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Three distinct types of quantum phase transitions in a (2 + 1)-dimensional
array of dissipative Josephson junctions
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We have performed large-scale Monte Carlo simulations on a model describing a (2 + 1)-dimensional array of
dissipative Josephson junctions. We find three distinct stable quantum phases of the system. The most ordered
state features long-range spatial ordering in the phase θ of the superconducting order parameter, but temporal
ordering only in spatial gradients �θ , not in θ . Significantly, the most ordered state therefore does not have
three-dimensional (3D) XY ordering. Rather, it features two-dimensional (2D) spin waves coexisting with
temporally disordered phases θ . There is also an intermediate phase featuring quasi-long-range spatial order in
θ coexisting with a gas of instantons in �θ . We briefly discuss possible experimental signatures of such a state,
which may be viewed as a local metal and a global superconductor. The most disordered state has phase disorder
in all spatio-temporal directions, and may be characterized as a gas of proliferated vortices coexisting with a gas
of �θ instantons. The phase transitions between these phases are discussed. The transition from the most ordered
state to the intermediate state is driven by proliferation of instantons in �θ . The transition from the intermediate
state to the most disordered state is driven by the proliferation of spatial point vortices in the background of
a proliferated �θ -instanton gas, and constitutes a Berezinskii-Kosterlitz-Thouless phase transition. The model
also features a direct phase transition from the most ordered state to the most disordered state, and this transition
is neither in the 2D XY nor in the 3D XY universality class. It comes about via a simultaneous proliferation
of point vortices in two spatial dimensions and �θ instantons, with a complicated interplay between them. The
results are compared to, and differ in a fundamental way from, the results that are found in dissipative quantum
rotor systems. The difference originates with the difference in the values that the fundamental degrees of freedom
can take in the latter systems compared to dissipative Josephson junction arrays.
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I. INTRODUCTION

In general, dissipation suppresses quantum fluctuations
and may support states of spontaneously broken symmetry.
A remarkable consequence of this is the dissipation-driven
quantum phase transition in a single resistively shunted
Josephson junction in which the phase difference is localized in
a minimum of the periodic Josephson potential.1 In the param-
eter space of Josephson coupling and dissipation strength, this
corresponds physically to a phase diagram with one metallic
phase and one superconducting phase. While the behavior of
a single dissipative Josephson junction is theoretically well
understood, the picture is less complete for spatially extended
systems. Other than the fully disordered phase and the fully
ordered phase expected from the single-junction system, the
phase diagram of arrays of dissipative Josephson junctions
is conjectured to host additional phases in both one2–7 and
two2,8,9 dimensions. These new, exotic phases can broadly be
characterized by having various combinations of global and/or
local phase fluctuations or order.

Most of the analytical works on similar models have been
based on mean-field analyses or perturbative renormalization
group arguments. Since these approaches are valid in a
limited region of the parameter space, in particular regions
far away from phase transitions, a nonperturbative approach
is of importance. Previous numerical work on models of
dissipative Josephson junctions has mostly focused on lower-
dimensional systems. The first Monte Carlo simulation of
a single dissipative Josephson junction was presented in
Ref. 10, where a fluctuation measure of the imaginary-time
path of the phase difference was introduced to characterize

the localization transition. Improved and extended results for
the same model were later reported in Ref. 11. For one spatial
dimension, Ref. 12 reported four physically distinct phases
for a dissipative Josephson junction chain. This simulation
was performed on a dual model and not directly on the
phase degrees of freedom. A model for a (2 + 1)-dimensional
[(2 + 1)D] dissipative Josephson junction array (JJA) has
been treated numerically by Ref. 13. In essence, their results
support the simplest scenario for a zero-temperature phase
diagram,14,15 with one phase with and another without spatio-
temporal order. This is also what was found in a large-scale
Monte Carlo simulation on the dissipative (2 + 1)D XY

quantum rotor model.16

Finally, our investigations are also motivated by a rather
different physical system which can be described by a closely
related model. In Ref. 17, a quantum XY model with bond
dissipation in two spatial dimensions was used to describe
quantum critical fluctuations in cuprate high-Tc superconduc-
tors. The principal result of analytical work on this model is
that the dissipation-driven quantum critical point is local, in
the sense that the fluctuation spectrum is frequency dependent
but momentum independent.17 Although the physical system
we have in mind primarily is that of a Josephson junction array,
we return to a discussion of the possibilities of local quantum
criticality later in the paper.18

The purpose of this paper is to numerically investigate the
phase diagram of a specific model of a (2 + 1)-dimensional
dissipative Josephson junction array. We pay special attention
to the manifest anisotropy that exists between the spatial
and temporal dimensions. To be specific, the fluctuations of
the quantum paths of the phase gradients will be explicitly
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characterized in terms of roughening transitions, allowing us
to consider the (temporal) localization transition separately
from the onset of (spatial) phase coherence. In particular, we
will identify a partially superconducting phase with spatial, but
no temporal phase coherence. This corresponds to a dissipative
JJA which may sustain a nonzero Josephson current, but where
one nonetheless has voltage fluctuations over each junction.
We investigate two phase transitions where the spatio-temporal
aspects are well separated and can be characterized in terms of
either a spatial vortex-antivortex unbinding, or proliferation of
instantonlike defects. We also discuss a direct quantum phase
transition from an ordered state to a disordered state involving
simultaneous disordering in space and imaginary time. This
corresponds to a quantum phase transition on a dissipative
JJA where one transitions from a state sustaining a Josephson
current and allowing no voltage fluctuations to a normal state,
but via an unusual quantum phase transition that is neither in
the two-dimensional (2D) XY nor three-dimensional (3D) XY

universality class.

A. Model

An array of Josephson junctions consists of superconduct-
ing islands arranged in a regular network. Separating the
islands are tunnel junctions in which Cooper pairs are able
to tunnel from one superconducting grain to the neighboring
grain. The fundamental degrees of freedom are the phases of
the superconducting order parameters residing on the grains.
A classical two-dimensional JJA is described by the 2D XY

model,

H = −K
∑
〈x,x′〉

cos(θx − θx′ ), (1)

where the summation goes over nearest neighboring sites on a
square lattice. θx is the phase of the complex order parameter
of the superconducting grain at position x. Although the U (1)
symmetry of the phase variables cannot be spontaneously
broken in two dimensions at any nonzero temperature (implicit
in the classical description), the system nevertheless undergoes
a Berezinskii-Kosterlitz-Thouless (BKT) transition in which
it develops quasi-long-range order (QLRO) with power-law-
decaying correlation functions in the low-temperature regime.
The low-temperature phase corresponds to a dipole phase
where the vortices and antivortices of the phase field are bound
in pairs. At the transition the vortices proliferate and destroy
the QLRO. For a given phase configuration, a single vortex
is identified on a plaquette by a nontrivial line integral of the
phase difference around the plaquette, taking the compactness
of the phase field into account.

The quantum generalized version of the model includes two
additional terms describing quantum fluctuations in imaginary
time τ . The action reads3,12,13,15,17,19,20

S = 1

2EC

∑
x

∫ β

0
dτ

(
∂θx,τ

∂τ

)2

− K
∑
〈x,x′〉

∫ β

0
dτ cos(�θx,x′,τ )

+ α

2

∑
〈x,x′〉

∫ β

0

∫ β

0
dτdτ ′

(
π

β

)2 (�θx,x′,τ − �θx,x′,τ ′)2

sin2
(

π
β
|τ − τ ′|) ,

(2)

where we have defined the lattice gradient �θx,x′,τ = θx,τ −
θx′,τ . The first term describes the self-capacitance of a single
island; the second term is the familiar Josephson interaction,
coupling each superconducting island to the nearest neighbors
by a periodic potential. The last term describes the Ohmic
dissipation as modeled by a bath of harmonic oscillators
coupling to the bond variables.21

A subtle consequence of the presence of this Ohmic shunt
mechanism is that the phase variables become noncompact,22

as the dissipation term in Eq. (2) breaks the 2π periodicity
of the Josephson potential. Thus, the phases are no longer
defined with compact support θ ∈ [−π,π〉, as they would
be in the nondissipative case or in a (2 + 1)D dissipative
quantum rotor model. Instead, we have θ ∈ 〈−∞,∞〉. The
impact of this decompactification on the problem is enormous.
It reflects that a sudden increase along imaginary time in
the phase difference (e.g., �θx,x′,τ → �θx,x′,τ + 2π ) would
produce a voltage imbalance over the barrier. A dissipative,
measurable current would then flow through the shunting
resistors until the imbalance is relaxed. Hence, the variables
cannot be defined modulo 2π , since �θx,x′,τ and �θx,x′,τ + 2π

represent distinguishable states. The noncompactness of the
variables implies that we may no longer identify vortices
in the same manner as described above, as a line integral
around a plaquette always yields zero for a noncompact phase
field. In Appendix A, we introduce a reformulation of the
phase variables in terms of a compact part and an additional
field describing the tunneling between wells in the extended
Josephson potential. This enables us to identify vortices in
the compact part of the phase. The phase transitions involving
spatial ordering may therefore still be described by vortex
proliferation even though the variables are of a noncompact
nature.

As a description of a dissipative JJA, there are a few sim-
plifications built into the action (2). We have only considered
the effect of self-capacitance and neglected mutual capacitive
coupling with neighboring grains. Also, the dissipation term
only accounts for one source of dissipation, namely the flow
of normal electrons through the shunting resistors. Additional
dissipative effects like quasiparticle tunneling22 and Cooper
pair relaxation4,23 have been neglected.

In order to study the behavior of a two-dimensional array
of Josephson junctions at zero temperature under the influence
of Ohmic dissipation, we perform large-scale Monte Carlo
simulations on a discretized version of Eq. (2),

S = Kτ

2

N∑
x

Nτ∑
τ

(θx,τ+1 − θx,τ )2

−K
∑
〈x,x′〉

Nτ∑
τ

cos(�θx,x′,τ )

+ α

2

∑
〈x,x′〉

Nτ∑
τ �=τ ′

(
π

Nτ

)2 (�θx,x′,τ − �θx,x′,τ ′)2

sin2
(

π
Nτ

|τ − τ ′|) . (3)

Here, Kτ = 1/EC�τ and the spatial coupling has been
renamed K�τ → K . Our goal is to investigate the behavior of
the system in the K-α-space, Kτ therefore defines the energy
scale and will be kept at suitable values in the simulations.
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The phase variables are defined on the vertices of a three-
dimensional cubic grid. The spatial linear extent of the grid is
given by N , and the number of Trotter slices used to discretize
the temporal direction is given by Nτ . Thus, �τ = β/Nτ , and
the size of the space-time lattice is N × N × Nτ . Periodic
boundary conditions in imaginary time are implicit from the
path integral construction, and are also applied in the spatial
directions in the standard manner. The noncompactness of the
variables also dictates the form of the kinetic term. Because
θ is an extended variable, its derivative must be expressed by
discretized differentiation. We refer to the appendix of Ref. 24
for details.

B. Outline and overview of main results

For outlining the road map to this paper, the phase diagram
of the system is helpful. This is illustrated schematically in
Fig. 1. In all regions of the phase diagram, the phases θ are
disordered in the imaginary-time direction.

In Sec. II, we introduce the various observables used to
identify the phases and phase transitions of the model defined
in Eq. (3). In Sec. III, the details of the Monte Carlo simulations
are presented in a concise form.

In Sec. IV, we take a large value of the Josephson
coupling K and investigate the behavior of the system as
it crosses from the CSC phase to the FSC phase in Fig. 1
upon increasing α. There is a phase transition at a critical
dissipation strength, α(2)

c , above which the system is fully
bond-ordered superconducting (FSC). For α < α(2)

c the system
features unbounded temporal fluctuations, while at the same
time featuring spatial phase coherence. Due to algebraically

Local?

α
(2)
c

α
(1)
c

CSC

FSC

NOR

α

K

0.040.030.020.010

2

1.5

1

0.5

0

FIG. 1. (Color online) A schematic phase diagram of the system
defined by Eq. (3), based on the Monte Carlo calculations presented
below. Here, we have used the value Kτ = 0.002, corresponding to
the parameters in Sec. IV. NOR refers to the normal phase, where
vortices are proliferated and the bonds �θ are disordered in the τ

direction. CSC refers to the critical superconducting state, where the θ

variables feature power-law correlations in space, while �θ remains
disordered. FSC refers to the fully bond-ordered superconducting
state, which features an additional ordering compared to the CSC
phase, namely �θ ordering in the imaginary-time direction. A
hypothetical fourth, local phase has not been observed in our
simulations, as indicated by the box in the lower right corner. See
text in Sec. I B for more details.

decaying spatial correlations in this regime, we will refer to
the phase as critical superconducting (CSC). In other words,
the phase configurations of the system rotate more or less
as a “rigid body” in time, thus at the same time giving rise
to a finite superfluid density (helicity modulus) as well as
voltage fluctuations across the junctions. A detection of the
CSC phase thus requires simultaneous measurements of the
superfluid density of the system, as well as ac measurements
of voltages across junctions.

In Sec. V, we consider the transition between the NOR
phase and the CSC phase, and this is found to be a purely
spatial phase transition of the BKT type.

In Sec. VI, we investigate the response of the system
to increasing dissipation at low and intermediate Josephson
couplings, as it crosses from the NOR phase to the FSC phase
in Fig. 1. This is the most difficult case to analyze, as the system
transitions from a spatio-temporally disordered phase directly
to the spatio-temporally ordered state FSC upon crossing the
critical line α(1)

c .
In Sec. VII, the topological defects driving the various phase

transitions as well as how such a model may exhibit local
quantum criticality (LQC), are discussed. This may be briefly
summarized as follows.

On the line separating CSC from NOR, and on the line
separating CSC from FSC, the spatial and temporal aspects
of the phase transitions can be considered separately. The
CSC-NOR transition is driven by point vortices and is in
the 2D XY universality class. The FSC-CSC transition is
driven by instantons in �θ and may be characterized as a
roughening transition in the space of �θ . On the critical line
α(1)

c , there is a complicated interplay between temporal and
spatial fluctuations. This critical line is neither in the 2D XY

nor in the 3D XY universality class.
An additional fourth phase could conceivably have been

present in the phase diagram, featuring temporal order and
unbound vortices. The most likely position in the phase
diagram for such a hypothetical phase would be at weak
Josephson coupling and strong dissipation strength. This is
shown by the dotted lines within the box in the lower right
corner of Fig. 1. The local transition line would involve
ordering of temporal fluctuations without onset of spatial phase
coherence, and as such would describe a local quantum critical
point. Our simulations, however, show no sign of such behavior
in the parameter range we have considered.

The limit α = 0 is in principle ill defined in this model since
a finite dissipation is essential for the decompactification of the
variables. This is indicated by drawing the α = 0 axis as a red
dotted line in Fig. 1. Thus, the value α = 0 is also a singular
endpoint of the horizontal (red) line in the phase diagram, and
this is indicated by terminating this line in an arrow.

In Appendix A, we provide some more details and discus-
sion on the fundamental implications of the noncompactness
of the phase field. In Appendix B, we take a closer look at the
NOR phase and investigate the description of Refs. 25, 19 of
such a normal phase as a so-called floating phase.

II. OBSERVABLES

In order to describe the various phases and transitions
introduced in the previous section, several quantities will be
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calculated. To monitor the degree of (spatial) superconducting
order, we calculate the spatial helicity modulus, or phase
stiffness. This quantity measures the increase in the free
energy when applying an infinitesimal twist across the system,
θx → θx − δ · x. It probes the degree of phase coherence in the
system and thus its ability to sustain a supercurrent. The only
term in the action that contributes to the helicity modulus is
the Josephson interaction term. Hence, the helicity modulus
ϒx is given by

ϒx = 1

N2Nτ

〈∑
〈x,x′〉

Nτ∑
τ

cos(�θx,x′,τ )

〉

− K

N2Nτ

〈( ∑
〈x,x′〉

Nτ∑
τ

sin(�θx,x′,τ )

)2〉
. (4)

Here, the brackets indicate ensemble averaging. In the context
of the classical 2D XY model, ϒx = 0 defines the disordered
state where vortices are proliferated. In the same manner, ϒx �=
0 signals the finite rigidity of the quasiordered state.

The same XY models used to describe superconducting
systems also describe magnetic systems of planar spins, and
the superconducting phase θ can formally be associated with
the direction of the XY spins. Conventionally, the order of
a superconducting system is therefore often described by a
magnetization order parameter,

m = 1

N2Nτ

∑
x,τ

eiθx,τ , (5)

which probes the uniformity of the spin direction across the
entire (2 + 1)-dimensional volume of the system.

It should be noted that these two order parameters are
periodic and consequently insensitive to tunneling events
where the phase difference on a single junction jumps to a
neighboring potential well, �θ → �θ + 2π . Consequently,
ϒx and m do not probe the dissipation-induced localization
per se. In order to quantify this, we calculate the mean square
displacement (MSD) of the bond variable �θ along imaginary
time,

W 2
�θ (Nτ ) = 1

Nτ

〈
Nτ∑
τ

(�θτ − �θ )2

〉
. (6)

Here, we have defined �θ = 1/Nτ

∑
τ �θτ . The MSD is often

used in the context of stochastically growing interfaces or
diffusion processes, and it is natural to adopt some concepts
from these areas for our problem. For instance, the degree to
which the imaginary-time history of �θ may be regarded as
“rough” can be quantified by the scaling characteristics of the
MSD with the length Nτ of the “interface.” Normally, one finds

W 2
�θ ∝ N2H

τ , (7)

if the imaginary-time history of �θ describes self-affine
configurations. H = 1/2 corresponds to a Markovian random
walk, and such linear scaling of the MSD is also referred
to as normal diffusion. A deviation from linear growth of
W 2

�θ as a function of Nτ is the hallmark of anomalous
diffusion.26 In particular, H < 1/2 is referred to as subdiffusive
behavior. A smooth interface is characterized by the MSD
being independent of the system length.

To describe the phases and phase transitions, we will also
investigate correlations of the order parameter field considered
in Eq. (5). We define the spatial and temporal correlation
function by

Gθ (μ; q) = 〈eiq(θμ−θ0)〉, (8)

where μ ∈ {x,τ }. The extra factor q in the exponent is
introduced for later reference in Appendix B, but will be set to
the conventional value q = 1 otherwise. In Appendix B we will
also consider bond correlations, defined here for convenience
as

G�θ (μ; q) = 〈eiq(�θμ−�θ0)〉. (9)

For completeness we also present the susceptibility of the
action,

χS = 1

N2Nτ

〈(S − 〈S〉)2〉, (10)

as an additional means of locating the expected dissipation-
induced phase transitions. This is the quantum mechanical
equivalent of the classical heat capacity and is expected to
present a nonanalyticity at a critical point.

III. DETAILS OF THE MONTE CARLO CALCULATIONS

Considerable progress has been made in constructing
new, effective, nonlocal algorithms for long-range-interacting
systems with extended variables.11,27,28 However, these algo-
rithms are presently restricted to (0 + 1)D systems, and do
not seem to generalize easily to N > 1.27 In the Monte Carlo
simulations, we have therefore combined local updates with a
parallel tempering algorithm29,30 in which several systems are
simulated simultaneously at different coupling strengths.

A Monte Carlo sweep corresponds to proposing a local
update by the Metropolis-Hastings algorithm sequentially for
every grid point in the system. The proposed new phases are
generated by first randomly choosing to increase or decrease
the value, then propagating the value by a random increment of
size 2πn/32, where n ∈ {1,32}. In other words, the continuous
symmetry of the variables is emulated by 32 discrete states per
2π interval. We have confirmed that adding additional states
will not change the results.

After a fixed number of Monte Carlo sweeps a parallel
tempering move is made. In this move, a swap of configurations
between two neighboring coupling values is proposed, and the
swap is accepted with probability �PT given by

�PT =
{

1 if � < 0,

e−� if � � 0.
(11)

Here, � = κ ′(S̄[X; κ ′] − S̄[X′; κ ′]) − κ(S̄[X; κ] − S̄[X′; κ]),
where κ is the coupling value varied, representing in our case
α or K , and X represents the phase configuration. S̄ indicates
the part of the action conjugate to the coupling parameter κ .
Both the Metropolis updates and the parallel tempering swaps
are ergodic and respect detailed balance.

All Monte Carlo simulations were initiated with a random
configuration. Depending on system size, various numbers of
sweeps were performed for each coupling value. Error bars
are provided for all observables except correlation functions,
but are usually smaller than the data points. Measurements on
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which we perform scaling have, broadly speaking, a relative
error well below 1%. The MERSENNE TWISTER31 random
number generator was used in all simulations and the random
number generator on each CPU was independently seeded. It
was confirmed that other random number generators yielded
consistent results. In some simulations we also made use
of the Ferrenberg-Swendsen reweighting technique,32 which
enables us to continuously vary the coupling parameter after
the simulations have been performed.

In order to identify sharply defined nonanalyticities and
observe converged scaling of W 2

�θ at the dissipation-induced
phase transitions, relatively large values of Nτ are needed.
This limits the range of spatial sizes accessible in simulations
with a single-site update algorithm. In the sections where we
focus on the temporal scaling, we have fixed the spatial size
at N = 20 and varied the temporal size in the range Nτ = 50
to Nτ = 350. In Sec. V we find that in the CSC phase the
temporal size of the system is irrelevant in determining the
spatial properties of the system. Consequently, the temporal
size is fixed at Nτ = 20 and the spatial size is varied in the range
N = 10 to N = 100. To investigate the spatial correlations in θ

across the NOR-FSC phase transition, we have also performed
simulations on a Nτ = 30 system with N = 50 and N = 100.

IV. THE CSC-FSC TRANSITION α(2)
c

In this section, we consider the behavior of the system
under the influence of strong Josephson coupling K [i.e., for
a value of K where the corresponding classical system would
be topologically ordered even in the absence of dissipation
(above the horizontal line in the phase diagram of Fig. 1)]. The
coupling parameter will be fixed at K = 1.5 in this section,
while the dissipation strength α is varied. We will use a
quantum coupling Kτ = 0.002. The main focus is on scaling
of observables describing temporal fluctuations. Hence, the
spatial system size is fixed at N = 20.

We start by presenting typical configurations of the bond
variable �θ as a function of τ . At strong coupling, the
bond variables are located predominantly in the vicinity
of the potential minima located at 2πn, where n is an
integer. Due to the noncompact nature of the variables, �θ

are free to tunnel between neighboring minima at weak
dissipation. When considering the single-junction problem,
this sudden tunneling of the bond variable from one Trotter
slice to the next, �θτ+1 − �θτ ≈ 2πnI, is often referred to
as instanton or anti-instanton configurations, depending on
the sign of the integer-valued “instanton charge,” nI. Note
that the noncompactness allows for tunneling of �θ also
between minima of the potential located further away than
nearest neighbor. This corresponds to instanton charges with
values larger than unity. The tunneling behavior is easily
identified in the topmost curve in Fig. 2, where frequent
instantons and anti-instantons are apparent. In this temporally
disordered state, the quantum paths of �θ appear to be well
described in terms of a gas of proliferated instantons. Beyond
a threshold value of α, we observe a localization of �θ in one
of the minima of the Josephson potential. The imaginary-time
history of a bond variable corresponding to this phase forms
an essentially smooth surface and is given in the lower curve in
Fig. 2. However, even though the phase gradients are localized,

τ

Δ
θ/

2π

200180160140120100806040200

8

7

6

5

4

3

2

1

0

-1

FIG. 2. The bond variable �θ as a function of imaginary time
τ for two different values of dissipation strength, α = 0.0102 and
α = 0.0281, in the strong Josephson coupling regime. In the topmost
curve, the bond variable clearly spends most of the time in the
vicinity of the potential minima, although tunneling events between
minima are frequent. The lowermost curve corresponds to the fully
bond-ordered superconducting state where �θ is localized and W 2

�θ

does not scale with Nτ . Note that in the CSC phase (topmost curve)
the quantum paths of �θ are well described in terms of instantons
where the fluctuations in imaginary time are mostly given by integer
multiples of 2π , in contrast to the situation for the corresponding
quantum paths of �θ in the NOR phase; see Fig. 8.

closely bound pairs of instantons and anti-instantons may still
be present.

In Fig. 3, we show the mean square displacement as a
function of dissipation strength. The temporal bond fluctua-
tions are clearly suppressed for increasing values of α. The
different curves represent different values of Nτ . Two regions
of different scaling behavior of W 2

�θ as a function of Nτ

can immediately be discerned. For weak dissipation, W 2
�θ

increases with Nτ , while W 2
�θ is independent of the temporal

size at strong dissipation. Separating the two regions is a

α

W
2 Δ

θ

0.020.0160.012
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W
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FIG. 3. (Color online) W 2
�θ , Eq. (6), as a function of dissipation

strength for a system with Kτ = 0.002, K = 1.5, N = 20, and various
values of Nτ . Note the kink in the curves at α = α(2)

c and the saturation
of W 2

�θ at a finite value for α > α(2)
c . Error bars are smaller than the

data points. (Inset) A blow-up of the region around α(2)
c .

224531-5



STIANSEN, SPERSTAD, AND SUDBØ PHYSICAL REVIEW B 85, 224531 (2012)

α = 0.0281
α = 0.0128
α = 0.0102
α = 0.0068
α = 0.0051
α = 0.0026
α = 0.0017

lnNτ

W
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65.554.543.5
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FIG. 4. W 2
�θ as a function of ln Nτ for various values of the

dissipation strength α ranging from the weak-dissipation limit to
the ordered state at the top and bottom, respectively. The dotted lines
indicate the logarithmic growth of W 2

�θ . Error bars are much smaller
than the data points.

precipitous drop in W 2
�θ at a value of α that we will identify

as the localization transition point α(2)
c .

Further information on the delocalized phase (CSC) can
be found from investigating the dependence of W 2

�θ on the
temporal system size Nτ . Here, the MSD scales with Nτ

according to

W 2
�θ = a(α) ln Nτ , (12)

where a(α) is a continuously varying proportionality constant.
In Fig. 4 we have plotted W 2

�θ as a function of ln Nτ for
various dissipation strengths. All but the lowest curve represent
dissipation strengths well below α(2)

c . A clear logarithmic
dependence is seen for all values of dissipation strength in the
CSC phase. The lowest curve with zero slope corresponds to
α > α(2)

c , where temporal fluctuations are effectively quenched
and W 2

�θ does not scale with Nτ . In this way the increase of
temporal fluctuations in �θτ as α is lowered may also be
interpreted as a roughening transition at which the profile
described by �θ changes from smooth to rough. However,
it should be noted that the logarithmic scaling presented in
Fig. 4 does not conform to the scaling ansatz (7) for a self-affine
interface. Instead, �θ is anomalously diffusive in the sense that
H = 0. This is sometimes referred to as superslow diffusion.33

In comparison, Ref. 10 found that for the corresponding normal
phase of a single resistively shunted Josephson junction, the
MSD follows the power law (7) with the exponent decreasing
continuously with dissipation strength (from H = 1/2 for
α � 0 to H ≈ 0 for α = αc).

As we show in Fig. 5, W�θ as well as the action
susceptibility χS and the helicity modulus ϒx all feature
nonanalytic behavior at the critical value α(2)

c . Figure 5
therefore supports the notion that the transition at α(2)

c is indeed
a genuine dissipation-induced quantum phase transition. Since
we have shown that the system for α > α(2)

c has both spatial
phase coherence and temporal localization of �θ , we can
identify this region as a fully bond-ordered superconducting
(FSC) phase. However, ϒx > 0 even for α < α(2)

c , indicating
that also the weak-dissipation CSC phase features spatial
phase coherence. The kink in the helicity modulus shown
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FIG. 5. (Color online) The spatial helicity modulus ϒx , Eq. (4),
action susceptibility χS , Eq. (10), and mean fluctuation W�θ , Eq. (6),
as a function of dissipation strength α for a system in the strong
Josephson-coupling regime with Kτ = 0.002, K = 1.5, N = 20,
and Nτ = 250. (Inset) A blow-up of the helicity modulus around
the α(2)

c transition. For α > α(2)
c , the dissipation renormalizes the

spatial coupling strength so that a kink in ϒx is visible at the
localization transition. However, this renormalization is miniscule.
Proliferation of instantons across the line α(2)

c in Fig. 1 does not
trigger a proliferation of vortices.

in the inset in Fig. 5 may be attributed to the (slightly)
reduced spatial rigidity as the bond variables delocalize in
imaginary time when leaving the FSC phase. An important
conclusion to be drawn from this is that in the regime of strong
Josephson coupling, proliferation of instantons does not trigger
a proliferation of vortices at α(2)

c in Fig. 1.
A possible physical interpretation of the behavior at strong

Josephson coupling and weak dissipation is a phase where
there are fluctuations of voltage (and thus also of normal
currents through the shunts) even though a finite superfluid
density allows the system as a whole to sustain an unimpeded
supercurrent. For reasons that will be apparent in the next
section, we have chosen to refer to this state as a critical
superconducting (CSC) phase. Similar conclusions have been
made earlier for (1 + 1)D systems (e.g., in Refs. 4, 7,
and 12), where the authors claimed to have found an additional
superconducting state characterized by spatial coherence but
large local fluctuations. An experimental signature of the
FSC-CSC phase transition would be to measure an abrupt
increase in voltage fluctuations across each junction while the
system maintains a Josephson current across the system as
the dissipation strength is reduced. The phase CSC therefore
represents a locally metallic (on each junction) and globally
superconducting (throughout the system) state.

V. THE NOR-CSC TRANSITION

We next consider the phase transition separating the CSC
phase from the fully disordered state NOR. First, we note that
the region at weak dissipation and low Josephson coupling
in the phase diagram of Fig. 1 is spatially phase incoherent,
ϒx = 0. This is therefore identified as the normal, metallic
phase (NOR) of the dissipative JJA. To verify that the CSC state
identified in the previous section by its finite spatial coherence
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FIG. 6. (Color online) The spatial correlation functions
Gθ (x; q = 1), Eq. (8), calculated for α = 0.005, Kτ = 0.002, Nτ =
20, and for two values of the Josephson coupling and two values of the
spatial extent N . Both coupling values correspond to the CSC phase.
The dotted lines show the power-law fit of the correlation functions.

is a distinct phase, we next show that it is separated from
the NOR phase by a genuine phase transition and not just a
crossover caused by the limited spatial extent of the systems.

In Fig. 6, we show algebraically decaying correlation
functions in the spatial direction in the CSC phase, indicating
QLRO within each Trotter slice. In combination with the
observation of vanishing order in the temporal direction (as
measured by W 2

�θ ), this motivates an interpretation of the
CSC phase as a dimensionally reduced critical phase in which
the Trotter slices are decoupled from each other. We verified
that varying Nτ had no impact on the results for any of the
observables probing spatial behavior. Thus, the extent of the
systems is fixed at Nτ = 20 in the following.

We anticipate the phase transition separating the NOR phase
from the CSC phase to be in the BKT universality class. At
the transition point, the helicity modulus is expected to scale
according to the finite-size scaling function34

ϒx(N ) = ϒx(∞)

(
1 + 1

2

1

ln N + C

)
, (13)

where ϒx(∞) is the value of the helicity modulus as N → ∞
and C is an undetermined constant. The critical value Kc may
be extracted by varying K until an optimal fit is achieved. In
addition, at a BKT transition, the value of ϒx(∞) obtained at
optimal fit should satisfy the universal relation ϒx(∞)Kc =
2/π .

By treating both parameters as variables in the fitting
procedure, no a priori assumption on the value of the jump is
made. This value may consequently be used as an additional
check on the validity of the conjecture of identifying the
transition as a BKT transition.

In Fig. 7 we present ϒx for various spatial system sizes and
the corresponding fit with Eq. (13). Figure 7(a) shows results
for the dissipationless limit, α = 0,35 while Fig. 7(b) gives
the corresponding results for α = 0.005. At both dissipation
strengths we observe optimal fit at K ≈ 1.12. The insets
presented in both figures show ϒx(∞)K , which should be
compared to the broken line indicating the expected 2/π

universal jump of a BKT transition. These results demonstrate
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FIG. 7. Comparison of calculated values of the spatial helicity
modulus ϒx with the scaling function (13) for two different dissipa-
tion strengths. For both values of α, a good fit is observed at K ≈ 1.12.
(a) The spatial helicity modulus ϒx as a function of spatial system
sizes N for α = 0.0, Kτ = 0.002, and various Josephson coupling
values. (b) Spatial helicity modulus ϒx as a function of spatial system
sizes N for α = 0.005, Kτ = 0.002, and various Josephson coupling
values. (Inset) The universal jump of the helicity modulus is expected
to be 2/π for a BKT transition. This value is indicated by a broken
line in the insets. The universal jump as calculated from the fitting
procedure is shown to be in good correspondence with the BKT
scenario.

that the NOR-CSC transition is a BKT transition. The
temporal interaction terms are evidently completely incapable
of establishing temporal order at this transition. In particular,
when comparing Figs. 7(a) and 7(b) corresponding to no
dissipation and weak dissipation, respectively, no significant
difference is visible. Even though the dissipation term has a
major impact on the temporal fluctuations,36 the spatial helicity
modulus appears completely unaffected by the presence of
dissipation in the CSC phase.

The classification of the NOR-CSC transition is important
in two respects. First, the finite-size analysis shows that the
existence of a finite helicity modulus in the CSC phase is
not a mere finite-size effect. Secondly, the analysis places the
transition in the BKT universality class. This would not have
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been possible if there were a divergent correlation length in the
temporal direction. Such an effect would have been likely to
show up as a breakdown of the scaling procedure. In this way
the analysis gives an indirect verification that the transition is
of a purely spatial nature, and that the CSC phase is temporally
disordered and spatially quasiordered.

VI. THE NOR-FSC TRANSITION α(1)
c

The transition line α(1)
c is the only transition line in the

phase diagram that exhibits a simultaneous temporal and
spatial order-disorder transition. Hence, it involves an interplay
between instantons (or instantonlike objects) and vortices, but
in a complicated way that is not easy to disentangle.

In this section, the Josephson coupling strength will be
fixed at an intermediate value of K = 0.4, for which a classical
counterpart of our model would be well inside the disordered
phase (ϒx = 0). The quantum coupling is set to Kτ = 0.1.
Note that this differs from the value of Kτ used to compute the
phase diagram in Fig. 1.

Figure 8 shows typical configurations of the bond variable
�θ as a function of τ for two dissipation strengths corre-
sponding to regimes where the model behaves quantitatively
different. The topmost curve corresponds to weak dissipation,
with anomalous diffusive behavior of the value of �θ . The
lowest curve represents the regime of strong dissipation, where
the imaginary-time history of �θ is qualitatively less rough
and where we can therefore show below that the bond variable
is localized.

We see from Fig. 9 that the amplitude of the temporal bond
fluctuations are rapidly decreasing with increasing α. At a
critical value of the dissipation strength α = α(1)

c , the MSD
features a steep drop marking the localization transition where
the tunneling of �θ is suppressed sufficiently to give the bond
variables a well-defined value in imaginary time.37 We are once
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FIG. 8. The bond variable �θ as a function of imaginary time τ

for two different values of the dissipation strength, α = 0.011 and
α = 0.021, in the weak and intermediate Josephson coupling regime.
These values correspond to the normal phase and the ordered phase,
respectively. The quantum paths of �θ in the normal phase (relatively
low values of K) exhibit fairly slow variations in time, and are not
necessarily well described in terms of instantons. Note the contrast to
the quantum paths in the topmost curve above and the topmost curve
in Fig. 2.
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FIG. 9. (Color online) W 2
�θ , Eq. (6), as a function of dissipation

strength α for a system with Kτ = 0.1, K = 0.4, N = 20, and various
values of Nτ . Note the kink in the curves at α = α(1)

c and the saturation
of W 2

�θ (Nτ ) at a finite value for α > α(1)
c . Error bars are smaller than

the data points. (Inset) Blow-up of the region around α(1)
c .

again able to distinguish between two separate states based on
the scaling properties of the MSD. In Fig. 10, we present a plot
of the MSD as a function of ln Nτ for several values of α. The
lowermost curve in the figure again represents the FSC phase,
α > α(1)

c , where the MSD is independent of Nτ . All other
curves represent dissipation strengths below the localization
transition, and for these a clear logarithmic scaling is observed.
In this way, there are distinct delocalized and localized regimes
for the bond variable also at weak Josephson coupling, and the
temporal fluctuations in each of them behave in exactly the
same way as for strong Josephson coupling.38

To confirm that the temporal transition at α = α(1)
c also

marks the onset of spatial ordering, we show in Fig. 11 the
helicity modulus ϒx . Note the abrupt manner in which the
phase stiffness attains a finite value at α = α(1)

c . Even though
the spatial extent of the system is relatively small, there is no
weak-dissipation tail which would have been visible for too

α = 0.0204
α = 0.0123
α = 0.0051
α = 0.0031
α = 0.0020
α = 0.0015
α = 0.0010
α = 0.0005

ln Nτ

W
2 Δ

θ

65.554.543.53

200

180

160

140

120

100

80

60

40

20

0

FIG. 10. W 2
�θ , Eq. (6), as a function of ln Nτ for various values of

α ranging from the weak-dissipation limit to the ordered state at the
top and bottom, respectively. The logarithmic behavior found at large
Nτ is indicated by dotted lines. Error bars are much smaller than the
data points.
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FIG. 11. (Color online) Spatial helicity modulus ϒx , Eq. (4),
action susceptibility χS , Eq. (10), and mean fluctuation W�θ , Eq. (6),
as a function of dissipation strengths for a system with Kτ = 0.1,
K = 0.4, N = 20, and Nτ = 250. Note that ϒx vanishes continuously
at α(1)

c (no jump).

small system sizes. In the same figure we also show the root
mean square displacement, W�θ , and the action susceptibility,
χS . It is clear that all observables feature a nonanalyticity at the
same point. We can therefore conclude that the transition NOR-
FSC is a quantum phase transition involving simultaneous
onset of spatial and temporal order.

In Fig. 11, we note that the nonanalyticity in ϒx on the line
α(1)

c is brought out very sharply at the system sizes we consider
in this case, namely 20 × 20 × 250. Assuming hyperscaling
and two diverging length scales ξ (spatial) and ξτ (temporal),
we may write

ϒx ∼ ξ 2−d−z ∼ ξ 2−dξ−1
τ ∼ N−1

τ . (14)

Here we have introduced the dynamical critical exponent z

defined by ξτ ∼ ξz. The sharpness can thus be explained by the
large system size and diverging length scale in the τ direction.
Very little finite-size effects may then be expected due to the
limited spatial extent of the system, since d = 2 and the spatial
correlation length drops out of the scaling.

Ordinarily, it would have been natural to attempt a scaling
analysis of this phase transition based on the Binder ratio,

Q = 〈|m|4〉
〈|m|2〉2

, (15)

in order to extract the dynamical critical exponent of the
system z. Here m is the magnetization order parameter of
the superconducting phases defined in Eq. (5). An ordinary
quantum critical point is characterized by diverging lengths in
space and time, ξ and ξτ , respectively. The Binder ratio is then
expected to scale according to

Q = Q

(
N

ξ
,
Nτ

ξτ

)
. (16)

The correlation lengths entering here are correlation lengths of
the phase-correlation function, measuring θ correlations in the
spatial and τ directions. Thus, it should be possible to collapse
the Binder ratio curves, at criticality, as a function of Nτ/N

z

for the correct value of z.
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FIG. 12. (Color online) Double-logarithmic plot of the spatial
correlation functions Gθ (x; q = 1) at values of α corresponding
to above, close to, and below the NOR-FSC phase transition. The
relevant coupling values are K = 0.4 and Kτ = 0.1, and the system
size is given by N = 100 and Nτ = 30. At α ∼ α(1)

c the correlation
function appears to be linear at long distances, indicating scale-
invariant spatial fluctuations. The dotted line indicates this linear
behavior. Thus, ξ → ∞, or at the very least ξ > N/2.

We have attempted such an analysis in this case, and failed.
In our computations, we have been able to identify a diverging
length scale ξ based on the above scaling approach, but not
a diverging length scale ξτ . The reason is that in our model,
the coupling in spatial directions is effective in ordering the
phases θ , while the coupling in the τ direction is only effective
in ordering bond variables �θ , while the θ variables never
order in the τ direction. One may therefore define a diverging
length ξ entering Eq. (16), but not a diverging length ξτ . A
diverging length scale in the τ direction may very well exist
for the bond variables �θ , but not for the phase variables θ .

The onset of long-range order in the θ variables in the spatial
directions may be described by the spatial correlation function
Gθ (x; q = 1), Eq. (8). In Fig. 12 we present spatial correlations
corresponding to dissipation strengths slightly below the
NOR-FSC transition (α < α(1)

c ), close to the transition (α ≈
α(1)

c ), and slightly above the transition (α > α(1)
c ). The spatial

correlation length appears to behave as expected for a second-
order phase transition into a phase with long-range (spatial)
order, implying that the NOR-FSC transition is associated with
a diverging length scale in the spatial directions.

VII. DISCUSSION

Since the work of Hertz,39 quantum critical points are
commonly characterized by their dynamical critical exponent
z. Underlying Hertz’ scaling theory is Landau’s notion that
all relevant fluctuations of a system may be ascribed to
fluctuations of an order parameter.40 This is evident when
considering that the exponent z is defined from a divergence
of a length scale of the order parameter correlation function.
Such a characterization may therefore be insufficient when
the critical point cannot be well described by one single order
parameter, a problem which has been pointed out in different
cases in recent theoretical works.41,42
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The model studied in this paper may be related to a problem
of this kind in the sense that we are unable to find one single
order parameter adequately describing the spatial, temporal,
and spatio-temporal phase transitions separating the NOR,
FSC, and CSC phases in Fig. 1. To substantiate this, we show
in Appendix A that the noncompact θ variables may instead
be formulated by a combination of a compact phase field
θ̃ ∈ [−π,π〉 and an additional integer-valued field k containing
information on what 2π interval the original variable belongs
to. Using the reformulation of the θ variables described in
Appendix A, it is clear that the magnetization order parameter
m only probes the order of the compactified part of the phase,
θ̃ , but is completely oblivious to the state of the integer-valued
field k. Since the state of this field describes whether or not
the phase differences �θ are localized, m is fundamentally
incapable of describing the localization transition concurring
with the onset of coherence of θ̃ . As a result, we are unable to
define a dynamical critical exponent z.

The phase transition from CSC to FSC is primarily
temporal in the sense that it only involves condensation of
instantons from a state where the spatial topological defects
are already tightly bound. However, this localization of �θ also
contributes to spatial ordering by coupling the Trotter slices
along imaginary time, thereby reducing spatial fluctuations
sufficiently to render the system behavior 3D. Accordingly,
CSC-FSC is also of a mixed character, as the transition
separates a phase with spatial QLRO (CSC) from a phase
where spatial long-range order is established (FSC).

The phase transition from NOR to CSC is of a purely
spatial nature. As one increases the Josephson coupling for
weak dissipation, this transition involves only the binding of
the (spatial) vortex degrees of freedom while the (temporal)
instantons remain proliferated. This conclusion is supported
by the signatures of a BKT-type transition found in Sec. V.
In this way, the system behaves as a stack of decoupled
two-dimensional layers in the CSC phase, each exhibiting
critical fluctuations in the θ̃ field.

The phase transition from FSC to NOR is much more
complicated than the ones from FSC to CSC and from CSC to
NOR, and appears to be of a type not previously considered
in connection with superconductor-metal phase transitions.
Since one cannot characterize the anisotropy of the phase
transitions quantitatively in terms of an exponent z, we resort
to more qualitative considerations of the spatial and temporal
degrees of freedom. In the case of intermediate coupling,
one has a concomitant binding of vortices and localization
of �θ upon entering the FSC phase from the NOR phase. This
corresponds to the ordering of the degrees of freedom relevant
to space (θ̃) and time (k), respectively. Due to this simultaneity,
we characterize the NOR-FSC phase transition as a mixed
spatio-temporal phase transition. It is an interplay between
two distinct types of topological defects (point vortices and
temporal fluctuations in �θ ) that determines the character
of the phase transition. This phase transition is therefore
neither of the BKT type, nor in the 3D XY universality
class. The former is characterized by proliferation of pointlike
vortices in two dimensions, while the latter is characterized
by the proliferation of (2 + 1)-dimensional vortex loops.43–45

Dissipation, and the associated decompactification of the θ

variables, leads to a disordering of the θ variables in the

imaginary-time direction in all regions of the phase diagram.
Decompactification essentially chops up the vortex loops
into spatial point vortices and instantonlike objects in �θ ,
thereby destroying the Lorentz-invariant physics of vortex-
loop proliferation at the quantum phase transition.

In order to exhaust all combinations of spatial and tem-
poral order/disorder, one could also imagine a fourth phase
exhibiting temporal order without accompanying spatial phase
coherence. This would correspond to W 2

�θ = const. and ϒx =
0 (i.e., a phase with localized bond variables and proliferated
vortices). The most probable location of such a phase would
be at weak spatial coupling and large dissipation strength,
corresponding to the lower right corner of Fig. 1. This scenario
opens the possibility of a purely temporal ordering coinciding
with exponentially decaying spatial correlations upon entering
this hypothetical phase from the NOR phase. Due to this
locality, such a transition could be a possible realization of a
local quantum critical point (“z = ∞”) in a spatially extended
system. In order to emphasize that the existence of this local
phase is only a possibility that we have not actually found in
our computations, we have drawn a box of solid lines around
the specific region in Fig. 1 and indicated possible realizations
of the phase transitions by dotted lines. Although the existence
of such a phase has been conjectured by analytical work2,5,9

and there is numerical work supporting this view,12 we find
no signatures pointing to the existence of such a local phase
in any of the parameter sets considered. Rather, our results
strongly indicate that a spatial coupling is always rendered
relevant by a large enough dissipation parameter α.19 In this
way, the localization of �θ will always induce an onset of
spatial phase coherence. This is equivalent to saying that
instantonlike excitations will always proliferate prior to, or
simultaneously with, the unbinding of vortices as the strength
of dissipation α is reduced. Local quantum criticality (in the
sense of having temporal critical fluctuations coinciding with
spatial disorder) would follow from vortices proliferating prior
to instantons as the disordered state (NOR) is approached
from the fully bond-ordered superconducting state (FSC) by
reducing α.

Finally, we compare the phase diagram found in this paper
with the phase diagram calculated for a model similar to Eq. (3)
using compact variables.16 Figure 13 shows two schematic
phase diagrams, and the following discussion pertains to their
topology. The topmost diagram summarizes the results found
in this paper, while the lowermost diagram is the phase diagram
for the (2 + 1)D dissipative quantum rotor model. In the
latter case, the diagram features one single phase transition
line separating a completely ordered state from a disordered
state. The phase transition separating them is driven by a
proliferation of vortex loops. This transition line is isotropic in
space time (z = 1) meaning that the entire line is in the 3DXY

universality class. From the lowermost phase diagram it is clear
that if we start in the limit of no dissipation, α = 0, and increase
α for K > K3DXY , the dissipation term only contributes to
further dampening the innocuous three-dimensional spin-wave
excitations. This can only increase the superfluid density in the
ordered phase. However, in the noncompact model the regime
K > KBKT, and weak dissipation, represents a phase involving
both two-dimensional spatial spin waves and a proliferated
instanton gas. Increasing α from this regime may therefore
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FIG. 13. Comparison of the phase diagrams of the noncompact
(topmost) and compact (lowermost) models. (Topmost diagram) The
phase diagram found in this work. All phases feature disordered
θ variables in the imaginary-time direction. A notable feature is
the phase CSC where bound vortex antivortex pairs coexist with
disordered bond variables �θ in the τ direction. This is a consequence
of the θ variables being defined with noncompact support. This is
only true for finite α as the quadratic form of the dissipation term
is the origin of the decompactification. Consequently, the physics
found at finite α cannot be analytically connected to the limit α = 0.
The description at α = 0 would require compact phases and thereby
a loss of the instanton degrees of freedom. For α = 0 there is a
phase transition at a critical value of K , but this phase transition
is in the 3D XY universality class, as in the lowermost diagram.
α = 0 is therefore a singular endpoint of the horizontal line in the
topmost diagram. (Lowermost diagram) The phase diagram found
for a (2 + 1)D bond-dissipative quantum rotor model with compact
variables. In this case the diagram features only a single transition
line where the system undergoes a spatio-temporally isotropic (z = 1)
phase transition in the 3D XY universality class. See Ref. 16 for
details.

drive a phase transition because the dissipation term is effective
in binding these temporal defects. Therefore, the feature of
the phase diagram of the noncompact model that really sets
it apart from the phase diagram of the dissipative 3D XY

model (i.e., the compact case) is the existence of a phase at
weak dissipation involving spatial ordering concomitant with
temporal disorder. The resulting phase CSC has no counterpart
in the dissipative 3D XY model, since in the latter model
the phases θ are compact. Compact phases θ promote vortex
loops as the critical fluctuations, while noncompact phases θ

promote vortices and instantons as relevant fluctuations driving
the phase transitions.

The phase CSC corresponds to a resistively shunted
Josephson junction array which may sustain a finite Josephson
current through the array, but nonetheless features finite
voltage fluctuations across each junction of the junction array.
This may be viewed locally (at a single junction) as a metallic
state, but globally (throughout the system) as a superconductor.
The most complicated aspect of the phase diagram of the
noncompact model is the direct phase transition between the
NOR phase and the FSC phase, which is considerably more
difficult to characterize than the z = 1 order-disorder transition
in the dissipative 3D XY model.

A (2 + 1)-dimensional model with bond dissipation has
recently been considered as an effective theory of quantum
criticality at optimal doping in high-Tc cuprates.17 The claim
of this work is that the phase correlators of the model at the
critical point decay algebraically as 1/τ while they are short
ranged in space. Such a phase transition would be an example
of local quantum criticality. Monte Carlo simulations on the
(2 + 1)-dimensional quantum rotor model gives an order-
disorder transition in the 3D XY universality class, which is
quite different from local quantum criticality. From the results
of the present paper, it appears to be important to specify
whether the phase variables are compact or noncompact (cf.
Fig. 13). The phase transitions separating the CSC phase from
the FSC phase, or the CSC phase from the NOR phase, are
not of the type described in Ref. 17. To verify whether or not
the remaining phase transition separating the FSC phase from
the NOR phase is an example of local quantum criticality one
would ideally need a single order parameter measuring spatial
and temporal correlations in phases, θ . Since we do not have
this at our disposal, we have not been able to determine what
sort of universality class the critical line separating FSC and
NOR belongs to, apart form concluding that it is not in the
2D XY or 3D XY universality class. However, the spatial
correlation functions presented in Fig. 12 suggest that the
NOR-FSC transition line is not a line with local spatial phase
correlations.

We end with an important remark on the temporal phase
fluctuations we have focused on in this paper. The quantity
W 2

�θ in Eq. (6) measures temporal fluctuation in phase
gradients �θ , defined on a spatial bond of the lattice.
One could also study a corresponding measure of temporal
fluctuations of the phases θ themselves. We have done this,
and find the following. In all parts of the phase diagram in
Fig. 1, the quantity

W 2
θ (Nτ ) = 1

Nτ

〈
Nτ∑
τ

(θτ − θ )2

〉
, (17)

diverges with Nτ . This underlines that the instantons or
instantonlike objects we have discussed in this paper are
temporal fluctuations in phase gradients �θ , not instantons
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in phases θ . On the other hand, the helicity modulus Eq. (4)
measures long-range or quasi-long-range spatial ordering of
phases θ , and we find such orderings in the FSC and CSC
phases. Thus, the FSC phase does not exhibit 3D XY ordering.
It features spatial ordering of θ and �θ , but temporal ordering
only of �θ . This supports the statement made above, that the
NOR-FSC transition is not in the 3D XY universality class.
It is a new type of phase transition involving a complicated
interplay between spatial point vortices and instantonlike
excitations in �θ .

VIII. CONCLUSIONS

The model discussed in this paper describes a two-
dimensional array of quantum dissipative Josephson junctions.
By extensive Monte Carlo simulations we have shown that
the model features three distinct phases (see Fig. 1) featuring
different behaviors of spatio-temporal fluctuations. We have
quantified these fluctuations by the mean square fluctuation
W 2

�θ , Eq. (6), and the spatial helicity modulus ϒx , Eq. (4).
The normal phase (NOR) is found at weak dissipation and

weak Josephson coupling strength. In this phase, the spatial
helicity modulus is zero, signaling a vanishing stiffness to
infinitesimal phase twists on each Trotter slice. The phase
differences of the individual junctions are highly fluctuating
in imaginary time and the system therefore exhibits metallic
behavior. Increasing the dissipation strength drives the system
to a phase transition where the phase differences �θ are
localized into one of the minima of the Josephson potential.
This localization of bond variables in imaginary time occurs
simultaneously with an onset of rigidity towards phase twists
across the spatially extended system. We identify this phase
with a fully bond-ordered superconducting state (FSC).

At strong coupling and weak dissipation we identify an
intriguing phase exhibiting finite phase stiffness and alge-
braically decaying spatial correlations. The imaginary-time
direction remains disordered with wildly fluctuating bond
differences. This dimensionally reduced phase is referred to
as a critical superconducting (CSC) phase. The finite helicity
modulus in this phase indicates that the system may sustain
a dissipationless current going through the entire JJA. There
are, however, voltage fluctuations present which in principle
should make it experimentally distinguishable from a fully
bond-ordered superconducting phase, and also distinct from
the more standard 3D XY ordered fully superconducting state
where even the phases θ are ordered in all directions.

We have found no signs of a phase which is temporally
ordered (in the sense of having a bounded W 2

�θ ) and prolif-
erated vortices. Such a phase would naturally facilitate the
observation of local quantum criticality in which a spatially
disordered and temporally (quasi)ordered system disorders in
the imaginary-time direction.
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APPENDIX A: REFORMULATING THE NONCOMPACT
DEGREES OF FREEDOM

To gain further insight into the three phases reported in
this work and the transitions between them, we consider the
following decomposition of the phase degrees of freedom:

θx,τ → θ̃x,τ + 2πkx,τ . (A1)

The noncompact starting point θ is thereby exchanged for a
compact phase field, θ̃ ∈ [−π,π〉, plus an integer-valued field
k, keeping track of the specific 2π interval the original variable
belonged to. In the partition function, this reformulation
amounts to

Z =
∫

Dθe−S =
∫ ∞

−∞

∏
x,τ

(dθx,τ )e−S

→
∑
{k}

∫
Dθ̃ e−S =

∑
{k}

∫ π

−π

∏
x,τ

(dθ̃x,τ )e−S. (A2)

Note that k is defined on every point in space time and
has nothing to do with the winding number found in some
realizations of quantum rotor models with compact phases.

It should also be noted that the 2π -periodic spatial inter-
action is only sensitive to the θ̃ field. Also, the compactness
of θ̃ enables the identification of vortices in this field in a
similar way as discussed in connection with the classical 2D
XY model, Eq. (1). The finite ϒx observed in the CSC and
FSC phases may thereby be attributed to phase coherence in
θ̃ . In addition to the vortex degrees of freedom found in the
classical version of the system, the noncompactness of the
quantum version introduces an additional degree of freedom
(k) associated with the tunneling of bond variables from one
minimum of the extended Josephson potential to another.

In the NOR phase, we found ϒx = 0, which may be
understood as a phase featuring proliferated vortices of the
θ̃ field, as well as proliferated instantons in �θ . Increasing
the Josephson coupling (for small α) drives the system into
the CSC phase with ϒx �= 0, which corresponds to a binding
of vortices into dipoles. Nonetheless, the bond variables remain
anomalously diffusive, W 2

�θ ∝ ln Nτ , in both the NOR and the
CSC phase. At strong coupling, the bond variables tend to
stay in the vicinity of the minima of the potential wells, �θ ≈
2π�k. From the viewpoint of the reformulated variables, the
delocalized bond variables in the CSC phase is an expression
of an unbroken symmetry �k → �k + �, where � is an
integer. Moreover, the integer field k may be directly connected
with the instanton charges in the strong-coupling limit by
�kτ+1 − �kτ = nI. The delocalization of �θ manifests itself
as proliferated instanton/anti-instanton configurations in this
regime, and the CSC phase may therefore be described as an
instanton gas. This is illustrated in the topmost curve of Fig. 2,
illustrating the quantum paths of �θ in the CSC phase of Fig. 1.

For weak Josephson coupling, the excitations in the
imaginary-time path of �θ are strictly speaking not well
described by topological instanton defects. This is quite
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evident from the topmost curve of Fig. 8, describing the
quantum paths of �θ in the NOR phase of Fig. 1. Nevertheless,
as the quantum fluctuations still respect the same symmetry
�k → �k + �, we choose to refer to such excitations as
instantons also in the NOR phase. In the FSC phase, on
the other hand, localization of bond variables implies that
the symmetry is broken for both weak and strong coupling.
Starting at large K and large α, the picture is therefore as
follows: In the FSC phase, both the defects associated with θ̃

(vortices) and with k (instantons) are absent or tightly bound.
Lowering α into the CSC phase, instantons are proliferated
while the vortices remain bound. Lowering K from the CSC
phase into the NOR phase, the vortices proliferate as well.

APPENDIX B: CORRELATION FUNCTIONS
IN THE NOR PHASE

It has recently been proposed19,25 that the metallic state of
Josephson junction arrays might exhibit nontrivial behavior.
Here, it was argued that the (0 + 1)-dimensional constituents
of the array may slide past each other in what was denoted
a “floating phase.”25 Similar dimensionally decoupled phases
are also believed to be relevant to other physical systems such
as layered superconductors46 and stacks of two-dimensional
arrays of membrane proteins.

These papers employed a renormalization group analysis
to show that the spatial coupling between the superconducting
islands is perturbatively irrelevant on the disordered side of
the transition. They also calculated the correlation functions
Eq. (8) and (9) in this regime and found that they had a form
that indicated unconventional, purely local fluctuations. Monte
Carlo studies11 of a single resistively shunted Josephson junc-
tion also indicated that a similar form of correlation functions
could be found in (0 + 1)D systems as well. The correlation
functions employed in these analyses featured a noninteger
parameter q that was introduced to probe fluctuations with
another periodicity than the underlying Josephson potential.
In the presence of a finite Josephson potential, expectation
values such as 〈exp (i�θx,x′,τ )〉 will generally not be equal to
zero in any phase. This is, however, due to the corresponding
symmetry being explicitly—and not spontaneously—broken,
and has consequently nothing to do with a phase transition. The
parameter q was therefore introduced to assure correlation
functions decaying to zero in the disordered phase. Similar
correlation functions have also been considered before in
investigations of roughening transitions of crystal surfaces
with quenched bulk disorder.47 We will refer to them as
fractional correlation functions.

Figure 14 shows both spatial and temporal correlation
functions, Eq. (8), at a dissipation strength deep in the
NOR phase where the Josephson potential is expected to be
irrelevant25 and we are far away from the phase transition
at α = α(1)

c . The correlation functions in the bottom row
include a noninteger factor q = 1/3; the top row shows the
correlation functions without (q = 1) this noninteger factor.
Comparing the correlation function of the temporal direction
with the spatial direction for q = 1/3, it is clear that the spatial
and temporal behaviors of the system appear completely
decoupled.48 As we discuss below, this local behavior of the
fractional correlation functions is misleading.
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FIG. 14. (Color online) Correlation functions, Eq. (8), in both
space (left column) and imaginary time (right column) in the normal
phase. The relevant coupling parameters are α = 0.012, K = 0.4, and
Kτ = 0.1. There is a pronounced difference between the correlations
along the spatial and temporal directions for q = 1/3.

Appendix A introduced a reformulation of the phase
variables that clarifies the difficulties concerning the con-
struction of a globally defined order parameter describing
our system. The reformulation of the phase variables also
offers an alternative viewpoint on the fractional correlation
functions. For example, imagine a 2D XY model, Eq. (1),
being formulated with noncompact phase variables instead of
the standard compact variables. In the partition function, the
summation over k is trivial, yielding only a renormalization
of the ground-state energy, because there is no coupling
between different k sectors in the action. The remaining
integration over θ̃ is the partition function of the ordinary
2D XY model. When performing Monte Carlo simulations
on the 2D XY model with a noncompact formulation of the
phases, we find the usual QLRO phase at strong Josephson
coupling, in which the correlation function Gθ (x; q = 1) of
Eq. (8) decays algebraically. However, consider probing the
QLRO phase with a fractional correlation function, q < 1.
This correlation function involves contributions from several
k sectors, ultimately averaging the correlator to zero for all
distances. The same result holds for the disordered phase,
and so, although the QLRO phase is phase coherent and the
disordered phase is not, the fractional correlation function
essentially cannot tell them apart.

Applying exactly the same arguments as above to our
CSC phase with spatial QLRO, one realizes that the spatial
fractional correlation function will vanish also here. In analogy
with the classical 2D XY model, we argue that this should not
be regarded as a signature of completely spatial decoupling
in neither the CSC phase nor the NOR phase. The apparent
locality of the normal phase, and by extension the correspond-
ing floating phase of Ref. 25, is consequently not a result
of the dissipative interaction per se. Rather, a floating phase
with such vanishing spatial fractional correlations follows as
a direct result of the noncompactness of the phase variables,
which in turn is caused by their coupling to a dissipative bath.

In the following we provide supplementary details re-
garding the fractional correlation functions. To be specific,
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FIG. 15. The distribution of �θτ − �θ0, P (�θ,τ = 125), in
arbitrary units for a system with Kτ = 0.1, K = 0.4, and dissipation
strength α = 0.011. The distribution is extracted from the Monte
Carlo simulations and is conjectured to follow Eq. (B1).

we will investigate the fractional bond correlation functions
G�θ (τ ; q) more carefully, and prove that a power-law tail is
expected in the weak dissipation regime. We first consider
the distribution function P (�θ,τ ), as was also the starting
point of Ref. 19. This function describes the diffusion of the
phase difference �θτ with respect to its value at τ = 0. The
distribution broadens for increasing τ and is illustrated for
a fixed imaginary-time distance in Fig. 15. We find that the
distribution function can be very well fitted by the functional
form,

P (�θ,τ ) = P0e
− �θ2

2σ2
G

∑
n

e
− (�θ−2πn)2

2σ2 , (B1)

where P0 is a normalization constant. The distribution is
made up of a sequence of sub-Gaussians with standard
deviation σ centered around the minima of the Josephson
potential. In addition, there is an overall Gaussian convolution
characterized by a standard deviation σG. We find empirically
that whereas σ is dependent on K , it is independent of the
distance τ in imaginary time. The overall variance G(τ ) of the
distribution, as defined by

G(τ ) = 〈(�θτ − �θ0)2〉, (B2)

grows logarithmically with τ . This variance can furthermore
to a very good approximation be identified with the variance
σ 2

G of the convolution function.
The calculations in Ref. 19 were based on a strong-

coupling limit for the distribution function, with an additional
assumption that the spatial coupling will renormalize to
zero regardless of its bare value. For large values of K ,
we have demonstrated that the system will eventually reach
a superconducting state (i.e., the CSC phase or the FSC
phase) for all α > 0. It is also clear from Fig. 15 that there
is an appreciable broadening of the sub-Gaussians (σ > 0)
compared to the delta function distribution implicit in the
strong-coupling limit (σ → 0).

We next consider the implications of a finite σ on the
correlation function G�θ (τ ; q). Assuming Eq. (B1), we

10
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FIG. 16. (Color online) The unequal-time bond correlation func-
tion, G�θ (τ ; q = 3/4), for a system with K = 0.4, Kτ = 0.1, α =
0.011, N = 20, and Nτ = 250. The black curve is the correlation
function Eq. (9) sampled directly from the Monte Carlo simulations.
The red (lowermost gray) and blue (uppermost gray) curve are the
s = 0 and s = 1 terms of Eq. (B3), respectively, and are calculated
as explained in the text.

calculate

〈eiq(�θτ −�θ0)〉 = e− 1
2 σ 2κq2

∞∑
s=−∞

e− 1
2 σ 2

G(q−s/κ)2
, (B3)

where κ = σ 2
G/(σ 2

G + σ 2). The sum over n has been traded for
an integral at the cost of introducing an integer Poisson sum-
mation variable s. The n variable is subsequently integrated
out. Comparing with Eq. (12) in Ref. 19, the broadening of
the sub-Gaussians has introduced an overall prefactor and a
multiplicative adjustment of the Poisson summation variable.
The strong-coupling result is easily recovered in the limit
σ → 0. In the limit τ → ∞, the term with the slowest decay
is dominant, hence the sum may be substituted by the term
with the smallest (q − s/κ)2. For a logarithmically diverging
σG, we also have κ → 1, meaning that Eq. (B3) is a scale-free
power law in this limit.

In Fig. 16, we show a plot of G�θ (τ ; q = 3/4) and the two
terms from Eq. (B3) corresponding to s = 0 and s = 1. We
have set σ 2

G equal to G(τ ) as measured from the Monte Carlo
simulations in order to compare the analytical result Eq. (B3)
with the fractional correlation function found numerically.
σ is specified from fitting Eq. (B1) to data from Monte
Carlo simulations. At short distances the s = 0 term is still
contributing, but a clear crossover to the dominant s = 1 term
is visible for larger values of τ . The excellent fit between the
curves validates the functional form of the distribution (B1).

It is interesting to compare the behavior presented above
with available numerical results for a single resistively shunted
Josephson junction. Ref. 11 reports temporal fractional corre-
lation functions in a (0 + 1)D system that are power law in
much the same way as those in Ref. 19. They also report
a logarithmically diverging MSD, but only at the phase
boundary. This is in contrast to the results presented in
Secs. VI and IV, where we find logarithmic growth as a generic
feature of the weak-dissipation phases. Following Ref. 11, it
is natural to consider the possibility that a logarithmically
diverging MSD is the signature of critical behavior for models
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describing Josephson junctions. A logarithmically diverging
MSD follows from a logarithmically diverging G(τ ), and we
have shown that the latter generates fractional bond correlators
that are algebraically decaying in imaginary time. A possible
scenario could be that the increased dimensionality of the
problem has damped the fluctuations such that, in contrast
to the single junction, the entire weak-dissipation regime

features critical temporal correlations of the bond variables.
However, we expect such a critical phase to produce divergent
susceptibilities of the action. The simulations do not support
this scenario and we find nonanalytic χS only at the points
α = α(1),(2)

c . Thus, a power-law form of the temporal fractional
bond correlators can not necessarily be ascribed to critical
behavior of the system.
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