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Spin and charge-current dynamics after ultrafast spin-polarized excitation in a normal metal are studied
theoretically using macroscopic wave-diffusion equations for spin-resolved carrier and current densities. It is

shown analytically how this set of equations yields a unified description of ballistic and diffusive properties of
spin and charge transport, including the intermediate regime between these two limits. In the framework of the
wave-diffusion approach, ultrafast excitation of spin-polarized carriers in thin gold films is modeled assuming
slightly spin-dependent momentum relaxation times along with standard parameters (Fermi velocity, spin and

momentum relaxation times). The unified treatment of diffusive and ballistic transport yields robust signatures
in the spin and charge dynamics that are in qualitative agreement with recent experimental results [Melnikov
et al., Phys. Rev. Lett. 107, 076601 (2011)]. The influence of boundary effects on the temporal signatures of

spin transport is also studied.

DOLI: 10.1103/PhysRevB.85.235101

I. INTRODUCTION

Recent experimental research on spin dynamics in semi-
conductors, normal and ferromagnetic metals as well as
half-metallic ferromagnets generally uses either “electronic”
or optical excitation. In electronic setups, a spin current, a
spin accumulation, or a precessing magnetization is driven
by dc currents or microwave frequencies. Although optical
techniques may be employed for the detection of spin-
dependent phenomena, these techniques are used to measure
transport characteristics at the frequencies associated with the
excitation."> Purely optical techniques nowadays have the
capability to excite and probe spin-dependent dynamics on
timescales of several ten femtoseconds, and have shown how
ultrafast spin-dependent dynamics take place. In particular,
spin relaxation in semiconductors has been investigated,®*
lifetimes in metals have been measured,® and ultrafast changes
of magnetic order by optical pulses have been discovered.®’

Very recently there has been rapidly growing interest in
studies that combine ultrafast optical excitation and detection
with spin-transport phenomena. The ultrashort time scales
involved in these studies entail combined dynamics of spin
relaxation/scattering and transport. For instance, Oppeneer
and coworkers have argued® that a superdiffusive transport
process has an important influence on the measured magne-
tization dynamics in ferromagnets and electronic dynamics
in metals, because transport processes already act on the
ultrafast timescales on which the excited electrons are in
nonequilibrium, or at least “hot.” To obtain quantitative results
on the influence of transport on “hot electrons,” a recent
experiment’ excited spin-polarized carriers in an iron slab
using an ultrashort laser pulse and probed the time-resolved
spin and charge dynamics of the opposite side of an adjacent
thin gold film using second-harmonic generation (SHG). This
experimental setup made it possible to monitor charge and
spin transport on length scales of about 100 nm and time
scales of several ten femtoseconds after excitation with 35-fs
pulses. Reference 9 provided a theoretical explanation of
the spin-dependent transport dynamics based on the Fermi
velocities of different carrier species (electrons and holes,
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spin-up and spin-down) that can be generated in the gold
films. Depending on their mean-free paths (compared to the
film thickness), it was argued that the different carrier species
give rise to either predominantly ballistic or predominantly
diffusive transport.

It is not easy to disentangle the effects of nonequilibrium
relaxation and transport processes experimentally, because
signatures of diffusive or ballistic transport already indicate
the presence of scattering, or lack thereof. The present paper
aims at a theoretical analysis of spin and charge transport after
optical excitation in a macroscopic wave-diffusion model
that can be derived from the Boltzmann transport equation.
Importantly, this approach describes ballistic and diffusive
transport regimes including the intermediate regime between
the two “extreme” cases using a single set of equations for spin
and charge transport. We thus do not need to make a distinction
between predominantly ballistic or diffusive carriers as was
done in Ref. 9. Because our approach is rooted in a close-to-
equilibrium approximation it does not include superdiffusive
transport processes, which result from an approximate
treatment of pronounced nonequilibrium electronic
dynamics.® Our approach compensates for this drawback
by its numerical simplicity and robustness: it uses only
three established parameters, i.e., Fermi velocity as well as
momentum and spin relaxation times, which can be determined
from transport measurements independently of the optical
experiment.

In this paper, we use our approach to demonstrate the
signatures of close-to-equilibrium transport on ultrashort
timescales, in particular, in the region where neither a purely
ballistic nor diffusive picture applies. In addition to the
numerical results obtained from the macroscopic spin and
charge transport equations, we provide an analytical discussion
how both ballistic and diffusive transport are contained in these
equations as special cases in the short-time and long-time
limits. Since our theoretical approach contains ballistic and
diffusive dynamics as special cases, it is well suited for a
study of the behavior at the transition between ballistic and
diffusive transport.

©2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.107.076601
http://dx.doi.org/10.1103/PhysRevB.85.235101

KALTENBORN, ZHU, AND SCHNEIDER

The paper is organized as follows. The time-dependent
equation system, which forms the basis of our discussion
is presented in Sec. II. Since this model was introduced in
earlier papers,'®!! we provide only a brief explanation of
the macroscopic dynamical equations. In Sec. III, we show
analytically how the wave character of these equations is
related to ballistic transport. In Sec. IV B, we present numerical
results for the spin and charge dynamics in a gold film after
spin-polarized optical excitation and compare our results to
recent experiments. We summarize our results in Sec. V.

II. TIME-DEPENDENT EQUATION SYSTEM

For a macroscopic description of spin currents and the
accompanying spin accumulation at the boundaries of mul-
tilayer systems, one often applies macroscopic spin-diffusion
theory.*!?-1° The infinite propagation velocity for spin (and
charge) signals inherent in this approach becomes troublesome
at high frequencies and/or switching speeds, and can be
circumvented by using the macroscopic spin wave-diffusion
equations, which form the basis of the theoretical analysis
in this paper. Their derivation together with applications to
collinear and noncollinear spin transport has been discussed in
Refs. 10 and 11. These papers also contain relevant citations
for the derivations of the equations.

The basic quantities in this approach are the macroscopic
spin-current density J;(z,¢) and spin density n,(z,?) of conduc-
tion electrons in parabolic bands with spin projection quantum
number s = £1/2. The densities obey the dynamical equations

aJS(Zst) 8ns(zvt) nS(th)_nfs(th)
= _ , 1
0z + Jt Tst M
Js(z,1) , Ong(z,t)  0Js(z,1)
= — . — . 2
T Sie™ 52 o1 @)

While the continuity equation (1) is the same as in macro-
scopic spin-diffusion theory,*!> Eq. (2) is a time-dependent
generalization of Fick’s law, where the time derivative dJ; /0t
describes relaxation processes in addition to the “diffusive”
space derivative dn,/dz. For the description of multilayers, it is
assumed that the same bands with spin label s exist in each part
of the heterostructure. Further, 7 and 7 are the spin flip and
the (spin-dependent) momentum relaxation times that result
from quasiequilibrium averages over electronic distributions.

In ferromagnets, the momentum relaxation times 7, are dif-
ferent for majority and minority electrons, but in nonmagnetic
metals they are spin independent close to equilibrium, i.e., 7y, =
7_. Nonequilibrium spin-dependent excitation in normal met-
als on short timescales does lead to spin-dependent lifetimes.
We therefore assume different momentum relaxation-times
T, # 1_, for normal metals after spin-dependent excitation
in this paper. Regardless of the excitation conditions, spin-
dependent momentum relaxation times may also arise in an
experiment, such as the one in Ref. 9, if an external field for
the measurement of magneto-optical signals is applied.

To make this paper more self-contained, we collect some
results from Ref. 10: there it was shown that an important
consequence of the macroscopic wave-diffusion equations is
the occurrence of the spin-signal-propagation velocity,

Vg

sig = T =» 3
v = 3)
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where vg is the Fermi velocity. Equations (1) and (2) can be
combined to yield a wave-diffusion equation'® for the total
spin density n,, =ny —n_,

2 2
aﬂ+(l+i>an_m+n_m=c§iaﬂ7 “)
dt? T T; dt tT} € dz2
where T} = t4/2 is the spin-relaxation time and t the
“average” momentum relaxation time. The equation above
contains a second-order time derivative, which is absent in the
spin diffusion equation.* This additional term shows that it
takes a finite time for the spin current to adjust to the gradient
of the spin accumulation.'”!® The second-order time and
space derivatives lead to a wave character of the dynamical
spin and charge transport in addition to its diffusive character
and that time-dependent macroscopic spin transport shows
wavelike and diffusive properties. From this viewpoint, the
time-dependent spin diffusion equation can be regarded
as an approximation of the wave-diffusion behavior in the
long-time/low-frequency limit.

III. BALLISTIC AND DIFFUSIVE TRANSPORT FROM
THE WAVE-DIFFUSION EQUATION

In this section, we connect the wave-diffusion equation
(4) with diffusive and ballistic behavior of spin transport. To
this end, we analyze the spatiotemporal behavior of a spin-
polarized carrier distribution that is initially concentrated at
z = 0, i.e., the initial condition

nn(z,0) = Npé(2). ()
To this end, we calculate the mean-square displacement'”
2 1 )
AZ(I)Z N—m/;ooZ nu(z,t)dz (6)

with N, = [° dzn,(z,0). We will interpret AZ(r) —
A%(O) o t? as ballistic and Ag(r) — A%(O) o t as diffusive
transport in accordance with electronic wave packet dynamics.
Note that we have A2(r = 0) = 0.

We now construct a solution of the wave-diffusion equation
with the initial condition (5) using damped dispersive solutions
of the form

Ry X ei(kz—wt) (7)

as done by Weiss?® for transport equations resulting from
persistent random walk models.

To determine the temporal damping characteristics of n,,,
we let w(k) become a complex function of the wave vector.
This should be contrasted with Ref. 10 where k(w) = kr(w) +
iki(w) was chosen as a complex quantity to obtain the damping
length as a function of frequency. Substituting Eq. (7) into
Eq. (4), we get the dispersion relation

—? —iaw+E = —cszigkz, (8)
where o = % + Tll and £ = # We obtain two purely imagi-
nary solutions wy = —iyy with

v+ (k)
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FIG. 1. Mean-square displacement A,(¢) of the spin density vs.
time: transition from ballistic to diffusive spin transport.

which describe an exponential decay of n,,(z,¢) and J,,(z,t)
in time. The initial condition (5) can now be satisfied by the
Fourier integral

dk
nm(Z f) — N / lkZ —zu)+(k)t + —m),(k)t]’ (10)
from which one reads off the Fourier transformed density

o0
fim(k,t) = Ny, / dze *n,, (z,1)
—00

— Nm[e—l/+(k)f _{_e—%(k)t]_ (11)

The mean-square displacement can be expressed with the help
of the second derivative of the Fourier transformation and
explicitly evaluated as follows:

1 3%i,(k,t)
2 m\"ty
A =—3m —a
m k=0
2
_ (T ey (12)

(= 7)
where we assumed 1 < T.
behavior of A%(¢) for all times.
In Fig. 1, we plot the time dependence of the mean-
square displacement for the parameters (7,77, ¢sig) of gold (see
Sec. IV A). On time scales for which the spin relaxation is not
important, i.e., t < 71, Eq. (12) simplifies to

AZ(t) ~ 2 tT(l —e7'/7). (13)

Equation (12) describes the

For short times, # < 7, we have AZ(r) o< ¢f,1*. The character-

istic ballistic behavior of Ag is consistent with the limit < ,
which describes a time scale shorter than typical (momentum)
relaxation processes. For times on the order of the momentum
relaxation time 7, momentum scattering processes come
into play, and the ballistic behavior is gradually lost. More
precisely, for T < ¢t < Ty, the behavior of the second moment
is Az(t) x c“grt with corrections of the order exp(—t/7).

By virtue of ¢t = D and disregarding exponentially small

§]g
corrections, this means A?(t) o Dt, which is a signature of
diffusive transport with diffusion constant D. Finally, for
times on the order of (and longer than) the spin relaxation
time 7}, we have an exponential decay of n,,(z,t) and also an

exponential decay of A?(t) (see Fig. 2). This result is simply
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FIG. 2. Same as Fig. 1 on a longer time scale.

a consequence of the relaxation of the spin polarization due
to spin-flip processes. These considerations clarify how the
macroscopic wave-diffusion equations (1) and (2) are capable
of describing both the ballistic and diffusive properties of spin
transport as well as the transition between the two limits. We
will use these concepts in the discussion of the numerical
results for spin transport after ultrashort optical excitation in
the following section.

IV. NUMERICAL RESULTS

A. Model and computational setup

In this section, the time-dependent equation system pre-
sented in Sec. II is applied to a model setup that aims at
analyzing the spin and charge transport as it occurs in the
experiment of Melnikov et al.’ as shown in Fig. 3. In the
experiment, spin-polarized carriers are excited optically by
a 35-fs pump pulse in a Fe/Au slab structure. The excited
carriers propagate from the iron into the adjacent nonmagnetic
gold slab, and the charge and spin dynamics at the right gold
surface are extracted from the time-dependent magneto-optical
response at the gold surface.

The excitation of nonequilibrium carriers by ultrashort
pulses across interfaces and junctions poses challenging
problems for microscopic theories, see, e.g., Refs. 21-24.
For the Fe/Au interface, Ref. 9 analyzed in some detail the
band lineup of Fe and Au, and used energy and momentum
conservation to determine the type of carriers that can be
generated in the Au film by excitation in the Fe layer. For
the purpose of the present paper, namely, the determination of
the space- and time-resolved spin and charge dynamics in the
gold layer, we use a simplified view of the excitation process
across the Fe/Au interface: photoexcited carriers in the Fe
generate a spin-polarized current that is carried by the same

I

FIG. 3. (Color online) Schematic setup of the optical pump-probe
experiment on a Fe/Au heterostructure.
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type of charge carriers, usually assumed to be s electrons,
through the whole multilayer structure. This assumption also
underlies the derivation of the macroscopic diffusion and
wave-diffusion equations.'®!? Technically, we introduce the
following simplifications. First, we assume that the spin signal
excited in the iron layer can be modeled as a boundary value for
the spin and charge densities in the adjacent gold slab. Second,
we neglect the spin and charge transport of holes. We then use
the macroscopic equations for the electron densities, n,(z,t),
and current densities, Js(z,t), in the spin-up and spin-down
bands, respectively, of a ferromagnet-metal heterostructure.
These dynamical macroscopic equations can be derived from
the Boltzmann transport equation for the microscopic carrier
distributions under the assumption that the deviations from an
equilibrium distribution around the Fermi surface are small.'”
We therefore use the following simplified view of the compli-
cated injection and relaxation process: spin-polarized carriers
are created in the iron layer and move into the spin-degenerate
gold bands where this is allowed in the band structure. We
assume a very fast initial electronic energy equilibration,
so that we have quasiequilibrium distributions in the spin
degenerate bands in gold, but with different densities. The
momentum relaxation times of the quasi-equilibrium electrons
of different spin, vy and 7_, which arise microscopically
from averages over the energy dependence of the electronic
distributions, should then also be different. We therefore treat
the difference of the relaxation times, 7 and t_, as a parameter
that needs to be specified. In addition, we could also treat
the spin polarization of the injected electrons as a parameter,
but we choose not to do so to avoid the introduction of fit
parameters. Since it turns out that the dependence of our results
on the difference of momentum relaxation times is extremely
weak, the only important parameters of our macroscopic
equations have values that are well established from electrical
transport measurements: the Fermi velocity vg, the momentum
relaxation time 7, and the spin relaxation time 7;. Using our
approach thus yields the dynamics due to quasiequilibrium
transport, and can be compared to more involved treatments
of the relaxation processes away from the Fermi energy. For
instance, these relaxation processes may lead to superdiffusive
t1ransp0rt.8

In order to solve Egs. (1) and (2) numerically for electronic
transport in the gold layer, we need the boundary condition
at the interface to the ferromagnet, i.e., the left boundary
of our computational domain, which we take to be z = 0.
For simplicity, we assume that the spin-current density as
a function of time is known at the Fe/Au interface. This
approximation neglects the spin current flowing back to the
iron layer due to the spin accumulation in the gold layer. At
the Fe/Au interface, z = 0, the spin-current density is assumed
to be a Gaussian

Tz =0,0) = J0 /1, (14)

where 7y = tpwam/(2log2), and J 0 is the maximum current
density. Note that we assume the same initial condition
for the currents in the minority and majority channel. We
choose tpwum = 35 fs as full width at half maximum of
the current pulse, which is the duration of the exciting laser
pulse in the experiment, and J° = 10~* nm~2fs~!. For the Au
layer, we choose a momentum relaxation time of 7, = 30 fs
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(from Ref. 25) and ¢4, = 0.808 nm/fs (vp = 1.4 nm/fs, see
Ref. 26). The spin relaxation time 7} = 515 fs is deter-
mined from the spin-diffusion length®’ [ = 100 nm via the
identity'o’12 I = cgigy/TpT1. The resulting electron mean-free
pathis A = vty = 42 nm.

In the following, we take the literature value of the
momentum relaxation-time for one spin channel, i.e., 74 = 1o,
but 7_ # t; to mimic the effect of different microscopic
distribution for majority and minority electrons that propagate
into the gold layer. Some justification for our approximation
is provided by the weak dependence of the numerical results
on the actual value chosen for 7_.

We study two simplified variations of the setup depicted in
Fig. 3. In the first case, we assume an “infinitely thick” gold
layer to avoid the influence of the reflected spin signal. In this
case, we assume that the thickness L of the gold slab is so large
that spin and charge signals have not propagated to the right
boundary during the time interval of interest, i.e., L > ly.
In this time frame, the choice of the boundary condition at
the right of the gold layer does not influence the results. For
computational convenience, we require both spin-(charge-)
current and spin (charge) densities to be zero. We also study
the case of a finite thickness L of the gold layer. Here, we
require the spin and charge current densities to vanish at the
right boundary of the gold layer. Although it may seem that
this boundary condition applies to the experiment best, it leads
to multiple reflections that do not show up in the experiment,
as is discussed in more detail below. The numerical solution
of Eqgs. (1) and (2) employs the method of characteristics as
detailed in Ref. 10.

B. Spin and charge dynamics

We first discuss results for the time evolution of the spin
and charge density in an “infinitely thick” layer. Fig. 4(a)
shows the spin density n,(z = zp,t) for majority electrons at
different positions z = zp, ranging from zo = 25 to 150 nm.
As mentioned above, the results at position z = z¢ mimic the
dynamics at the surface for a slab thickness L. We find a
delayed sharp rise and a peak in the carrier density. We first
discuss the curve for zo = 25 nm in Fig. 4(a), which is in
the regime where ballistic transport properties are dominant,
as shown by Fig. 1. The pronounced peak occurs at time
tpeak = Zo/c = 34 fs, and therefore is related to wave-like
propagation dynamics, which corresponds to ballistic transport
as shown in Sec. III. Further, the wavelike dynamics of the
carrier distribution preserves to some extent of the Gaussian
shape of the driving current pulse J;(z = 0,¢), which is created
by the drive current at the left boundary. The difference
between the full and the purely ballistic result is, of course,
due to momentum and spin-flip scattering. These contributions
lead to an asymmetric peak and the slow decay, but not to a
broadening of the peak. This can be seen by comparing with
the result for an infinitely thin layer (not shown), in which the
dynamics are completely ballistic. For peaks at larger distances
(and longer times), the peaklike signature is gradually lost as
one reaches the regime where the diffusive behavior becomes
dominant, and the ballistic (wavelike) component is essentially
only seen in the delayed onset of the signal.
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FIG. 4. (Color online) Time evolution of the density n.(z¢,t)
of majority electrons (a) and the total spin density n,,(zo,t) (b) at
positions zo = 25 (solid), 50 (dashed), 100 (dotted), and 150 nm
(dash-dotted) of an infinitely thick layer. The excitation current pulse
J; is also shown in arbitrary units (thin red line).

We therefore interpret the dynamics in Fig. 4(a) as ballistic
for short times, as more or less diffusive for “intermediate”
times, and eventually as an exponential decay for long times.
From the ballistic motion of electrons traveling with vg in a
straight line towards the opposite surface, one may naively
expect the arrival of a signal with the Fermi velocity instead of
Csig = VR/ /3. This is only true for carriers “going straight” to
the opposite surface, and these carriers are responsible for the
onset of the signal. The occurence of the peak with a smaller
velocity as well as the finite width of the peak shows that there
is a spread in the time the carriers need to traverse a fixed
distance in z direction.

The curve for minority electrons n_(zo,#) (not shown) is
almost indistinguishable from the one shown for n,(zo,?)
on the scale of Fig. 4(a) if we choose the same excita-
tion, i.e., boundary condition, and change the momentum
relaxation time for “—” electrons by 5% to 7_ = 31.5 fs.
However, as Fig. 4(b) shows, the total spin density n,,(zo,t) =
n4(zo,t) —n_(zo,t) is influenced quite drastically by this
change. Qualitatively, this can be understood by considering
the following picture of the dynamics of individual electrons,
even though the calculation deals with distribution functions
and the momentum relaxation times are for ensemble averages
only; the longer momentum relaxation time results in the
minority electrons arriving earlier than the majority ones,
which causes a characteristic shape of the spin dynamics with a
negative spike in the spin density. When the majority electrons
arrive, the signal of the minority carriers already falls off.
Therefore the spin density n,, changes sign and only afterwards

PHYSICAL REVIEW B 85, 235101 (2012)

(@)

n (104 nm3)

L

0 200 400 600 800
t (fs)

1000

FIG. 5. Time evolution of the spin density of majority electrons
n.(z = L,t)(a)and the total spin density n,,(z = L,t) (b) for Aulayer
thicknesses of L = 25 (solid), 50 (dashed), and 100 nm (dotted).

shows a long positive tail. Importantly, the difference between
the momentum relaxation times can be changed from 1% to
100% leading to changes in the numerical values of the spin
density, but not in the qualitative behavior. Thus as long as
there is a difference between 7, and 7_, the resulting shape
of the spin dynamics with the characteristic short negative dip
and a long positive decay is extremely robust.

‘We now discuss the results for the case in which the finite
thickness L of the metal layer is modeled by a boundary con-
dition for ny(z,t) at z = L. Figure 5(a) shows the spin density
ny(z = L,t) for majority electrons at the right boundary of the
gold slab as a function of time for slab thicknesses L = 25,
50, and 100 nm, respectively.28 Several oscillations are visible
for the 25-nm slab. For the 50-nm slab, only a second peak
occurs before the signal decays. This happens because, unlike
the case in Fig. 4(a), the electrons are reflected at the right
metal surface and continue to propagate/diffuse through the
slab. Depending on the thickness of the layer, they may be
reflected also at the left boundary, i.e., the Fe/Au interface
in the experiment, and propagate again to the right metal
boundary. This behavior continues as long as there is a ballistic
component to the dynamics and vanishes when the dynamics
become diffusive. Eventually, the signal decays on the time
scale of the spin relaxation time. In the 100 nm thick layer, in
particular, the ballistic character is further reduced, so that no
additional peaks develop at all. The additional peaks, if present
in the density dynamics . of one spin channel, are also visible
in the total spin-density dynamics, n,, as shown in Fig. 5(b).
Depending on the thickness of the layer, the spin signal can
change sign more than once for the same reason as without
reflection because the propagation and reflection dynamics
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FIG. 6. Snapshots of the spin-current density J.(z,t) (a) and of
the spin density n..(z,t) (b) as a function of z at times ¢ = 0, 50, 100,
and 150 fs for a 100-nm gold slab.

occurs for both spins with a slightly different relaxation time,
so that the maxima and minima of n_ are slightly shifted with
respect to those of ..

Figure 6 shows the space dependence of the current and
density distributions for “+” electrons for a slab of thickness
L = 100 nm at different times. The snapshots of the current
density, Fig. 6(a) show how the initial current pulse propagates
through the gold slab, is attenuated, and changes sign after it
reaches the right slab boundary. The sign change indicates
that the propagation direction of the carriers is reversed, i.e.,
carriers moving ballistically are reflected when they reach the
boundary. This is another indicator that even in the case of
the 100-nm gold slab, the ballistic character of the transport
is still recognizable at the surface. The spin density n.(z,t),
shown in Fig. 6(b), exhibits a wave front at first and a
subsequent “smoothing” out due to the diffusive character of
the dynamics, which becomes dominant after a few hundred
femtoseconds.

Finally, Fig. 7 shows the time evolution of the charge
density n(z = L,t) at the right boundary of the gold slab for
slab thicknesses L = 25, 50, 100, and 150 nm, respectively.
Dependent on the thickness, there are additional peaks due to
multiple reflections on the boundaries and charge accumula-
tion in the gold layer. The charge accumulates and reaches a
steady state because we neglect a possible flowing back of the
charge-current into the iron layer. In an infinitely thick gold
layer, the Gaussian current pulse, which mimics the excitation,
propagates through the nonmagnetic gold while its maximum
decays. Thus the space-resolved results for the spin and charge
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FIG. 7. Time evolution of the charge density n(z,7) for layer
thicknesses of L = 25 (solid), 50 (dashed), 100 (dotted), and 150 nm
(dash-dotted line).

dynamics show that there is no spin and charge accumulation
in an infinitely thick gold layer.

C. Relation to experiment

We have already described the idea of the experiment by
Melnikov et al., and our calculation applies to the basic setup
of that experiment, as shown in Fig. 3. Although we do not
calculate the electric fields generated by second-harmonic
effects at the back surface as measured in the experiment,
we follow the interpretation of the experimental results by
Melnikov et al., and compare the “charge” signal with the
charge density n and the “magnetic” signal with n,. An
important experimental finding is a fast rise and a subsequent
slow decay of the charge signal accompanied by a magnetic
signal that shows a characteristic sign change. Comparing the
spin density n,, at the right boundary for slab thicknesses
50 and 100 nm, see Fig. 4(b), with the magnetic SHG
signal shown in Figs. 2(c) and 2(d) of Ref. 9 one finds a
qualitative agreement. In particular, the time at which the sign
change of the signal occurs and the decay at longer times
are quite well described by the calculated result. Melnikov
et al. observe that their magnetic signal goes to zero at about
1 ps, and use this as an estimate of the spin-relaxation time
(denoted as tA" there). This value differs from the established
spin relaxation time 77 =515 fs in gold as determined
from transport measurements in the diffusive regime. In the
calculated results, the T} value of 515 fs enters as a parameter
via ¢ = 27} and yields a spin density that goes to zero at
the same time as in the experiment. The calculation therefore
provides a link between the ultrafast, optically excited/detected
spin dynamics, and diffusive transport studies. Regarding the
degree of agreement, we would like to add two remarks. First,
the relative height of the extrema in the calculated spin-density
dynamics can be influenced by making the excitation spin
dependent, i.e., by having sz # JO. This is likely the case
in the experiment but including a spin dependent excitation
would introduce a fit parameter, without qualitatively changing
the results obtained from the macroscopic equations (1) and
(2). Second, the calculation seems to lead to sharper extrema
and smaller signals at longer times. Very likely, this is due to
our neglect of energy relaxation processes because the energy
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FIG. 8. Scaled dynamics of the density n,(z,#) of majority
electrons at points z = 50 (dashed), 100 (dotted), 150 (dash-dotted),
and 300 nm (solid) of an infinitely thick layer.

dependence of the distributions underlying the macroscopic
equations is assumed to be essentially fixed and concentrated
around the Fermi surface.'” The last point is also important
when comparing the charge dynamics in our Fig. 4(a) and
Figs. 2(a) and 2(b) of Melnikov et al. The area under the
calculated curves in Fig. 4(a) decreases strongly for larger
values of L, whereas in the measurement it increases. In the
calculation, this is a consequence of the spatial redistribution
of the injected carrier density, as can be seen in Fig. 6(b). In the
experiment, it is probably a result of the energy dependence
of the nonlinear process that gives rise to the measured signal,
and an energy redistribution of carriers during the dynamics. It
is hard to say which is more important because a microscopic
description of the SHG is quite involved.?” To have a better
comparison of the qualitative behavior of charge dynamics
for the different slab thicknesses, we normalize the computed
charge dynamics in Fig. 8. The normalization not only removes
the difference in the peak heights, but also leads to a behavior
at long times for both slab thicknesses that is very similar to
the experimental result.

The spin and charge dynamics of our model based on a
transition between ballistic and diffusive transport for one
species of carriers is in agreement with Ref. 9 in that it
emphasizes the importance of both ballistic and diffusive
transport for the spin and charge dynamics. In contrast to our
calculation, however, Ref. 9 stresses the energy dependence
of the lifetimes of excited carriers and classifies different
species of carriers, i.e., minority and majority electrons and
holes, as contributing mainly to either ballistic or diffusive
transport. From our results, it seems that the qualitative
signatures of the observed dynamics are likely quite generic
for transport in thin metal slabs on ultrashort time scales,
regardless of the microscopic details, i.e., the energy depen-
dence, of the excitation process and the subsequent relaxation
dynamics.

Finally, we compare the general trends seen in Fig. 8
with an earlier measurement®® of heat transport in thin gold
films excited by a femtosecond laser pulse. This stretches the
limits of the applicability of our calculation because in that
experiment intraband excitation was likely dominant, leading
only to a heating of the conduction electrons and not to an
injection of carriers. However, the macroscopic equations for
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heat transport have the same mathematical properties as the
ones used by us,'”!® so that one can try to find indications
of a qualitative agreement. In this case, we have to compare
the normalized dynamics as shown in Fig. 8 because their
Fig. 2 also shows normalized reflectivity changes. Indeed, the
overall shape of the reflectivity changes observed by Brorson
et al. match up well with our results. In particular, in Ref. 26 it
is found “that the rise time of the signal increases slightly with
increasing thickness.” This trend is clearly observed in our
calculated results and is explained by a change of dominantly
ballistic dynamics in thinner samples to dominantly diffusive
dynamics in thicker samples, here 300 nm. Importantly, this
transition comes out of the calculation by a combination of
ballistic and diffusive aspects; even in thicker samples where
the diffusive dynamics dominates the rise time of the signal,
there is still an important component of the result that can
only be explained by ballistic dynamics, namely the delayed
onset of the reflectivity response. As it was already noticed by
Brorson et al., it is therefore hard to explain the observed rise
times in terms of exclusively ballistic or exclusively diffusive
transport. An analysis in terms of wave-diffusion dynamics
removes the apparent contradiction between diffusive and
ballistic properties of transport.

V. CONCLUSIONS

This paper presented an analysis of the wave-diffusion
equations for spin and charge transport with special attention
to the transition between ballistic and diffusive transport after
ultrafast excitation. We showed that the wave character in
Egs. (1) and (2) is related to ballistic transport by analyzing
the behavior of an analytical solution to these equations in
one dimension. The simple, macroscopic equations work not
only in the purely ballistic and diffusive limits, but can also
be applied on time and length scales where spin and charge
transport are neither completely ballistic nor diffusive.

Using the wave-diffusion equations, we modeled the con-
ditions realized in a recent experiment in which spin-polarized
electrons were excited in a gold film by optical pumping of an
adjacent ferromagnetic layer and probed optically on the other
side of the gold film. Under the assumption of slightly different
relaxation times for spin-up and spin-down electrons, the
simple macroscopic model qualitatively reproduced important
signatures seen in the experiment, thus underscoring the
importance of the transition between ballistic and diffusive
transport for the observed dynamics. Because the model uses
established macroscopic transport parameters and because the
dependence of our results on one additional parameter, namely,
the difference of the relaxation times, is extremely weak, our
results are quite robust. This is an indication that the behavior
observed in the experiment and shown by the calculated results
is quite generic for ultrafast transport dynamics in thin metal
films.
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