This work can be efficiently distributed using atom
parallelization. The number of reference clusters is always
smaller or equal to the number of sites and the computation
of Gr can therefore be straightforwardly distributed to the
atom parallelization and subsequently broadcasted by MPI
communication.
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FIG. 6. (Color online) Scaling of KKRnano on a Blue Gene/P
(Ref. 25) for a NixPd1−x system as a function of number of atoms per
unit cell N from N =108 to 6912 with a Ni concentration of x ≈ 3%
using one k point and always one processor per atom. Block-circulant
preconditioning has been applied with blocks of four atoms, and no
initial guess has been used. Displayed are the execution time tf (blue),
the total CPU time tf N = tf Np (orange), as well as total CPU time
without the time required for MPI communication (gray crosses).
Straight lines are linear cN (blue) and quadratic cN2 (orange) fits
to the data points, where c is a constant, which is slightly different
for both fits. All time measurements have been executed using the
performance analysis tool SCALASCA (Ref. 27).

The weak scaling, i.e., increasing the system size and
the number of processors used by the same factor, of the
atom parallelization is shown in Fig. 6. Focusing on the
pure atom parallelization, an O(N2) scaling in CPU time
can be observed. Alternative approaches to solve the Dyson
equation are not preferable, as those direct methods run into
the memory boundaries on supercomputers quickly and are
not efficiently parallelizable. The quadratic and linear fits
to the time measurement reveal that an O(N2) scaling in
CPU time and an O(N ) scaling in execution time describe
well the scaling performance of KKRnano (see Fig. 6). This
efficient parallel performance has been rendered possible by
designing the method such that MPI communication presents
no bottleneck. In order to highlight this fact, we show in
addition in Fig. 6 the required CPU time after subtracting
all MPI communication related efforts: Independent on N ,
less than 10% of computational time is used up for MPI
communication and synchronization of MPI processes.

B. Spin parallelization

In magnetic systems with collinear magnetic spin structures
such as ferromagnets, antiferromagnets, ferrimagnets, or solids
with spin-density waves, the parallelization over spin-up
and -down electrons provides a natural second level of
parallelization. The work performed for the two types of
electrons is divided into two MPI processes, which include
setups of the �t matrices, solution of the Dyson equation,
and computation of the electron density. The speedup shown
in Fig. 7 (compare curve {211} with {111}) exhibits the high
efficiency of this level of parallelization. For all examined
system sizes, we find an acceleration by a factor of 1.7 to 1.8 in

FIG. 7. (Color online) Speedup of KKRnano as a function of
number of atoms N in the supercell. The number of processors is
always equal to the number of atoms N defining the speedup of 1.
All optional levels of parallelization are probed separately on a Blue
Gene/P (Ref. 25) architecture for NixPd1−x alloys. The details are
the same as described in the caption of Fig. 6. Labels {pS, pE, tOMP}
with pS, pE, and tOMP specify the number of processes/threads used
per spin, energy, and OpenMP parallelization, respectively. For the
energy parallelization, dynamic load balancing as explained in the
text has been adopted.

execution time compared to spin nonparallelized calculations.
Here, as for all other optional levels of parallelization, the
increased speedup for larger systems can be related to the
fact that the ratio of parallelized parts to the nonparallelized
overhead grows with N . Further, it should be pointed out
that the spin parallelization as implemented in KKRnano at
present can be applied straightforwardly only to collinear spin
systems without spin-orbit coupling, which would couple the
spin channels.

C. Energy parallelization

As a third level of parallelization, KKRnano has the option
to distribute the energy integration points across processors.
As introduced before, the energy integration is performed on
a complex contour, thereby reducing the number of energy
points to typically 30 to 40. Because the Dyson equation
is solved iteratively, the number of iterations depends on
the position of the energy point in the complex plane.
Figure 4 shows a typical example for the workload at different
energy points. Depending on the electronic temperature and the
material, the computational time required to solve the Dyson
equation for the last energy point closest to the real axis is in
the range between 20% and 40% of the total time.

Balancing the workload, i.e., optimally distributing the
energy points over the processors such that ideally all processes
finish their individual task at the same time, is a highly
nontrivial task that depends on the quality of preconditioning
and the initial guess for the iterative solution. Therefore, we
introduced a scheme which dynamically load balances the
computation for the sth self-consistency step based on the
performance of the (s − 1)th step. The timing for each energy
point is examined on the fly and used to reschedule the MPI
processes under the condition to achieve the optimal load
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balance. With this approach, an estimate of work distribution,
i.e., to each processor a group of energy points is allocated,
has to be made only for the first self-consistency iteration.
For all subsequent iterations, the dynamical load balancing
reaches an efficiency between 90% and 100%. By exploiting
the energy parallelization, we gain a speedup of 1.7 to 1.8 if
two energy groups are used and 2.3 to 2.6 for three energy
groups (compare curves {131}, {121}, and {111} in Fig. 7).

D. OpenMP parallelization

Up to this point, KKRnano has been exclusively parallelized
by means of MPI parallelization. However, state-of-the-art
supercomputers are nowadays predominantly built in hybrid
architecture combining 2–32 CPUs in a shared memory
environment on one node and up to tens of thousands of
those nodes communicating as distributed memory units
amongst each other. This shared memory approach provides
an opportunity to circumvent the notorious memory resources
on current supercomputers. To be able to exploit this important
advantage, we introduce an OpenMP level of parallelization
on top of the existing MPI parallelization, which is described
in the following.

At this point, we have at least two options as to how
to introduce an OpenMP parallelization for the dominant
computational work required to solve the Dyson equation.
The iterative approach solving (20) decouples all columns
of the matrix X, which offers the possibility to introduce
a parallel scheme over the (lmax + 1)2 angular momentum
expansion coefficients. The strict separation of lm components
leads to the use of sparse matrix-vector operations, while in
general the operation AX can be performed as sparse matrix-
matrix multiplication, where X has then N (lmax + 1)2 ×
(lmax + 1)2 elements. Our performance tests showed that
beneficial cache access during the matrix-matrix operations
leads to an acceleration of the algorithm by approximately a
factor of 2. In order to incorporate this speedup in KKRnano,
we implemented a flexible low-level OpenMP parallelization
in various parts of the program, including the matrix-matrix
operations in the iterative steps. The following performance
analysis will be restricted to the inclusion of at most four
OpenMP threads, which is the limit in exploiting the Blue
Gene/P (Ref. 25) architecture. By distribution to two and four
OpenMP threads, we observe an acceleration of 1.4 to 1.7
and 1.7 to 2.4, respectively (compare curves {114}, {112}, and
{111} of Fig. 7). For the practical application, it is important to
note that aside from this speedup, the OpenMP parallelization
extends the memory bounds of KKRnano so that system sizes
of more than 10 000 atoms per supercell are treatable.

The comparison of the three optional levels of paralleliza-
tion on top of the natural one with respect to number of atoms
leads to the conclusion that the spin or energy parallelization
are the option of choice if the application is not memory bound.
If the limited amount of memory restricts the use of these
MPI levels of parallelization, the OpenMP parallelization can
surmount this bottleneck and still leads to a speedup that is
only 20–30% away from the ideal one.

The speedup of all four levels of parallelization and their
combination is shown in Fig. 8. For 4096 atoms and up
to eight processors per atom, we observe a speedup being

FIG. 8. (Color online) Speedup of KKRnano (blue) with respect
to the number of processors combining subsequently all levels of
parallelization on a Blue Gene/P (Ref. 25) architecture for a NixPd1−x

alloy of 4096 atoms versus ideal speedup (gray line). The computa-
tional details are the same as described in the caption of Fig. 6.
Labels {pS, pE, tOMP} with pS, pE, and tOMP specify the number of
processes/threads used per spin, energy, and OpenMP parallelization.
For the energy parallelization, dynamic load balancing as explained
in the text has been adopted.

larger than 60% of the ideal speedup. At a higher level of
parallelization of up to 16 processes per atom, KKRnano still
shows significant acceleration up to a speedup of eight, but
the inefficiencies due to overhead and MPI communication
are clearly visible. Hence, for the test supercell of 4096 atoms
operating between 4096 and 32768 processors guarantees high
efficiency. For larger cells of 10 000 atoms, the percentage of
overhead is reduced and an even higher level of parallelization
becomes efficiently usable. Therefore, KKRnano is ideally
suited to run with up to 100 000 processors on present and
future supercomputing architectures.28

VI. TRUNCATION OF INTERACTION

So far, we solved the Dyson equation and the electron
density, respectively, without compromising on the accuracy.
In the following, we explore the possibility of introducing in
addition the nearsightedness of the density matrix as proposed
by Kohn.29 While the diagonal part of the density matrix
ρ(r,r′) is equivalent to the electron density, the full expression
for ρ reads as

ρ(r,r′) = − 1

π
Im

∫ ∞

−∞
fT (E) G(r,r′,E) dE. (33)
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Here, analogously as in Eq. (7), the Fermi function fT (E)
enters. Apparently, the Green’s function gives the density
matrix, which facilitates an application of the nearsighted
principle within the KKR Green’s-function approach. This
route has been first exploited by Wang et al..9 Depending on
material properties, e.g., the localization of electronic states,
the multiple-scattering interaction can be restricted indeed to
a local interaction zone described by a local cluster with a
few hundred up to a few thousand atoms Ntr. Accordingly,
interactions to sites being not part of the local cluster are
truncated and neglected. The loss of accuracy, which is induced
by this truncation of the interaction, can however be well
controlled by the parameter Ntr.11

When using this approximation, only Ntr(lmax + 1)2 rather
than N (lmax + 1)2 nonzero entries of each column of the
solvent of the linear matrix equation X have to be considered.
As a direct consequence, the full matrix A = �tGr − I does
not have to be taken into account to solve for X: The
fraction of the matrix A, which has to be considered, becomes
independent of system size N and proportional to NclNtr.
In other words, the Dyson equation must be solved only in
the individual local interaction zone for each of the atoms
in the unit cell. With the reduced sizes of A and X, the
required matrix-vector operations scale with Ntr instead of
N . As those operations need about 90% of the computational
work of one TFQMR cycle, the truncation leads in the optimal
case to a reduction of computational time by Ntr/N . With
this truncation, the algorithm used in KKRnano ideally scales
∝NitNclNtrN , i.e., linearly with number of atoms N . Hence, if
losses due to MPI communication and overhead are neglected
for the moment, the atom parallelization in KKRnano with its
distribution of work to Np processors (Np � N and Np ∝ N )
leads to an execution time independent of N . Figure 9 reveals
this conjecture in praxis. Except for minor losses due to load
imbalance, MPI communication and overhead, the execution
time indeed remains almost constant for N > Ntr. In other
words, KKRnano shows efficient O(N ) scaling for N > Ntr.

FIG. 9. (Color online) Scaling of KKRnano in double-
logarithmic representation without (open blue circles) and with
applied truncation (filled blue circles). The test system is Ni1−xPdx

with x = 5% and one k point on JUGENE. Here, parallelization over
atoms, spin, and two groups of energy points are used. The number
of processing nodes (4 CPUs per node) is shown in dark gray.

With this advantageous scaling at hand, the question
remains as to how the accuracy of the calculation is affected
by truncation. For the metallic test system NiPd, the scaling
of which is shown in Fig. 9, the applied cutoff of Ntr = 959
atoms in the interaction zone leads to an energy error of less
than 2 meV per atom. The loss of accuracy introduced by
truncation depends in general strongly on the treated material
and has be tested to gain ultimate control over the error. In any
case, the accuracy can be increased if the electronic potential
calculated self-consistently with a given interaction zone is
refined in one additional self-consistency step with a larger
zone.

An important advantage of our approach compared to other
methods9 is that linear scaling can be exploited optionally. This
means, for systems where accuracy would demand interaction
zones with tens of thousands of atoms, we can make use of the
explicit periodicity of the supercell using one k point. Aside
from the beneficial linear scaling, the high degree of sparsity
arising from the truncation opens the possibility to extend the
range of system sizes to more than 16 000 atoms.

VII. CONCLUSION

We have presented the successful development of a
powerful massively parallel density functional full-potential
Korringa-Kohn-Rostoker Green’s-function method, KKR-
nano, which is especially designed for large-scale applications
of more than 10 000 atoms on hundreds of thousands of
processors. As typical for all-electron methods without shape
approximation, KKRnano is designed to give the density
functional answer to the problem at hand and accuracy is
not compromised by the algorithms introduced for large-scale
applications on massively parallel computers. The advanta-
geously quadratic or optionally linear scaling with system size
and the high parallel scalability have been achieved by making
use of screened reference systems combined with the iterative
solution of the Dyson equation and optionally the truncation
of long-range interactions. The excellent scaling behavior was
demonstrated for alloys with more than 16 000 atoms and
the test calculations involved more than 65 000 processors.
In addition, we presented schemes to obtain high-quality
initial guesses and preconditioning matrices for the iterative
solution of the Dyson equation, which enable us to speed
up KKRnano by up to one order of magnitude. The high
parallel efficiency of KKRnano is thereby the key to exploit
the full strength of today’s and future massively parallel
supercomputing architectures.
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