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Visualizing electron pockets in cuprate superconductors
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Fingerprints of the electron pocket in cuprates have been obtained only in numerous magnetotransport
measurements, but its absence in spectroscopic observations poses a long-standing mystery. We develop a
theoretical tool to provide ways to detect electron pockets via spectroscopies including scanning tunneling
microscopy (STM) spectra, inelastic neutron scattering (INS), and angle-resolved photoemission spectroscopy
(ARPES). We show that the quasiparticle-interference (QPI) pattern, measured by STM, shows an additional
seven q vectors associated with the scattering on the electron pocket than that on the hole pocket. Furthermore,
the Bogolyubov quasiparticle scatterings of the electron pocket lead to a second magnetic resonance mode in the
INS spectra at a higher resonance energy. Finally, we reanalyze some STM, INS, and ARPES experimental data
of several cuprates which dictates the direct fingerprints of electron pockets in these systems.

DOI: 10.1103/PhysRevB.85.224535 PACS number(s): 74.25.Jb, 74.72.Gh, 74.72.Kf

I. INTRODUCTION

Copper-oxide high-temperature superconductors evolve
from a Mott insulator to the superconducting state through an
unknown “pseudogap” phase. Many competing order origins
of the pseudogap have been proposed, some of which lead
to a Fermi surface (FS) reconstruction into hole pockets
and electron pockets.1–5 Hole pockets are detected in many
experiments. On the other hand, the existence of electron
pockets has been overlooked for the past 20 years and
only recently has been proposed by Hall effect, quantum
oscillation at high-magnetic field, and Nernst and Seebeck
measurements.4,6–8 In particular, Hall-effect measurements
have revealed a negative sign in the low-temperature Hall
coefficients which is taken as a signature of electronlike
quasiparticles on the FS.6 The Hall coefficient in fact changes
sign from negative to positive with increasing temperature but
below T ∗, suggesting the coexistence of both electron and hole
pockets on the FS. Shubnikov–de Haas (SdH) experiments
in YBa2Cu3O6.5 and YBa2Cu4O8 (YBCO) also argue for
the presence of closed FS pockets, with slope suggestive of
electron pockets.7,8 This observation received further support
from the Nernst and Seebeck measurements which have been
shown theoretically to be consistent with the coexistence of
electron and hole pockets.4,5 The question arises, if an electron
pocket is present on the FS, are there spectroscopic fingerprints
that can detect it directly? For example, ARPES, which directly
measures the single-particle spectral weight, has so far been
unable to convincingly separate out the presence of an electron
pocket from a full paramagnetic FS.

Many theoretical proposals have been put forward to ex-
plain the FS topology in cuprates,1–3,9–11 however, a consistent
picture to describe both the bulk measurements and the
spectroscopies has not yet been achieved. Within a strong
coupling scenario, the holes, doped into the parent Mott
insulator, create in-gap states at the Fermi level without a
well defined quasiparticle dispersion.12 Again in the preformed
superconducting (SC) pairing theory of the pseudogap, one
would predict that a single large holelike FS persists at all
dopings, with SC fluctuations suppressing spectral weight in

the antinodal regions, leaving a Fermi arc.13 Such a model
would predict a holelike sign of the Hall coefficient at all
temperatures,14 incompatible with the observed sign changing
Hall effect7,8 and Nernst and Seebeck measurements.4 An
alternative approach using a density wave picture of the
pseudogap has been successful in explaining many aspects like
the behavior of quantum oscillations, Hall, Nernst and Seebeck
effects,1,2,5,15 and ARPES, STM, and neutron scattering.16–18

Some charge ordering is observed with applied magnetic
field,19 however the associated Q vector and its stake on the
origin of the electron pocket is yet unknown.

To find signatures of electron pockets we model the
pseudogap as a spin-density wave (SDW) state which leads
to the FS reconstruction into hole and electron pockets.16 The
signature of magnetic order has been recently obtained in
the pseudogap region in YBCO via spin-polarized neutron
diffraction20,21 and muon spin-relaxation measurements.22

Using this model we find that (i) the QPI pattern seen in STM
exhibits seven new q vectors which evolve in a qualitatively
different way than the ones expected for a hole pocket;
(ii) similarly, the INS measurements also display an additional
resonance peak in the spin-excitation spectrum in the SC state
coming from the electron pocket; (iii) furthermore, in some
doping regions ARPES FS spectral weight data reveal two
peaks at the nodal and antinodal points with a dip between them
which suggests reconstruction of the FS into hole and electron
pockets, respectively; and (iv) we also demonstrate several key
properties of these three spectroscopies which quantitatively
and unambiguously can establish the presence of an electron
pocket on the FS.

The development of an electron pocket in hole doped
cuprates is doping (and material) dependent. In fact, in YBCO
there are other band-structure properties such as a CuO chain
state that can serve as electronlike FS.23 In the overdoped
region the FS consists of a large holelike FS centered at
M = (π,π ). At strong underdoping, a pseudogap opens in the
region of momentum space near k = (π,0) and (0,π ), leaving
a hole pocket or “Fermi arc” along the nodal line � → (π,π ).
These hole pockets are observed directly by ARPES and
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FIG. 1. (Color online) Schematic QPI pattern for electron pock-
ets. (a) Sketch of hole pockets (red lines) and electron pockets (blue
lines). The front sides of the two pockets (main bands) are drawn here,
where the induced shadow bands are not shown. Opening of a d-wave
SC gap on these pockets is shown in color shadings in one quadrant
of the FS. The seven QPI vectors connecting eight elastic bright
spots on a constant energy surface on the electron pocket are shown
by arrows of various colors. The contrast between the QPI vectors
associated with the hole pocket and the electron pocket is illustrated
for one vector qh,e

7 only, while the same for other vectors follows
similarly. (b) A view of a constant energy QPI map of hole-pocket
origin is contrasted with the same from an electron-pocket origin in
(c). Arrows of the same color point to the direction of the motion
of each q vector with increasing energy. (d) and (e) The dispersive
behavior of the QPI vectors in the q-ω phase space is schematically
shown along the high-symmetry lines of (100) direction in (d) and
along the diagonal direction in (e). The red and blue background
shadings differentiate the hole-pocket and electron-pocket regions.
All the QPI vectors show kinks in going from the hole-pocket to the
electron-pocket energy, which is an indicator of the presence of the
electron pocket on the FS.

are consistent with STM and many other experiments. With
increasing doping, as the pseudogap correlation weakens but
remains finite, the bottom of the conduction band at k = (π,0)
and (0,π ) drops down below the Fermi level producing an
electron pocket at some critical doping, even without the
application of any external magnetic field (see Appendix A
for the details of the evolution of the FS). A small gap persists
in the regions where the bare FS crosses the magnetic Brillouin
zone [marked by a dashed line in Fig. 1(a)]. As the electron
pockets are expected to form in the doping range where the
FS crosses over from small pocket to large FS, spectroscopies
need guidance to distinguish a pocket from a full holelike FS.
Therefore, we provide a careful analysis of the spectroscopic
details to illustrate how to observe the electron pocket.

In the superconducting state the d-wave pairing restricts
the coherent Bogoliubov quasiparticles to move on the k
space of the electron and hole pockets [see Fig. 1(a)]. The
scattering process of these particle-hole excitations leads to
many observable features, like the elastic scatterings of the
Cooper pairs seen as a QPI pattern in STM.24 Similarly,

inelastic scattering between particle and hole Bogoliubov
quasiparticles leads to a scattering profile as revealed by INS.25

The QPI and INS patterns generated by the hole pocket are
well studied in cuprates.26,27 Here we study how these patterns
evolve naturally to include contributions of the electron pocket.

The rest of the paper is designed as follows. In Sec. II we
give the results of the QPI pattern in the electron-pocket region
and contrast them with that of the hole-pocket region. The
corresponding INS result and the development of a second
resonance mode is given in Sec. III. Finally, we re-analyze
some of the ARPES data to point out the experimental evidence
of an electron pocket in this measurement. Appendix A is
devoted to the SDW model and the calculation details of QPI
and INS spectra. In Appendix B we present more results of
QPI pattern for the paramagnetic case (overdoping), and for
hope pocket only (underdoping) and electron + hole pocket
(optimal doping).

II. SCANNING TUNNELING MICROSCOPY

Figures 1(b) and 1(c) contrast the QPI patterns at two
representative quasiparticle energies at which the Cooper pair
resides on the hole pocket (lower energy) and electron pocket
(higher energy), respectively. There is a qualitative difference
in the overall QPI pattern at these two energy scales. First,
since scattering is purely elastic, appearance of an electron
pocket leads to new features in QPI that correspond to seven
additional electron-electron scattering qe vectors in addition to
hole-hole scattering qh vectors. No elastic scattering features
connect electron and hole pockets as they have different
quasiparticle energies. The definitive distinction between the
two pockets can be marked by the values of two high-symmetry
vectors qh,e

3 and qh,e
5 . qh

3 connects equivalent energy points on
two hole pockets along the diagonal direction. As the hole
pocket terminates at the magnetic zone boundary at which
qh

3 = (π,π ), therefore, if qh
3 continues to grow above (π,π ),

it must come from the electron pocket. Similarly, qh
5 [along

the (100) direction] will attain its maximum value equal to the
reciprocal lattice vector of (2π,0) and (0,2π ) at the highest
energy of the QPI pattern.

In addition, one is required to pay attention to the energy
dependence of the QPI vectors as well as their associated
intensities. Due to the van Hove singularity at the antinodal
point as well as the discontinuous jump from the hole pocket
to the electron pocket FS, one expects a “kink” in the energy
dependence of each QPI vector [see Figs. 1(d) and 1(e)].
As the qh vectors reach the top of the hole pocket [i.e.,
when q3 = (π,π )], the Bogoluybov scattering of these vectors
vanishes and they become merely FS nesting. Therefore, all qh

vectors shoot almost vertically upward but with diminishing
intensity. Nearly at the same energy, the Bogolyubov scattering
on the electron pocket turns on and qe vectors appear on the
QPI pattern. Unlike qh’s, qe’s disperse slowly with energy but
the associated intensity begins to rise again. Therefore, not
only the magnitude of the qe vectors as discussed above, but
also the expected kink in their dispersion and their associated
intensity will serve as quantitative and unambiguous marks for
the presence of electron pockets.

To demonstrate how the electron pocket leads to a different
set of QPI patterns, we calculate the QPI spectra in a coexisting

224535-2



VISUALIZING ELECTRON POCKETS IN CUPRATE . . . PHYSICAL REVIEW B 85, 224535 (2012)

DOS

q5

q7

q1

q3

PG
Hole

Elec.

(a)

Hole pocket Electron pocket

(c)

0

40

-40

E
(m

eV
)

(1,0)qx,qy [2 ] (-1,-1) (1,1)qx,qy [2 ] Intensity(-1,0)

-1 1
-1

1

q y
[2

]

qx [2 ]

-0.5 0.5
-0.5

0.5

kx [2 ]

k y
[2

]

MIN MAX

MIN MAX

M
IN

M
A

X

(b)

(d1) (d2)

(f1) (f2)

(e1) (e2)

(g1) (g2)

FIG. 2. (Color online) Computed QPI pattern due to the electron pocket. (a) and (b) The momentum-energy dispersion relation of the
QPI pattern is drawn along the (100) direction and the diagonal one, respectively. In these two high-symmetry directions only four QPI q
vectors appear as highlighted by dashed lines. The dots are the experimental data of Bi2212 in an overdoped sample Tc = 75 K for the
same q vectors generated from the hole pocket, plotted only in one direction for clarity.28 These experimental data are shifted along the q
directions by �q = 0.08(2π ) to reconcile the fact the FS areas for Bi2212 and YBCO (theory) are different and the energy axis is scaled by
�YBCO/�Bi2212 = 2.23, where � is the SC gap. At the termination of the hole pocket both the experiment and theory consistently reproduce
the nondispersive nature of the hole-pocket QPI vectors. The QPI vectors from the electron pocket appear in this energy region. (c) Theoretical
DOS, black line, and the intensities of various QPI vectors (see legend) exhibit a one-to-one correspondence with each other. All the spectra
exhibit linear-in-energy dependence coming from the d-wave nature of the SC gap and have two characteristic peaks at the tip of the hole
pocket (low-energy peak) and at the tip of the electron pocket. Computed QPI patterns in the two-dimensional momentum space at four energy
values: (d1) and (d2) correspond to the hole pocket while (e1) and (e2) are obtained in the electron-pocket region. (f1), (f2), (g1), and (g2) The
single-particle maps of “bright spots” in the k space of the Bogolyubov quasiparticle are plotted at the same energy values at which the QPI
maps are calculated in the corresponding upper panel.

uniform phase of SDW induced pseudogap and d-wave
superconductivity.16 We concentrate on YBCO6.6 where the
band dispersion is obtained by the tight-binding fitting
to the first-principle calculations. Based on this ground state,
the self-energy correction due to spin and charge fluctuations
is computed within a self-consistent GW model (see Ap-
pendix A).17 The lifetime broadening due to the imaginary part
of the self-energy helps create “bright spots” on the constant
energy single-particle spectra. At any energy in the SC state
we have eight bright spots due to d-wave symmetry as shown
in Figs. 2(f1), 2(f2), 2(g1), and 2(g2) at four representative
energy cuts below the Fermi level. At E = 0 the bright spots
are concentrated at the nodal points (not shown) and with
increasing energy they move toward the antinodal direction.
The locus of the bright spot is always restricted to move on

the normal state FS and takes the form of well-known “banana
shape” in the low-energy region (on the hole pocket) [see
Figs. 2(f1) and 2(f2)]. As the bright spots hit the magnetic zone
boundary (green dashed line), they move to the electron-pocket
region [see Figs. 2(g1) and 2(g2)].

We calculate the QPI pattern as B(q,ω) ∼∑
k Im[G(k,ω)G(k + q,ω)], where G is the 4 × 4 Green’s

function in the SDW-SC state. At E = 0, qh
1 and qh

5 are
the same vector connecting the nodal points. As shown in
Fig. 2(a), with increasing |E|, qh

1 gradually shrinks, whereas
qh

5 grows—both very much linearly with energy, coming
from the linear dispersion of the nodal quasiparticles. A
similar linear dispersion is evident in the behavior of qh

3,q
h
7 in

Fig. 2(b): qh
7 starts from q = 0 at E = 0 and increases to a

maximum value less than (π,π ) in all underdoped cuprates,
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while q3 starts at a finite vector slightly below (π,π ) and
reaches (π,π ) at the edge of the hole pocket. The resulting QPI
pattern at this energy is shown in Figs. 2(d1) and 2(d2), and
agrees qualitatively with the experimental results of Bi2212.28

Above this energy all qh vectors become normal-state FS
nesting, and bend backward with much less dispersion while
the associated intensity gradually diminishes. Therefore, in
the absence of an electron pocket, one can expect the QPI
pattern to remain very much the same as a function of energy
but with much broadened peaks due to the lack of Bogolyubov
coherence peaks. The other weak intensities apart from the
leading seven q vectors are associated with the shadow bands,
which are not relevant for the present study.

The most interesting feature of the QPI happens above the
pseudogap energy scale which separates the electron pocket
from the hole pocket. New q vectors develop due to the
Bogoluibov scattering of the electron pocket. These qe vectors
are practically the continuation of the qh’s above the magnetic
zone boundary but with different slope and intensity which
are related to the curvature of the electron pocket and the
associated van Hove singularity. The resulting constant energy
QPI maps are shown in Figs. 2(e1) and 2(e2) with very distinct
interference patterns compared to the hole pocket [compare
with Figs. 2(d1) and 2(d2), respectively]. In the electron-
pocket regions, only qe

1 disperses toward q = 0, whereas the
others disperse away from the magnetic zone boundary to
the reciprocal unit cell boundary. qe

3,q
e
7,q

e
2,q

e
6 approach each

other forming a squarish profile centered at q = (π,π ) which
is present at all energies. Also, qe

2,q
e
5 approaches q = (2π,0)

and its equivalent k points. We emphasize that the most robust
features signaling the presence of the electron pocket will be
the values of qe

3, qe
2,q

e
5 in that qe

3 > (π,π ) at the beginning of
the electron pocket, whereas qe

2,q
e
5 reach the zone boundary

(2π,0) (and its equivalent points) at the top of the electron
pocket.

The intensity of each qh and qe vector follows closely to the
density of states (DOSs) as shown in Fig. 2(c). Both the DOS
and the QPI intensity grow linearly with |E|, demonstrating
d-wave pairing symmetry and the particle-hole symmetry in
the Bogoliubov quasiparticles even in the pseudogap state and
also under the influence of many-body effects. Above the tip
of the hole pocket, the intensity drops in the pseudogap energy
region and then it rises again sharply up to the tip of the electron
pocket. Experimentally the first peak in intensity is well
documented for underdoped samples while some evidence of
the second peak is seen in overdoped Bi2212 (see for example
Ref. 29).

We summarize three robust signatures that help unambigu-
ously differentiate the presence of the electron pocket from
the hole pocket or paramagnetic full FS (see Appendix B
for details). (1) In the dispersion relation of the QPI vectors
as shown in Figs. 2(a) and 2(b), all the q vectors stop
dispersing at the tip of the hole pocket. Only for the case of
an electron pocket do new QPI vectors appear which extend to
q = (2π,0) and its equivalent points along the (100) direction
or above q = (π,π ) along the diagonal direction. Furthermore,
to differentiate an electron pocket from a paramagnetic full
FS, one needs to pay attention to the break in the slope of
the QPI vectors going from the hole pocket to the electron
pocket. (2) For constant energy scans, the QPI profile becomes

essentially energy independent above the tip of the hole pocket;
for example, when qh

3 = (π,π ) stops dispersing. In contrast,
in the present case of an electron pocket, the new QPI pattern
forms with two distinguishing marks that qe

3 > (π,π ) and
qe

5 = (2π,0) at the tip of the electron pocket. (3) The intensity
of the QPI vectors as a function of energy shows two distinct
peaks in the case when both the electron and hole pocket are
present on the FS. Lower energy peak occurs at the tip of the
hole pocket at an energy |E| < |�|, while the second peak
happens at the tip of the electron pocket exactly at |E| = |�|.
In the absence of an electron pocket, only the first peak will
be present, whereas in a paramagnetic ground state only the
second peak will show up.

III. INELASTIC NEUTRON SCATTERING
SPECTROSCOPY

We turn next to the low-energy INS spectra in Fig. 3, mainly
in the region below ω � 2� where Bogoliubov quasiparticle
scattering dominates in the spin-excitation dispersion.25–27

INS measures the imaginary part of the susceptibility whose
noninteracting part is χ ′′

0 (q,ωp) = ∑
k,n Im[G(k,iωn)G(k +

q,iωn + ωp)], where n is the Matsubara frequency index (see
Ref. 18). In the SC state χ ′′

0 arises from the inelastic scattering
of the Cooper pairs (many-body effects which are incorporated
in the random-phase approximation shift the energy scale of
the spectra to a slightly lower energy; nevertheless the overall
shape of the spectrum is not greatly changed). Therefore, the
spectrum is dominated by scattering by bright spots, similar to
QPI but connecting features above and below the Fermi level.
Among the seven qh,e vectors in the QPI pattern discussed
above, only four vectors participate in the INS spectra [see
Fig. 3(a)]. Furthermore, owing to the selection rule associated
with elastic scatterings in STM, qh and qe are always energy
resolved. But in the INS spectra the separation between the
two energy scales becomes obscured due to the turning on of
interpocket inelastic scattering. We denote the corresponding
electron to hole pocket scattering channel by qeh as shown
by dashed lines of the same color in Fig. 3(a). The resulting
constant energy INS profile in the SC region is sketched in
Fig. 3(b).

In addition to the energy and momentum conservation prin-
ciples associated with the inelastic Bogoliubov quasiparticle
scattering, the coherence factors of both the superconducting
state and SDW state play a major role here.18,25 The sign
change of the superconducting order at the “hot spot” q, that is,
�k = −�k+q , is crucial for finding nonvanishing contributions
to the INS spectra. SDW order with a modulation vector
Q = (π,π ) provides an additional coherence factor which
leads to a gradual increase of intensity of the INS spectra
as q approaches Q.

In the hole-pocket region our calculation correctly repro-
duces the magnetic resonance peak at (ωh

res,Q) [magenta
arrows in Figs. 3(e)–3(g)] and both the downward and
upward dispersions of the “hourglass” pattern.18,25–27 Below
the resonance, the magnetic scattering of the Cooper pairs
also yields the maximum intensity in the bond direction
[see Fig. 3(c1)]. In the absence of the electron pocket, the
INS intensity maxima rotate by 45◦ towards the diagonal
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FIG. 3. (Color online) Magnetic resonance behavior in the electron pocket. (a) Schematic representation of the inelastic scattering process
of Bogolyubov quasiparticles on the electron pockets. The out-of-plane red and blue shadings along the energy axis give the superconducting
gaps with d-wave symmetry. The solid arrows of the same colors as in Fig. 1 represent the same scattering vectors, but here in the particle-hole
channel. The dashed lines of the same color are the same scattering channels but from the electron pocket to the hole pocket and vice versa. (b) The
scattering pattern expected at an energy corresponding to the electron pocket. (c) The computed INS spectrum in the hole-pocket region is shown
below the first resonance in (c1) and at the resonance in (c2). (d) The spectra at three energy cuts above the first resonance in the electron-pocket
region. (e) The INS data of YBCOy along the (100) direction at the same doping y = 6.6 at which quantum oscillation measurements predict
electron pockets. The magenta and gold arrows point to the two resonances coming from the hole pocket and electron pocket, respectively.
(f) Computed magnetic resonance spectra along the (100) direction and diagonal direction in momentum space, respectively. Solid and dashed
lines of different colors are guides to the eye for different scattering branches, coming from scattering between electron-electron pocket and
electron-hole pocket, respectively. The dots are the experimental data, extracted by tracing the peak positions in the constant energy cuts of
neutron spectra shown in (f1). (g) The momentum integrated resonance intensities are shown for integration along the (100) direction (cyan),
along the diagonal (gold), and the total (black). The computed results agree well with the experimental data for the same sample.

direction above the resonance energy, again consistent with
the hourglass phenomenology.

In the presence of the electron pocket, the INS pattern
exhibits several distinguishing characteristics which can be
separated from the usual hourglass pattern of the hole pocket:
(1) The intensity profile in the constant energy surface hosts
peaks both along the bond direction as well as along the
diagonal direction above the (π,π ) resonance [see Figs. 3(d1)–
3(d3)]. (2) An additional resonance energy ωe

res > ωh
res is

observed along the bond direction in Fig. 3(f1), and in the
integrated INS intensity in Fig. 3(g). The presence of two
resonances is also theoretically calculated for iron-pnictide
superconductors, although the the differences in the FS
topology and the pairing symmetry between these two classes
of superconductors make the details of the resonance spectra
look very different.30 (3) More resonance branches appear in
the INS spectra although weak in intensity in Figs. 3(f1) and
3(f2).

The experimental results of YBCO6.6 show clear evidence
for the second peak as shown in Figs. 3(e) and 3(g). The energy

scale of both the resonances are set by the SC gap amplitude
as ωres = 2|�0gk|, where gk = (cos kxa − cos kya)/2 is the
structure factor of the dx2−y2 -wave pairing. We have used
the ARPES value of SC gap magnitude �0 = 30 meV from
Refs. 29 and 31. The two energy scales are determined by the
position of the corresponding hot-spot momentum value on
the FS. The first resonance occurs at Q where the q3 vector
connects the bright spots at the tip of the hole pocket which
gives ωh = 40 meV. The second resonance occurs when q2
touches the Brillouin zone boundary which yields ωe

res = 55
meV. Note that in our calculation the two spin resonance
energies have a direct relation to the peaks in the QPI, shown
in Fig. 2(c), where the spin resonance peak occurs at twice the
energy of the peak in the QPI intensity.

IV. ANGLE-RESOLVED PHOTOEMISSION
SPECTROSCOPY

The same information on the presence of the electron pocket
can be directly obtained from ARPES. ARPES measures the
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(c)–(f) The experimental data of Fermi surface as a function of hole
dopings and material. The presence of the electron pocket in (d)–(f)
at the antinodal point can be identified by comparing the same with
(c) which hosts only a hole pocket. The data in (c) and (d) is obtained
from LSCO,32 while (e) is taken from Na-LSCO33 and (f) is for an
overdoped TBCO sample.34

single-particle spectral weight A(k,ω) = −ImG(k,ω)/π . In
Fig. 4 we provide some evidence for the presence of the
electron pockets in the ARPES data.

In the strongly underdoped cuprates where the pseudogap is
large, it gaps out the whole antinodal region above the magnetic
zone boundary. Thus electron pockets disappear from the FS
and only the hole pocket is present, as shown in Fig. 4(a). It is
interesting to notice that even in the theoretical spectra there
is a finite incoherent spectral weight present away from the
hole pocket which traces the underlying ungapped FS. This is
the effect of the imaginary part of the self-energy correction
which is calculated to be quasilinear in the low-energy region.
As a result, the residual spectral weight gradually decreases
from the nodal to the antinodal regions as the pseudogap grows
along the same direction but spreads over a larger energy and

momentum region. This result is consistent with experiment in
a deeply underdoped sample of LSCO as shown in Fig. 4(c).

Therefore, in order to identify the electron pocket at the
antinodal point, one needs to pay attention to the spectral
weight. In the near-optimal region close to the quantum critical
point, the electron pocket appears at the Fermi level, leading
to coherent spectral weight at the antinodal point as shown
in Fig. 4(b). Looking at the experimental data for dopings
x = 0.07–0.125 of LSCO in Figs. 4(d) and 4(e) and in an
overdoped sample of TBCO in Fig. 4(f), we see that both the
hole and the electron pockets are present in this doping range.
Especially the spectral weight maps of the FS in Figs. 4(d)
and 4(f) have peaks of comparable magnitude at both nodal
point and antinodal point, while it is suppressed in between
these two points. In the case of an ungapped full FS, the
spectral weight is expected to be coherent and similar at each
Fermi momentum, whereas as discussed above, when only a
hole pocket is present the spectral weight gradually decreases
from the nodal point to the antinodal point. Therefore, the
experimental results in Figs. 4(d)–4(f) convincingly establish
the presence of the electron pocket in the vicinity of optimal
doping for these two materials.

The procedure of inverting the QPI data to reconstruct
the single-particle FS is well known18 and following the
conventional procedure we find that the FS constructed from
the experimental data of QPI maps used in Fig. 2 lies
reasonably on top of the theoretical data. Note that the existing
experimental data have not yet been analyzed with the notion
to identify the electron pocket. Similarly, we extract the FS
from the INS data of YBCO shown in Fig. 3 and the result
agrees well with the picture of coexisting hole and electron
pockets as shown in Fig. 4(b).

Finally we comment on the difficulties of ARPES to observe
the electron pocket. As mentioned earlier, electron pockets are
expected near the quantum critical point of the pseudogap
at which the SC gap still survives. In this doping region a
typical phase diagram shows that the pseudogap transition
temperature T ∗ � Tc for most of the cuprates.31 Furthermore,
in the SC state, the electron pockets, being positioned at the
antinodal point, are fully gapped by d-wave superconductivity
and therefore ARPES cannot detect it. When temperature is
increased above Tc to close the SC gap, the small pseudogaps
are also nearly closed, so the hole pocket and electron pocket
disappears, and a full metallic FS forms. On the other hand,
quantum oscillations are performed in high-magnetic fields
at which superconductivity is suppressed, and the electron
pocket becomes exposed. Additional complications can arise
since ARPES and STM are sensitive to the surface states as
well as to so-called “matrix-element” effects, which could also
explain failure to see certain portions of the FS at particular
experimental conditions.

V. CONCLUSION

In conclusion we present the detailed spectroscopic analysis
of the electron pocket that will allow both single-particle
(ARPES) and two-particle spectroscopies (STM and INS) to
detect electron pockets that are posited to be present near
optimal doping. These simple qualitative features provide a
sharp contrast to simple hole pocket models and hence offer
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a direct test of their presence. The simplest model that has
electron pockets is the SDW state with coexisting hole pocket
order. Even with this simplified model we find significant
spectroscopic features that allow qualitative and quantitative
determination of the electron pockets in cuprates.
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APPENDIX A: SPIN-DENSITY WAVE MODEL FOR
ELECTRON- AND HOLE-POCKET FORMATION

We use the tight-binding parametrization of our first-
principles band structure of the antibonding band created by
hybridization between Cu dx2−y2 and O p orbitals as our start-
ing point. The FS reconstruction is modeled due to SDW which
coexists with the dx2−y2 -wave superconductivity.16 While we
choose a (π,π ) modulation of the SDW, the results are general
and are reproduced by charge density wave, d-density wave,
or flux phase as long as the modulation vector Q is the
same, as demonstrated earlier in Ref. 16. Furthermore, a two-
dimensional stripe model with incommensurate modulation
along the diagonal direction also predicts the coexistence of
electron and hole pockets in addition to other open FSs.2,5,15

Our obtained results of the QPI, neutron, and ARPES spectra
are equivalent and reproducible as long as an electron pocket
is present at (π,0)/(0,π ) points irrespective of its microscopic
origin.

The Hubbard-BCS Hamiltonian in momentum space is16

H =
∑
k,σ

ξkc
†
k,σ ck,σ + U

∑
k,k′

c
†
k+q,↑ck,↑c

†
k′−q,↓ck′,↓

+
∑

k

�kc
†
k,↑c

†
−k,↓, (A1)

where c
†
k,σ (ck,σ ) is the electronic creation (destruction) op-

erator with momentum k and spin σ = ±. ξk is the free
particle dispersion. U is the Hubbard onsite interaction term
chosen to be 0.86 eV. The value of U is much reduced
from its value at half-filling due to screening as calculated
earlier in Refs. 16 and 17. The SDW order parameter S =
〈∑k,σ σ c

†
k+q,σ ck,σ 〉 = 0.08 is treated within self-consistent

mean-field approximation. The BCS superconducting gap is
�k = �0[cos(kxa) − cos(kya)]/2, where �0 = 30 meV is the
experimental gap parameter for YBCO6.6 taken from ARPES
data.29,31

The corresponding single-particle 4 × 4 Green’s function
is constructed from Eq. (A1) which includes Umklapp
part from spin-density wave and anomalous term coming
from the SC gap.16 The QPI maps and noninteracting
susceptibility are calculated as convolutions of the Green’s
function B(q,ω) = ∑

k Im[G(k,ω)G(k + q,ω)]11 and
χ (q,ωp) = ∑

k,n G(k,iωn)G(k + q,iωn + ωp).

We calculate the self-energy due to all components of
fluctuations along the spin and charge degrees of freedom
within self-consistent GW approach17

	(k,σ,iωn) =
∑
q,σ ′

∫ ∞

0

dωp

2π
G(k + q,σ ′,iωn + ωp)

×�(k,q,ω,ωp)W (q,ωp). (A2)

W is the fluctuation potential obtained within random-phase
approximation (RPA) as 1/2ηU 2χ ′′

RPA, where χ ′′
RPA is the imag-

inary part of the RPA susceptibility of transverse spin (η = 2),
longitudinal spin (η = 1), and charge (η = 1) correlations
functions. Finally, the vertex correction is approximated within
Ward’s identity as � = (1 − ∂	′/∂ω)0. The calculation is per-
formed in real frequency space using analytical continuation
iωn → ω + iδ.

Figure 5 schematically demonstrates the evolution of the
electron pocket as a function of doping in hole doped cuprates.
At half-filling, strong SDW order opens up an insulating gap
as shown in Fig. 5(b). Doping reduces the strength of the
pseudgap interaction [see Fig. 5(a)]. With hole doping, the
doped holes accumulate at the top of the lower SDW band [red
line in Fig. 5(c)], which give rise to a hole pocket at the nodal
point as shown in Fig. 5(e). Near optimal doping where the
pseudogap is very small, the bottom of the upper SDW band
drops below the Fermi level around k = (±π/a,0)/(0, ± π/a)
in Fig. 5(d). Thus an electron pocket appears as shown in
Fig. 5(f). In this doping range the pseudogap opening shifts
its location to the hot-spot region between the hole pocket
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FIG. 5. (Color online) Schematic evolution of hole pocket to
electron + hole pocket. (a) Schematic phase diagram of hole
doped cuprates. The detail of the relative doping dependence of
the pseudogap and the superconducting gap is material specific. (b)
SDW induced dispersion at half-filling. (b) and (c) The dispersions
at finite dopings which lead to Fermi surfaces given in (e) and (f),
respectively. (b) Hole pocket Fermi surface in underdoped cuprates.
(c) Hole + electron pockets which constitute the Fermi surface near
optimal doping.
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and electron pocket. It should be noted that the magnitude of
the pseudogap can be so small in this region that it may be
overlooked due to the large superconducting gap for materials
like Bi2212 or YBCO. With sufficiently large magnetic field
when the superconducting gap is suppressed, the electron
pocket becomes visible in quantum oscillation or Hall-effect
probes.

1. QPI calculation

STM measures local density of states which is Fourier
transformed into momentum space to obtain QPI maps. The
local density of states in response to a local scalar scattering
potential is defined as

ρ(r,r,ω) =
∑

r1

Im[G(r,r1,ω)V (r1)G(r1,r,ω)]

=
∑
k,k′

Im[G(k,ω)G(k′,ω)

×
∑

r1

eik·(r−r1)V (r1)eik′ ·(r1−r)]

=
∑
k,q

Im[G(k,ω)G(k + q,ω)eiq·rV (q)]

=
∑
k,q

V (q){Im[G(k,ω)G(k + q,ω)] cos (q · r)

+ Re[G(k,ω)G(k + q,ω)] sin (q · r)}. (A3)

Here q = k − k′. In the case of an onsite potential, V (q) = V .
Finally, we take the Fourier transformation of the local density
of states to obtain

B(q,ω) =
∑

r

eiq·rρ(r,ω)

= V
∑

r

[cos (q · r) + i sin(q · r)]

×
∑
k,q′

{Im[G(k,ω)G(k + q′,ω)] cos(q′ · r)

+Re[G(k,ω)G(k + q′,ω)] sin(q′ · r)}
≈ V

∑
k

{Im[G(k,ω)G(k + q,ω)]

+ iRe[G(k,ω)G(k + q,ω)]}. (A4)
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In the above equation we have incorporated the local field ap-
proximation which implies

∑
r,q′ cos(q · r) cos(q′ · r) = δq,q′

and
∑

r,q′ cos(q · r) sin(q′ · r) = 0. The summation is carried
out over the entire reciprocal space, but relaxing the Umklapp
scattering condition to mimic the experimental procedure.35

APPENDIX B: COMPARING QPI MAPS FOR
PARAMAGNETIC STATE WITH THE ONLY-HOLE

POCKET AND HOLE + ELECTRON POCKET STATES

In Fig. 6 we compare the evolution of the QPI patterns
in the case of a paramagnetic ground state, hole pocket, and
coexisting electron + hole pockets. As mentioned in the main
text, there are several distinguishing features to unambiguously
identify the electron pocket that will show up collectively in
the dispersion, intensity, and constant energy profile of the
QPI pattern. (1) In a paramagnetic state, all QPI vectors show
continuous energy dependence with no kink or nondispersive
pattern. For the case of a hole pocket without any electron

pocket on the FS, all the dispersion features stop at the energy
where the bright spots reach to the top of the dispersion. No
new QPI vector appears above this energy and along the (100)
direction, the QPI vectors do not extend to (2π,0), while along
the diagonal it does not cross the (π,π ) boundary. On the other
hand, in the case of coexisting electron and hole pockets, both
these features should be present. (2) The associated intensity
of all QPI vectors also reflects the presence of an electron
pocket. In a hole pocket a peak in the intensity occurs at the tip
of the hole pocket, which is less than the SC gap amplitude.
The peak extends to the SC gap amplitude in the case of a
paramagnetic ground state. For the electron and hole pocket,
both peaks will be present and can be used to identify the
presence of an electron pocket. (3) Finally, the constant energy
cuts of the QPI pattern can help distinguish the electron pocket
from a hole pocket, but the former cannot be separated from a
paramagnetic ground state. As discussed in point (1) above, if
q3 > (π,π ) as well as q5 = (2π,π ) at some energy, that will be
an unambiguous signature of the presence of an antinodal FS.
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