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Optical and dc conductivities of cuprates: Spin fluctuation scattering in the t − J model
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A microscopic theory of the electrical conductivity σ (ω) within the t – J model is developed. An exact
representation for σ (ω) is obtained using the memory-function technique for the relaxation function in terms
of the Hubbard operators, and the generalized Drude law is derived. The relaxation rate due to the decay
of charge excitations into particle-hole pairs assisted by antiferromagnetic spin fluctuations is calculated in the
mode-coupling approximation. Using results for the spectral function of spin excitations calculated previously, the
relaxation rate and the optical and dc conductivities are calculated in a broad region of doping and temperatures.
The reasonable agreement of the theory with experimental data for cuprates proves the important role of spin
fluctuation scattering in the charge dynamics.
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I. INTRODUCTION

Studies of charge dynamics in superconducting cuprates
provide valuable information concerning electron interaction
with bosonic modes, which is important for elucidating
the pairing mechanism in high-temperature superconductors.
There is a vast literature devoted to these studies (for
reviews see, e.g., Refs. 1–4). Two major scenarios have
been proposed: the electron-phonon coupling and electron
interaction with the antiferromagnetic (AF) spin fluctuations.
Angle-resolved photoemission spectroscopy (ARPES) points
to an important role of spin fluctuations in a renormalization
of the single-electron excitation spectrum (see, e.g., Ref. 5 and
references therein), which is supported by measurements of
the infrared (IR) absorption in a wide region of temperatures
and doping (see, e.g., Refs. 6–8 and references therein). The
main argument against the spin fluctuation pairing mechanism,
a weak intensity of spin fluctuations at the optimal doping
seen in inelastic magnetic neutron scattering experiments,9

was dismissed in recent resonant inelastic x-ray scattering.10

In a large family of cuprates, AF paramagnon excitations
with dispersions and spectral weights similar to those of
magnons in undoped cuprates were found. However, a de-
cisive role of the electron-phonon interaction (EPI) has been
claimed in a number of theoretical studies (for a review, see
Ref. 11).

The optical conductivity (OC) σ (ω) of cuprates reveals
a complicated evolution with doping and temperature. The
undoped parent compounds are AF insulators, where the OC
exhibits a peak at the charge-transfer energy ω � 1.8 eV.
Under doping, the insulator-to-metal transition occurs when
the charge-transfer gap is filled up with states and the spectral
weight is transferred to the lower energy, the Drude peak
at ω → 0 with a width ω � 600 cm−1, and a broad mid-
infrared (MIR) band at higher energies ω � 5000 cm−1. With
increasing hole concentration, the MIR absorption shifts to
lower energies and merges with the Drude contribution (see,
e.g., Refs. 12–16). The Drude peak significantly narrows with
decreasing temperature and is attributed to the relaxation of
coherent quasiparticles, while the origin of the temperature-
independent MIR contribution is still under discussion. In

Ref. 17, the metal-to-insulator transition (MIT) was studied by
measuring the OC for the underdoped Bi-based and YBCO-
based compounds for hole concentrations from δ = 0.12 to
0.015. With decreasing hole concentration, the Drude peak at
low temperatures transforms into a far-infrared (FIR) band at
energies ω � 200 cm−1, which acquires a gap at the MIT for
hole doping δ � 0.07. Note that the onset of the metallic phase
occurs at a doping much higher than δ � 0.02 at which the AF
long-range order (LRO) vanishes.18

It is generally believed that superconducting cuprates are
doped Mott-Hubbard (charge-transfer)19 insulators, where the
insulating phase of the undoped parent compounds appears
due to a strong Coulomb repulsion, Hubbard U > Uc2,
where the critical value Uc2 for the MIT is larger than the
electronic bandwidth W (see, e.g., Ref. 20). In this case, the
AF LRO in the undoped compounds originates from the
strong AF exchange interaction characteristic for Hubbard
systems. However, it is also possible to explain the insulating
phase as caused by the AF energy gap induced by the
AF LRO where the Coulomb interaction plays a secondary
role. In recent publications, this problem was discussed by
analyzing the OC for typical electron-doped Nd2−xCexCuO4

(NCCO) and hole-doped La2−xSrxCuO4 (LSCO) compounds.
In Ref. 21, the OC was calculated for the Hubbard model in the
paramagnetic and the AF phases. Using the dynamical mean-
field theory (DMFT),22 the optical spectral weight [given by
the restricted sum rule with the integration over energy in
Eq. (3) up to � = 0.8 eV] was calculated. Comparing the
doping dependence of the theoretical and measured spectral
weights for the NCCO, LSCO, and other cuprate compounds,
it was found that, in the paramagnetic phase, the fitted U is
smaller than the critical value Uc2 ∼ 1.5 W for yielding the
Mott-Hubbard insulating phase. At the same time, the AF
phase provides the insulating state for the undoped system at
the fitted U . So, it was concluded that antiferromagnetism is
essential in producing the insulating state.

A different conclusion concerning the hole-doped cuprates
was obtained in Refs. 23 and 24. The OC was calculated for
a realistic three-band p-d model for NCCO and LSCO using
the local density approximation combined with the DMFT.25 It
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was found that, whereas for the electron-doped NCCO the AF
interaction is necessary to yield the insulating undoped state,
the hole-doped LSCO belongs to the Mott-Hubbard system,
where the insulating state is due to strong electron correlations
but not to the AF interaction. However, in the DMFT, the short-
range AF correlations are neglected. As shown in Ref. 26, by
taking them into account, we find a much narrower Hubbard
band W̃ , which leads to a lower critical parameter Uc2 that may
put the electron-doped compounds also into the class of Mott-
Hubbard insulators. Therefore, for a more accurate estimation
of Uc2, the cluster DMFT (Ref. 27) should be used. By this
method, the OC was calculated in the t − J model in Ref. 28.
The results reproduced quite well the delicate changes of the
spectral weight transfer at the transition to the superconducting
phase observed in experiments (see, e.g., Refs. 29 and 30 and
references therein). This proves that the t − J model captures
the essential physics of the low-energy excitations in cuprates.

In the limit of strong correlations, extensive numerical
studies of the OC within the Hubbard model and t − J model
for finite systems have been carried out. Earlier results are
reported in Refs. 31–35. Due to a small size of the clusters,
only one- or two-hole motion was considered. In that case,
the Drude peak can not be resolved, and its intensity versus
doping was studied by calculations of the kinetic energy [see
Eq. (20)]. Several peaks found in the OC in the MIR region
may be related to local spin excitations at ω � 2J and to
string excitations at higher energies. This observation was
confirmed in analytical studies of the charge correlations in
a weakly doped t − J model using the cumulant expansion
within the Zwanzig-Mori projection technique.36 The peaks
found in the OC in the energy region ω � 2J were assigned to
excitations due to internal degrees of freedom of the spin-bag
quasiparticles.

In several studies, an important role of the EPI resulting
in polaronic effects was stressed. However, contradicting
explanations were proposed for the two absorption bands
observed in the MIR region, one at a lower energy near
the FIR region and another at higher energies. In Ref. 37,
the OC of one hole in the Holstein t − J model using the
DMFT was calculated. It was shown that the IR absorption
is characterized by the coexistence of a magnon peak at
low energy and a broad polaronic band at higher energy.
The two absorption bands were explained in Ref. 38 by
the coupling of a hole to two kinds of bosonic excitations.
The lower energy peak at ω � 1000 cm−1 was ascribed to
the phonon sideband, while the higher-energy peak at ω �
4600 cm−1 was considered as the magnon sideband of the
lower peak. As discussed in Ref. 39, the two-peak structure in
the MIR region may be explained by the coupling of a doped
hole to magnetic excitations. The low-energy peak represents
the local magnetic excitation, attached to the hole, while
the higher-frequency peak corresponds to the MIR band that
originates from coupling to spin-wave excitations, broadened
and renormalized by phonon excitations. Thus, the studies
of the Holstein t − J model suggest that the complicated
absorption structure experimentally found in the MIR region is
caused by magnetic excitations, which are coupled to phonons
via doped holes.

In analytical studies, the OC is frequently evaluated within
the simple electron-hole (bubble) diagram approximation for

the current-current correlation function proposed by Allen.40

The finite-temperature version of the Allen approximation was
derived in Ref. 41. This method was used in studies of the
optical IR data within electron-phonon models (see Ref. 11
and references therein) and spin-fermion models (see, e.g.,
Refs. 42 and 43 and references therein).

A general approach based on the Mori memory-function
method44 for the calculation of the current-current relaxation
function was proposed in Ref. 45. In this method, the transport
relaxation rate is expressed directly in terms of the force-
force relaxation function, which can be further evaluated
by perturbation theory with a proper consideration of the
wave-vector dependence of the transport vertex. In particular,
in Ref. 46, the memory-function method was used to calculate
the OC in the limit of strong electron correlations within the
Emery model for CuO2 plane. The relaxation rate for electrons
scattered by AF spin fluctuations was calculated in a fair
agreement with experiments. In Ref. 47, by taking into account
only the incoherent part of the electronic spectrum, a scaling
expression for the frequency dependence of the relaxation rate
and the conductivity in the t − J model was obtained.

Electron interactions with bosonic modes can be revealed
in the low-energy part of the OC and dc conductivity. To shed
more light on the scattering mechanism in cuprates, in this
paper we calculate the optical and dc conductivities within the
t − J model. The main goal of this work is to demonstrate that
AF spin fluctuation scattering is the essential mechanism of
the low-energy charge dynamics of underdoped and optimally
doped cuprates.

Using the memory-function method, we derive an equation
for the relaxation rate which is determined by the kinematic
interaction for the Hubbard operators and depends only on the
parameters of the t − J model: the hopping parameters and
the AF exchange coupling. The relaxation rate is calculated
by taking into account electron scattering by spin fluctuations,
which are described by the spin-excitation spectral function
calculated in our previous works.48,49 Therefore, we are able
to consider effects of spin excitations on the charge dynamics
within a microscopic theory without fitting parameters. In our
approach, we obtain a reasonable agreement with experiments
for the relaxation rate, the optical conductivity, and the
resistivity in broad regions of temperature and doping, in
particular, in the underdoped region with a strong AF short-
range order (SRO).

In Sec. II, we formulate a general theory of the optical
conductivity within the memory-function formalism. The
application of this theory to the t − J model is given in Sec. III.
Numerical results and discussion are presented in Sec. IV. In
Sec. V, we summarize our results.

II. MEMORY-FUNCTION THEORY

In the linear response theory of Kubo,50 the frequency-
dependent conductivity is defined by the current-current
relaxation function

σxx(ω) = i

V
((Jx |Jx))ω = 1

V

∫ ∞

0
dt eiωt (Jx(t),Jx), (1)

224536-2



OPTICAL AND DC CONDUCTIVITIES OF CUPRATES: . . . PHYSICAL REVIEW B 85, 224536 (2012)

where V is the volume of the system. Here, the Kubo–Mori
scalar product

(A(t),B) =
∫ β

0
dλ〈A(t − iλ)B〉 (2)

for the operators in the Heisenberg representation A(t) =
exp(iH t)A exp(−iH t) is introduced. 〈AB〉 denotes the equi-
librium statistical average for a system with the Hamiltonian H

(here β = 1/T , h̄ = kB = 1). The real part of the conductivity
(1) obeys the sum rule∫ ∞

0
dω Reσxx(ω) = π

2V
χ0 = iπ

2V
〈[Jx,Px]〉. (3)

Here, Px = e
∑

i R
x
i Ni is the polarization operator. Rx

i is the
x component of the lattice vector pointing to site i, e is the
electron charge, and Ni is the number operator. The current
operator is defined by the time derivative of the polarization
operator: Jx(t) = dPx(t)/dt ≡ Ṗx(t) = −i[Px,H ]. The static
current-current susceptibility χ0 = (Jx,Jx) is related to the
effective number of charge carriers participating in the ab-
sorption

Neff = 2mv0

πe2

∫ ∞

0
dω Reσxx(ω) = m

e2N
χ0 , (4)

where v0 = V/N is the unit-cell volume and m is the free-
electron mass. The sum rule (3) is frequently written in terms
of the plasma frequency ωpl defined by ω2

pl = 4πχ0/V =
ω2

0,pl Neff , where ω2
0,pl = 4πNe2/mV .

To calculate the conductivity (1), it is convenient to employ
the memory-function approach of Mori44 by introducing the
memory function M(ω) for the relaxation function45


(ω) ≡ ((Jx |Jx))ω = χ0

ω + M(ω)
. (5)

From the equations of motion for the relaxation function 
(t −
t ′) = ((Jx(t)|Jx(t ′))), the memory function is determined by
(see Appendix A)

M(ω) = ((Fx |Fx))(proper)
ω (1/χ0), (6)

where Fx = iJ̇x = [Jx,H ] is the force operator. The definition
of the memory function (6) as the “proper” part of the force-
force relaxation function is equivalent to the introduction of the
projected Liouvillian superoperator for the memory function
in the original Mori technique.44

Using Eq. (5), the frequency-dependent conductivity (1)
can be written in the form of the generalized Drude law

σxx(ω) ≡ σ (ω) = ω2
pl

4π

m

m̃(ω)

1

�̃(ω) − iω
, (7)

where the effective optical mass and the relaxation rate are
given by

m̃(ω)

m
= 1 + λ(ω), �̃(ω) = �(ω)

1 + λ(ω)
, (8)

λ(ω) = M ′(ω)/ω, �(ω) = M ′′(ω). (9)

Here, the real and imaginary parts of the retarded mem-
ory function M(ω + i0+) = M ′(ω) + iM ′′(ω) are introduced.

They are coupled by the dispersion relation

M ′(ω) = 1

π

∫ ∞

−∞
dω′ M ′′(ω′)

ω′ − ω
. (10)

Both the real and imaginary parts of the memory function
can be directly related to experimental data for the inverse
conductivity (7) (Ref. 2):

�(ω) = ω2
pl

4π
Re

1

σ (ω)
, 1 + λ(ω) = − ω2

pl

4πω
Im

1

σ (ω)
. (11)

In the following, we calculate these functions for the t − J

model.

III. RELAXATION RATE

We consider the t − J model on the square lattice, which
in the conventional notation reads as51,52

H = Ht + HJ = −
∑
i 
=j,σ

tij ã
+
iσ ãjσ − μ

∑
i

Ni

+ 1

2

∑
i 
=j,σ

Jij

(
SiSj − 1

4
NiNj

)
, (12)

where tij is the hopping integral and Jij is the AF ex-
change interaction. Here, ã+

iσ = a+
iσ (1 − niσ̄ ) is the projected

electron operator with spin σ/2 = ±1/2 (σ̄ = −σ ) on the
lattice site i, Ni = ∑

σ ã+
iσ ãiσ is the number operator, and

Sα
i = (1/2)

∑
s,s ′ ã

+
isσ

α
s,s ′ ãis ′ is the α component of the spin

operator (σα
s,s ′ are Pauli matrices). The chemical potential μ is

determined from the equation for the average electron occupa-
tion number 〈Ni〉 = 1 − δ, where δ is the hole concentration.

To take into account the projected character of electron op-
erators, we employ the Hubbard operator (HO) technique.53,54

The HO X
αβ

i = |i,α〉〈i,β| describes the transition from the
state |i,β〉 to the state |i,α〉 at the site i, where α and β

denote three possible states: an empty state (α,β = 0) and
a singly occupied state (α,β = σ ). The completeness relation
X00

i + ∑
σ Xσσ

i = 1 rigorously preserves the constraint of no
double occupancy of any lattice site. From the multiplication
rule X

αβ

i X
γδ

i = δβγ Xαδ
i follow the commutation relations for

the HOs: [
X

αβ

i ,X
γδ

j

]
± = δij

(
δβγ Xαδ

i ± δδαX
γβ

i

)
. (13)

The upper sign refers to the Fermi-type operators creating
(Xσ0

i ) or annihilating (X0σ
j ) electrons, while the lower sign

refers to the Bose-type operators, such as the number or spin
operators:

Ni =
∑

σ

Xσσ
i , Sz

i = 1

2

∑
σ

σXσσ
i , Sσ

i = Xσσ̄
i . (14)

The commutation relations result in the kinematic interaction
for HOs [see Eq. (B3)]. Note that the term “kinematic
interaction” was introduced by Dyson55 for spin operators.

Using the HO representation for ã+
iσ = Xσ0

i , ãjσ =
X0σ

j , and Eq. (14), we write the Hamiltonian (12) in the
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form

H = −
∑
i 
=j,σ

tij Xσ0
i X0σ

j − μ
∑
iσ

Xσσ
i

+ 1

4

∑
i 
=j,σ

Jij

(
Xσσ̄

i Xσ̄σ
j − Xσσ

i Xσ̄ σ̄
j

)
. (15)

The relaxation rate �(ω) = M ′′(ω) is calculated by Eq. (6)
in the mode-coupling approximation (MCA) as described in
Appendix B. In this approximation, we obtain

�(ω) = (eβω − 1)

χ0 ω

2π e2

N

∑
k,q

∫ ∫ ∫ ∞

−∞
dω1dω2dω3

× n(ω1)[1 − n(ω2)]N (ω3) δ(ω2 − ω1 − ω3 + ω)

× g2
x(k,k − q)χ ′′

cs(q,ω3)A(k,ω1)A(k − q,ω2), (16)

where n(ω) = (exp βω + 1)−1 and N (ω) = (exp βω − 1)−1.
The momentum-dependent (transport) vertex is given by

gx(k,k − q) = vx(k) t(k − q) − vx(k − q) t(k)

− J (q)/2 [vx(k) − vx(k − q)], (17)

where t(k) and J (q) are the Fourier transforms of the
hopping integral and the exchange interaction, and vx(k) =
−∂t(k)/∂kx is the electron velocity (see Appendix B). The
spectral function for the charge-spin excitations χ ′′

cs(q,ω) =
(1/π )Im χcs(q,ω) is defined by the corresponding commutator
Green’s functions (GFs)

χcs(q,ω) = −(1/4)〈〈Nq|N−q〉〉ω − 〈〈Sq|S−q〉〉ω, (18)

where we used Zubarev’s notation56 for the retarded two-time
GFs. The spectral function of electronic excitations is defined
by the imaginary part of the anticommutator electronic GF:

A(k,ω) = −(1/π ) Im
〈〈
X0σ

k |Xσ0
k

〉〉
ω

. (19)

The static current-current susceptibility χ0 is connected with
the effective number of charge carriers (4), which for the t − J

model reads as

Neff = m

N

∑
i,j,σ

(
Rx

i − Rx
j

)2
tij

〈
Xσ0

i X0σ
j

〉

= −m

N

∑
k,σ

∂2t(k)

∂k2
x

〈
Xσ0

k X0σ
k

〉
. (20)

For the t − J model with the nearest-neighbor hopping only,
(Rx

i − Rx
j )2 = a2, where a is the lattice parameter, the effective

number of carriers is related to the averaged kinetic energy
Neff = (a2m/N )〈−Ht 〉. This relation is often used in the
calculation of the charge stiffness (Drude weight) in finite-
cluster studies (see, e.g., Refs. 31 and 32).

IV. RESULTS AND DISCUSSION

A. Spectral functions

In numerical calculations, we have to use models for the
charge-spin susceptibility (18) and the one-electron spectral
function (19). The spin-excitation contribution in Eq. (18) is
described by the spectral function χ ′′

s (q,ω) = (3/2)χ ′′
±(q,ω),

where χ ′′
±(q,ω) = −(1/π )Im 〈〈S+

q |S−
−q〉〉ω. For the latter, we

use the function calculated in Ref. 48 for the t − J model,

χ ′′
±(q,ω) = −ω �s

′′(q) (m(q)/π )[
ω2 − ω2

q − ω �s
′(q,ω)

]2 + [ω �s
′′(q)]2

. (21)

Here, the spectrum of spin excitations in the generalized mean-
field approximation ωq determines the static spin suscepti-
bility χq = m(q)/ω2

q with m(q) = 〈[iṠ+
q ,S−

−q]〉, where iṠ+
q =

[S+
q ,H ]. The self-energy �s(q,ω) = �′

s(q,ω) + i�′′
s (q,ω),

where �′
s(q,ω) and �′′

s (q,ω) are the real and the imagi-
nary parts, respectively, is determined by the many-particle
relaxation function �s(q,ω) = [1/m(q)]((−S̈+

q | − S̈−
−q))proper

ω

calculated in MCA (see Refs. 48 and 49). Taking into
account that the main contribution to the relaxation rate
(16) from the spectral function (21) is given by frequencies
close to the renormalized spin-excitation frequency ω̃q =
[ω2

q + ω̃q �′
s(q,ω̃q)]1/2 , we approximate the damping of spin

excitations by the function �′′
s (q) = �′′

s (q,ω = ω̃q).
To calculate the contribution to the relaxation rate (16)

from charge (density) excitations in Eq. (18), we use the
spectral function calculated in Ref. 57 for the t − J model. Our
results show that charge excitations give the main contribution
in the region of high energies, ω ∼ 3t , which, however, is
several times weaker than the spin-excitation contribution and,
therefore, can be safely ignored. The different energy scales for
spin excitations ω ∼ J and density excitations ω ∼ t were also
found in an exact diagonalization study of the t − J model.34

The self-consistent solution of the system of equations for
the spectral function (19) and the single-electron self-energy in
Ref. 58 has shown that close to the Fermi energy, there appear
well-defined quasiparticle excitations. This result permits to
approximate the spectral function by the expression

A(k,ω) = Qδ(ω − ε̃k), (22)

where Q = 1 − n/2 is the spectral weight for electronic
excitations in the t − J model. To model a realistic electronic
spectrum which crosses the AF Brillouin zone (BZ), as
observed in ARPES experiments (see, e.g., Ref. 59), we
consider the model dispersion

ε̃k = −4Q[t α1γ (k) + t ′α2 γ ′(k) + t ′′α2 γ ′′(k)] − μ, (23)

where t and t ′ = 0.1t, t ′′ = 0.2t are the hopping pa-
rameters for the nearest and further-distant neighbors,
respectively, and γ (k) = (1/2)(cos akx + cos aky), γ ′(k) =
cos akx cos aky , and γ ′′(k) = (1/2)(cos 2akx + cos 2aky).
The kinematic interaction for the HOs results in a renor-
malization of the spectrum (23) determined by the parame-
ters α1 = [1 + C1/Q

2] and α2 = [1 + C2/Q
2] , where C1 =

〈SiSi±ax/ay
〉 and C2 = 〈SiSi±ax±ay

〉 ≈ 〈SiSi±2ax/2ay
〉 are the

spin correlation functions for the nearest and the second
neighbors, respectively (see Ref. 58). With increasing doping,
the effective bandwidth W̃ of the dispersion (23) increases due
to the decrease of AF SRO described by the doping dependence
of the spin correlation functions in the renormalization param-
eters α1,α2. In particular, for δ = 0.09 (0.2) at T = 0 we have
W̃ = 1.14 t (2.78 t) in comparison with the unrenormalized
bandwidth W = 8 t Q = 4.36 t (4.8 t).

The Fermi surface (FS) determined by the equation ε̃kF = 0
is shown in Fig. 1 for various doping. The renormalization of
the spectrum induced by the AF SRO provides a FS with hole
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FIG. 1. Fermi surface at δ = 0.09 (solid line), 0.16 (dashed line),
and 0.2 (dots).

pockets at low doping, which is equivalent to a pseudogap
in the (±π,0) and (0, ±π ) regions of the BZ. In the study
of the electronic spectrum and the FS of cuprates, a more
accurate calculation of the spectral function (22) including the
self-energy contribution was performed as reported in Refs. 58
and 60 for the t − J model and in Ref. 26 for the two-subband
Hubbard model. In particular, in Ref. 26 the spectral function
on the FS close to the (π,π ) point of the BZ has a weak
intensity resulting in an arc-type FS as observed in ARPES
experiments. By taking into account that the spectral function
of spin excitations (21) is peaked at the AF wave vector Q =
(π,π ) and is very broad in other parts of the BZ (see Ref. 49),
in the calculation of the relaxation rate (16), only those parts
of the FS are important which are coupled by the AF wave
vector Q. Therefore, the parts of the FS in Fig. 1 far away
from the AF BZ, in particular the back side of the hole pocket
near (π/2,π/2) of the BZ, give small contributions at the
integration over the BZ in Eq. (16). This reasoning justifies
the quasiparticle approximation (22) used in the calculation of
the relaxation rate.

The effective number of charge carriers (20) is convenient
to write in the form

Neff(δ) = ηK(δ) = η
Q

N

∑
k,σ

n(ε̃k) [ cos(akx)

+ 2(t ′/t) cos(akx) cos(aky) + 4(t ′′/t) cos(2akx)].

(24)

For the spectral function (22), the average electron occupation
number is given by 〈Xσ0

k X0σ
k 〉 = Qn(ε̃k) . The prefactor η =

2ma2t = t (p2/2m)−1 is a dimensionless ratio of the hopping
parameter t to the kinetic energy of an electron with the
momentum p. In particular, for a = 3.8 Å and t = 0.4 eV,
we have η = 3.79 t [eV] = 1.52.

In these approximations, the relaxation rate (16) is deter-
mined by the expression

�(ω) = t
π (eβω − 1)

ω K(δ)

3t2 Q2

2N2

∑
k,q

∫ ∞

−∞
dω′ χ ′′

±(q,ω′)

× g̃2
x(k,k − q) δ(ε̃k − ε̃k−q + ω′ − ω)

×N (ω′) n(ε̃k) [1 − n(ε̃k−q)], (25)

where, using Eq. (17), the dimensionless transport vertex
g̃x(k,k − q) = (1/at2) gx(k,k − q) is introduced.

The real part of the conductivity (7) may be written as

Re σ (ω) = A σ̃ (ω) ≡ A
Neff t �(ω)

[ω + M ′(ω)]2 + [�(ω)]2
, (26)

where A = ω2
0pl/(4πt) = e2/(mv0t).

The real part of the memory function M ′(ω) = ω λ(ω) is
calculated by the dispersion relation (10) using the relaxation
rate (25). This enables us to calculate the effective optical mass
(8), m̃/m = 1 + λ(0).

In numerical calculations, we take J = 0.3 t and t =
0.4 eV as an energy unit (0.4 eV = 3226 cm−1 = 4640 K).
The results for the relaxation rate and the optical conductivity
as functions of frequency, temperature, and hole doping are
in a good overall agreement with experiments. This will be
detailed in the following.

B. Relaxation rate

At zero frequency, the relaxation rate is related to the
dimensionless electrical resistivity ρ̃ = 1/σ̃ (0) by �(0)/t =
Neff ρ̃. The temperature dependence of ρ̃ for δ = 0.09, 0.16,
and 0.20 is shown in Fig. 2. For a doping near and larger
than the optimal doping (δ = 0.16), we obtain a nearly linear
temperature dependence, as is also observed in experiments
(see, e.g., Refs. 61 and 62).

The effective number of charge carriers Neff given by
Eq. (24) is shown in the inset of Fig. 2. It does not reveal
a notable temperature dependence and can be approximated
by the function Neff � 2 δ. It is remarkable that Neff increases
more rapidly than the hole doping. This result is in agreement
with the in-plane optical conductivity data on LSCO com-
pounds (Refs. 12 and 13), which yield the effective number of
charge carriers Neff(ω) involved in optical excitations up to the
cutoff frequency ω [upper limit of the integral in Eq. (4)]. Neff

was found to be nearly proportional to 2δ for doping δ < 0.15,
e.g., at δ = 0.1, Neff(ω = 1.5 eV) = 0.19 (Fig. 11 in Ref. 12),
and Neff(ω = 2 eV) = 0.26 (Fig. 10 in Ref. 13).

The frequency dependence of the relaxation rate �(ω) (25)
at different temperatures and doping is plotted in Fig. 3. We
obtain an increase of �(ω) with increasing temperature, which
qualitatively agrees with experiments. In the overdoped case,
the relaxation rate decreases resulting from the suppression

FIG. 2. Resistivity ρ̃(T ) = 1/σ̃ (0,T ) for doping δ = 0.09 (solid
line), 0.16 (dashed line), and 0.2 (dotted line). In the inset, the
effective number of charge carriers Neff (δ) at T = 0 is shown.
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FIG. 3. Temperature dependence of the relaxation rate �(ω) for
(a) δ = 0.09, (b) 0.16, and (c) 0.2. Note the different scales.

of spin fluctuations. The broad maximum in the frequency
dependence of �(ω), clearly revealed at low doping in Fig. 3(a),
shifts to higher frequencies with increasing doping. The
doping-dependent finite effective bandwidth W̃ limits the
highest frequency for the relaxation ω � 2W̃ , so that at very
high frequencies, �(ω) vanishes according to �(ω) ∝ 1/ω →
0. Let us point out that a maximum in the relaxation rate is also
observed in experiments for the underdoped samples as, e.g.,
in YBa2Cu3Oy (YBCOy) at ω ∼ 2000 cm−1 for y � 6.5.15

The real part of the memory function M ′(ω) shown in
Fig. 4 exhibits a maximum height which decreases with
increasing temperature and doping. But, the energy of the peak
does not change with temperature as observed in experiments
(see, e.g., Ref. 6–8). In the underdoped case (δ = 0.09), the
temperature dependence of M ′(ω) is very strong, as compared
with the overdoped case (δ = 0.2). This results from the strong
AF SRO at low doping that strongly depends on temperature.
With increasing doping, both the SRO and the influence of

FIG. 4. Temperature dependence of the real part of the memory
function M ′(ω) for (a) δ = 0.09, (b) 0.16, and (c) 0.2. Note the
different scales.

temperature are weakened. Qualitatively, the relaxation rate
(Fig. 3) reveals the same trend.

In Fig. 5, we show the temperature dependence of the effec-
tive optical mass at zero frequency m̃/m = 1 + λ(0) at various
doping. At small doping, a strong temperature dependence of
m̃/m is observed, which may be explained similarly as for
M ′(ω). For the overdoped case, the effective mass shows a
weak renormalization m̃/m ∼ 2. In numerical studies of the
one-hole motion in small clusters, a weak renormalization of
the optical mass was deduced at high temperatures T � 0.2t

(Ref. 35), which is in agreement with our results. In early
experiments (Ref. 12), a large effective mass renormalization
was obtained in LSCO ranging from m̃/m � 25 for δ = 0.1
to m̃/m = 16 for δ = 0.2. However, later on, e.g., in Ref. 16,
a nearly doping-independent modest renormalization of the
effective mass m̃/m = 3−4 was observed in both LSCO and
YBCO, which is close to our finding.
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FIG. 5. Temperature dependence of the effective optical mass
m̃/m = 1 + λ(0) at various doping.

C. Optical conductivity

The frequency dependence of the conductivity (26) for
various temperatures and hole doping is shown in Fig. 6.
The temperature and doping dependences of the conductivity
show a reasonable qualitative agreement with experiments
(see, e.g., Ref. 15). At low frequencies, a large Drude peak
is found which significantly narrows at low temperatures.
We also obtain a broad and nearly temperature-independent
MIR maximum at ω � 2t ∼ 6000 cm−1, which slightly shifts
to lower frequencies and becomes of lower intensity with
increasing doping as observed in experiments (see, e.g.,
Ref. 16). In our theory, the MIR absorption results from
electron interaction with spin fluctuations which influence the
electron scattering so that it decreases with increasing doping.

D. Quantitative comparison to experiments

Let us first compare the resistivity ρ(T ) = (1/A) ρ̃, where
A is given in Eq. (26), with experimental data for the
underdoped cuprate YBCO6.5 (δ = 0.09) (Ref. 6) shown
in Fig. 7(a). Here, we use the value A = e2/(mv0t) =
8.00 × 103[� cm]−1 taking v0 = 57.7 (Å)3.6 Without a fit-
ting procedure, we obtain a remarkably good agreement
with experiment, both in the absolute values of the re-
sistivity and in its temperature dependence. In Fig. 7(b),
we compare the resistivity ρ(T ) with experimental data
on LSCO (Ref. 61) for the underdoped (δ = 0.08) and
nearly optimally doped (δ = 0.17) samples with our re-
sults. The value of A = 4.86 × 103 [� cm]−1 is obtained
using v0 = a2d = 95.3 (Å)3 (a = 3.8 Å and d = 6.6 Å).
A reasonable agreement is observed at high temperatures,
while at low temperatures our values are much smaller. An
additional scattering mechanism, e.g., impurity scattering,
should be invoked to explain the experimental data. The
comparison of our results with optimally doped and overdoped
Tl compounds63 shows the same trend.

Now, we estimate the plasma frequency ωpl =
[Neff]1/2ω0,pl. For the optimally doped case δ = 0.16, we have
Neff = 0.3 and ωpl = 0.55 ω0,pl. For LSCO (ω0,pl = 3.72 eV),
we get ωpl = 2.05 eV and for YBCO (ω0,pl = 3.96 eV),
ωpl = 2.18 eV. These values are close to experiments, while
the LDA calculations in Ref. 64 give the somewhat larger

FIG. 6. Temperature dependence of the optical conductivity σ̃ (ω)
for (a) δ = 0.09, (b) 0.16, and (c) 0.2.

value ωpl ≈ 2.9 eV. For the underdoped YBCO6.5 crystal,
ωpl = 1.89 eV,6 while for δ = 0.09 we have Neff = 0.18 and
ωpl = 1.68 eV, which is close to the experimental value.

Finally, let us compare the relaxation rate �(ω) with the
optical data for YBCO6.5 given in Ref. 6. In the frequency
region ω � 1500 cm−1 and for the temperatures T = 0.03t

and 0.05t , which are close to the experimental values T = 147
and 244 K, respectively, we get the results shown in Fig. 8. As
we see, for the optical properties, we also obtain a reasonable
quantitative agreement of our theory with experiments.

E. Comparison with previous theoretical studies

Various methods have been used in theoretical studies of
the optical and dc conductivities in cuprates as discussed in
Sec. I. Here, we compare our results with previous studies to
clarify what kind of problems the latter has and how we have
resolved some of them.
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FIG. 7. Temperature dependence of the resistivity ρ(T ) at
(a) δ = 0.09 in comparison with the experimental data for YBCO6.5

from Ref. 6 shown by symbols, and (b) at δ = 0.08 (solid line) and
δ = 0.17 (dashed line) in comparison with the experimental data for
LSCO from Ref. 61 shown by symbols.

One of the problems is how to explain a linear temperature
dependence of the resistivity in optimally doped cuprates in a
broad temperature range (see, e.g., Ref. 65 and a discussion in
Ref. 62). In early studies, the local density functional theory
was used in the calculation of transport properties of cuprates
(for a review, see Ref. 64). Calculations of the resistivity
within the relaxation rate approximation for electron scattering
on phonons, (1/τtr) ∝ λtr T , result in a linear T dependence
over a broad temperature range ρ ∝ 1/(τtrω

2
pl). However, the

absolute values of the resistivity prove to be several times
smaller than the experimental ones. This discrepancy could

FIG. 8. Relaxation rate �(ω) at δ = 0.09 for T = 0.03t (dashed
line) and T = 0.05t (dotted line) in comparison with experimental
data for YBCO6.5 (Ref. 6) shown by symbols: squares for T = 147 K
and triangles for T = 244 K.

be removed by using larger values of the transport EPI
coupling constant λtr = 1.5–2 instead of the calculated value
λtr = 0.65–0.32 for optimally doped LSCO and YBCO, or by
assuming the theoretical plasma frequencies ωpl to be smaller
by a factor of 2 to 3.

To reconcile a weak transport EPI coupling λtr ∼ 0.5 and
a strong EPI for quasiparticles λqp ∼ 2, needed to explain the
high Tc in cuprates, a model of a strong forward scattering
of electrons induced by electron correlations was proposed66

which enables the authors to obtain λtr ∼ λqp/3 (for a review,
see Ref. 11, Sec. III B). This model was used in Ref. 67
to explain a linear T dependence of the resistivity in a
broad region of T where, however, the extended van Hove
singularities sufficiently close to the Fermi energy were
assumed and fitting parameters for EPI were introduced.

As shown in Fig. 7(b), we obtain a linear temperature
dependence for the resistivity for a nearly optimally doped
sample in a reasonable agreement with experiment on LSCO
without using fitting parameters. The values of the plasma fre-
quency are also close to experiments. In our memory-function
theory, the transport relaxation rate �(ω) and the quasiparticle
self-energy are not related in a simple way, and therefore we
can explain a sufficiently weak scattering observed in the
conductivity and a strong superconducting pairing induced
by the same electron coupling to spin fluctuations (see, e.g.,
Ref. 68).

To describe the normal-state properties, such as the resistiv-
ity and OC, phenomenological spin-fermion models have been
used. In particular, within a nearly antiferromagnetic Fermi-
liquid model,69 a reasonable agreement with experiments on
resistivity for YBCO7 (Ref. 70) and on OC for optimally
doped and overdoped cuprate compounds71 was obtained by a
particular choice of model parameters. In Ref. 72, the OC of
YBCOx (x = 6.3, 7) within the memory-function method was
calculated. To obtain an agreement with experiments, several
models for the spin susceptibility have to be considered. A
detailed qualitative discussion of the OC behavior at various
frequencies and temperatures within the spin-fermion model
was performed in Ref. 42. Contrary to these phenomenological
approaches, we obtain a fair agreement with experiments for
various doping and temperatures within the microscopic theory
for the spin-fluctuation susceptibility without fitting coupling
parameters.

There are several studies of the OC within the Hubbard
model in the limit of weak correlations, where the insulating
AF state emerges from a strong AF interaction as discussed in
Sec. I. In particular, in Ref. 73, the OC was calculated based
on a self-consistent treatment of the Hubbard model. It was
argued that the charge-transfer gap observed in the insulating
state of cuprates is due to the AF LRO which splits the CuO2

band into two magnetic subbands. Assuming that the AF LRO
exists at any doping, the experimentally observed increase of
the charge-transfer energy with doping and a simultaneous
decrease of the MIR absorption energy were explained. In
this scenario, the MIR band originates from the pseudogap
in the electronic spectrum also induced by the AF LRO. In
our theory, based on the consideration of the t − J model, we
can not study the interesting problem of doping dependence
of the charge-transfer peak at high energy observed in the
insulator-to-metal transition in cuprates. This problem should

224536-8



OPTICAL AND DC CONDUCTIVITIES OF CUPRATES: . . . PHYSICAL REVIEW B 85, 224536 (2012)

be considered within the two-subband Hubbard model as, e.g.,
in Ref. 74, since in the t − J model only the lower Hubbard
subband is explicitly taken into account.

In Ref. 39, the MIR absorption in the region of ω ≈ t − 2t ,
being quite strong even without coupling to phonons, was
related to the interaction of a doped hole with spin excitations.
In our theory, we can explain the MIR absorption by electron
interaction with spin fluctuations in the decay of charge
excitations. We can not relate the MIR absorption to the
pseudogap in the single-particle electronic spectrum since
the MIR conductivity shows no notable temperature and
doping dependence, which is characteristic for the pseudogap
phenomenon.75

In the limit of strong correlations, the Hubbard model and
t − J model have been used in calculations of dc and optical
conductivity. As was pointed out in Sec. I, in numerical studies
of finite clusters, due to a finite energy resolution, only re-
stricted information on the frequency and temperature depen-
dence of the OC can be found. The effects of strong correlations
have been efficiently taken into account within the DMFT
method, which enables the authors to reproduce qualitatively
the main features of the OC: the Drude peak, the MIR region,
the charge-transfer excitations, and the temperature and doping
dependence of the optical spectral weight (see, e.g., Refs. 21,
76, and 77 and references therein). However, in the DMFT,
the spatial correlations, such as short-range AF fluctuations,
are not taken into account, and therefore the low-energy part
of the OC caused by charge-boson interaction can not be
studied. In the cluster DMFT,28 due to a finite size of clusters,
only a qualitative low-frequency behavior of the OC can be
found. In this work, the complicated wave-vector dependence
of the dynamical spin susceptibility and the electron interaction
with spin fluctuations are fully taken into account without
using fitting parameters. This enables us to reproduce both
the transport relaxation rate �(ω,T ) (see Fig. 3) and the real
part of the memory function M ′(ω,T ) (see Fig. 4), yielding
the optical mass renormalization, in a fair agreement with
experiments.

The Allen approximation40 for the current-current correla-
tion function, commonly used in the calculation of the OC and
the transport relaxation rate 1/τ , is based on the perturbation
theory with respect to (1/ωτ ) 
 1. In our memory-function
approach, the optical relaxation rate (16) describes the direct
decay of a charge excitation into an electron-hole pair assisted
by the excitation of spin fluctuations. In the Allen approach,
processes of this type appear due to finite lifetime effects for the
electron-hole pair. Therefore, to calculate the optical relaxation
rate, one has to express the latter in terms of a quasiparticle
scattering rate, which is not a straightforward procedure (see,
e.g., Refs. 78–80).

The present microscopic theory has in fact some limitations
arising from the t − J model used in the calculations.
Besides the deficiency of the charge-transfer peak at high
energy discussed above, the complicated structure of the OC
found experimentally in the MIR region is missed in our
theory. This may be due to polaron effects and the coupling
of magnetic excitations with phonons via doped holes as
discussed in Refs. 37–39. To overcome these limitations, an
extended Hubbard model, including a strong electron-phonon
interaction, should be considered.

V. CONCLUSION

In this paper, we have studied the charge dynamics within
a microscopic theory for the optical and dc conductivities for
the t − J model by taking into account electron scattering by
spin fluctuations. In our theory, based on the memory-function
formalism, we calculate directly the transport relaxation rate
without using the Allen perturbation theory.

Within the proposed theory, we are able to obtain a
reasonable agreement with experiments on cuprates for the
relaxation rate, the optical conductivity, and the resistivity in
broad regions of temperatures and doping. In particular, in the
underdoped region with a strong AF SRO, a fair quantitative
agreement was found for the resistivity [Fig. 7(a)] and for
the relaxation rate (Fig. 8). This proves the essential role of
AF spin fluctuations in the charge dynamics of cuprates. This
conclusion has been corroborated in a number of theoretical
and experimental studies of OC (see, e.g., Refs. 7 and 8
and references therein). In the overdoped case, where the
AF spin fluctuations are suppressed, additional scattering
mechanisms (e.g., due to electron-phonon interaction and
impurity scattering) should be invoked to explain experimental
data. From our results, we conclude that spin fluctuations
induced by the kinematic interaction should give a substantial
contribution to the d-wave pairing in cuprates as has been
shown recently in Ref. 68.
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APPENDIX A: CALCULATION OF THE MEMORY
FUNCTION

To derive Eq. (6) for the memory function, we consider the
equations of motion for the relaxation function 
(t − t ′) =
((Jx(t)|Jx(t ′))) (see Refs. 45, 47, and 74). Differentiating the
function subsequently over time t and t ′, we obtain a system
of equations which in the Fourier representation read as

ω 
(ω) = χ0 + ((Fx |Jx))ω, (A1)

ω ((Fx |Jx))ω = −((Fx |Fx))ω, (A2)

where Fx = iJ̇x = [Jx,H ] is the force operator. In Eq. (A2),
the relation of the orthogonality (Fx,Jx) = (iJ̇x,Jx) =
〈[Jx,Jx]〉 = 0 was used. Introducing the zero-order relaxation
function 
0(ω) = χ0/ω, we can solve the system of equations
(A1) and (A2) in the form


(ω) = 
0(ω) − 
0(ω) T (ω) 
0(ω), (A3)

with the scattering matrix

T (ω) = (1/χ0)((Fx |Fx))ω(1/χ0). (A4)

The memory function M(ω) is defined by Eq. (5), which can
be written in the form


(ω) = 
0(ω) − 
0(ω) [M(ω)/χ0] 
(ω). (A5)
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From Eqs. (A3) and (A5), we get a relation between the
memory function and the scattering matrix:

T (ω) = [M(ω)/χ0] − [M(ω)/χ0]
0(ω)T (ω). (A6)

This equation shows that the memory function is the “proper
part” of the scattering matrix (A4) which has no parts
connected by a single zero-order relaxation function, i.e.,
M(ω) = χ0T (ω)proper as given by Eq. (6).

APPENDIX B: MODE-COUPLING APPROXIMATION

Using the spectral representation for the retarded Green’s
functions,56 we write the relaxation rate (9), �(ω) = M ′′(ω) =
Im((Fx |Fx))proper

ω+i0+(1/χ0), in terms of the time-dependent force-
force correlation function

�(ω) = π
1 − exp(βω)

2χ0ω

∫ ∞

−∞
dt eiωt 〈FxFx(t)〉proper. (B1)

To calculate the force operator Fx = [Jx,H ], we first de-
termine the current Jx = −i[Px,H ], where the polarization
operator in terms of HOs reads as Px = e

∑
i R

x
i

∑
σ Xσσ

i .
Using the commutation relations (13), we derive the expression
for the current operator

Jx = ie
∑
i,j,σ

(
Rx

i − Rx
j

)
tij Xσ0

i X0σ
j . (B2)

The force operator describes electron scattering on spin and
charge (density) excitations which results from the kinematic
interaction for the HOs. This can be seen from the equation of
motion for the electron annihilation operator

i
d

dt
X0σ

i (t) = [
X0σ

i ,H
] = −μX0σ

i −
∑
j,σ ′

tijBiσσ ′X0σ ′
j

+ (1/2)
∑
j,σ ′

Jij X0σ ′
i [Bjσσ ′ − δσ ′σ ], (B3)

where the Bose-type operator Biσσ ′ is introduced:

Biσσ ′ = (
X00

i + Xσσ
i

)
δσ ′σ + Xσ̄σ

i δσ ′σ̄

= [
1 − (1/2)Nj + Sz

j

]
δσ ′σ + Sσ̄

j δσ ′σ̄ . (B4)

Here, the completeness relation for the HOs and the definition
of the number and spin operators (14) are used. By this type
of equations of motion, for the force operator we obtain the
expression

Fx = −ie
∑
i,j,l

∑
σσ ′

(
Rx

i − Rx
j

)
tij

× {
Xσ0

i

[
tj lX

0σ ′
l Bjσσ ′ − (1/2)Jjl X0σ ′

j Blσσ ′
]

− [
tilX

σ ′0
l B

†
iσσ ′ − (1/2)Jil X

σ ′0
i B

†
lσσ ′

]
X0σ

j

}
. (B5)

Introducing the q representation for HOs and the interactions

X0σ
i = 1√

N

∑
q

X0σ
q eiqRi , Bjσσ ′ = 1

N

∑
q

Bqσσ ′ eiqRj ,

(B6)

tij = 1

N

∑
q

t(q) eiqRij , Jij = 1

N

∑
q

J (q) eiqRij ,

where Rij = Ri − Rj , the force operator (B5) takes the form

Fx = − e

N

∑
k,q

∑
σσ ′

vx(k) [t(k − q) − (1/2)J (q)]

× {
Xσ0

k X0σ ′
k−q Bqσσ

′ − Xσ ′0
k−qX

0σ
k B−qσ

′
σ

}
, (B7)

where vx(k) = −∂t(k)/∂kx is the electron velocity. Changing
the indexes in the last term, k′ = k − q, σ ↔ σ ′, and q → −q,
we obtain the final expression

Fx = − e

N

∑
k,q

∑
σσ ′

{ vx(k) [t(k − q) − (1/2)J (q)]

− vx(k − q) [t(k) − (1/2)J (q)]}Xσ0
k X0σ ′

k−qBqσσ ′

≡ − e

N

∑
k,q

∑
σσ ′

gx(k,k − q) Xσ0
k X0σ ′

k−q Bqσσ
′ . (B8)

In the last equation, we introduce the transport vertex
gx(k,k − q) given by Eq. (17).

We calculate the many-particle time-dependent correlation
functions in Eq. (B1) in the mode-coupling approximation
assuming an independent propagation of electron and charge-
spin excitations. In this approximation, the time-dependent
correlation functions can be written as a product of fermionic
and bosonic correlation functions:〈

Xσ0
k X0σ ′

k−qBqσσ ′
∣∣Xσ ′0

k−q(t)X0σ
k (t)B†

qσσ ′(t)
〉

= 〈
Xσ0

k X0σ
k (t)

〉〈
X0σ ′

k−qX
σ ′0
k−q(t)

〉〈Bqσσ ′B
†
qσσ ′(t)〉 . (B9)

Using the definition for the Bose-type operator (B4), for the
bosonic correlation function we obtain

〈Bqσσ ′B
†
qσσ ′(t)〉

= 〈{[
X00

q + Xσσ
q

]
δσ ′σ + Xσ̄σ

q δσ ′σ̄
}

× {[
X00

−q(t) + Xσσ
−q(t)

]
δσ ′σ + Xσσ̄

−q(t) δσ ′σ̄
}〉

= 〈{
X00

q + Xσσ
q

} {
X00

−q(t) + Xσσ
−q(t)

}〉
δσ ′σ

+ 〈
Xσ̄σ

q Xσσ̄
−q(t)

〉
δσ ′σ̄

= (1/4)〈NqN−q(t)〉 δσ ′σ

+ 〈
Sz

qS
z
−q(t)

〉
δσ ′σ + 〈

Xσ̄σ
q Xσσ̄

−q(t)
〉
δσ ′σ̄ . (B10)

In the paramagnetic state, for the sum of the spin correlation
functions in Eq. (B10), we have 〈Sz

qS
z
−q(t)〉 + 〈S−

q S+
−q(t)〉 =

〈SqS−q(t)〉. Finally, using spectral representations for the time-
dependent correlation functions in Eq. (B9),56

〈BA(t)〉 =
∫ ∞

−∞
dω e−iωtf (ω)[−(1/π )]Im〈〈A|B〉〉ω, (B11)

where f (ω) is the Fermi function n(ω) for the correlation
function 〈Xσ0

k X0σ
k (t)〉 and the Bose function N (ω) for the

charge-spin correlation functions, after integration over time t

in Eq. (B1) we obtain the expression (16) for the relaxation rate.
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