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We present an approximation for efficient calculation of the Lindhard susceptibility χL(q,ω) in a periodic
system through the use of simple products of real space functions and the fast Fourier transform (FFT). The
method is illustrated by providing χL(q,ω) results for the electron doped cuprate Nd2−xCexCuO4 extended over
several Brillouin zones. These results are relevant for interpreting inelastic x-ray scattering spectra from cuprates.
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I. INTRODUCTION

The dynamic structure factor S(q,ω) is a useful function
of momentum and energy introduced by Leon Van Hove,1

which contains information about density-density correlations
and their time evolution. Experimentally, S(q,ω) can be
accessed most directly by inelastic x-ray scattering (IXS),
which has acquired greater importance with the advent of
powerful synchrotron sources.2 However, since x-rays are
strongly absorbed in materials with high density, IXS may
be suitable mostly for low-Z systems. Nevertheless, in the
case of heavier elements, recent studies have shown that if
the photon incident energy is near an x-ray absorption edge
the cross section can be enhanced, and the resulting resonant
inelastic x-ray scattering (RIXS) offers a new window for
probing both empty and filled electronic states.3–5 Recent
efforts to develop a first-principles formulation of the RIXS
spectrum explore an interesting hypothesis6–8 that the RIXS
cross section is directly related to S(q,ω), complicating effects
of the core hole notwithstanding. However, this claim remains
controversial9 and must be checked by testing the theory
against accurate experimental results.10 Cu-K-edge RIXS for
cuprates3,11–13 probes the spectrum throughout momentum
space encompassing many Brillouin zones. Therefore an
important theoretical task is to produce realistic calculations
of the dynamic structure factor within the framework of either
many-body perturbation theory (MBPT) or time-dependent
density functional theory (TDDFT)14 starting from a Lindhard
susceptibility representing the response of an unperturbed
Kohn-Sham system. In particular, local field effects15–18 are
known to modify the spectral weight of both collective and
single-particle excitations in the dynamic structure factor of
solids.

In this study we focus on an approximation to efficiently
calculate from one particle spectral functions the Lindhard
susceptibility χL(q,ω). This approximation has successfully
described the susceptibility of heavy rare earth elements19 and
can also reliably describe the x-ray inelastic scattering momen-
tum dependency in higher Brillouin zones for an energy trans-
fer ω where the single-particle excitations dominate. As an
example we consider paramagnetic Nd2−xCexCuO4 (NCCO),
which has a relatively simple, nearly two-dimensional metallic

Cu-O band near the Fermi level. We identify important features
throughout energy-momentum space and we delineate the
specific manner in which ImχL(q,ω) decays as a function
of q. These results enable an assessment of the extent
to which S(q,ω) reproduces the RIXS cross section in a
cuprate via direct comparison of the theory with corresponding
experiments in extended regions of the momentum space.

An outline of this paper is as follows. In Sec. II, we present
the relevant formalism. The details of the electronic structure
methods and the numerical schemes are given in Sec. III. The
theoretical results for ImχL(q,ω) are presented and discussed
in Sec. IV, and the conclusions are summarized in Sec. V.

II. FORMALISM

In a periodic solid, the susceptibility becomes15 a tensor
in the reciprocal lattice vector space G. The fluctuation-
dissipation theorem relates the dynamical structure factor
S(q,ω) to the susceptibility via

S(q,ω) = − 1

π

∑
k,G

Im[χG,G(k,ω)]

1 − e−h̄ω/kT
δ(q − k − G). (1)

Thus, IXS experiments do not probe all matrix elements
of the response χG,G′(k,ω), but only the diagonal elements
χG,G(k,ω).20 If we approximate the susceptibility by the bare
susceptibility χ0

G,G′ (k,ω) then16–18,21

Im
[
χ0

G,G(k,ω)
] = −

∑
ν,μ

∣∣Mν,μ

G

∣∣2
∫ 0

−ω

dεAν(ε)Aμ(ε + ω). (2)

The matrix elements Mν,μ

G can be expressed in the Dyson
orbital basis set gν as22,23

Mν,μ

G = 〈gν |ei(k+G)r|gμ〉. (3)

The spectral functions associated with the Dyson orbitals are

A(p,ω) =
∑

ν

|gν(p)|2Aν(ε), (4)

and

Aν(ω) = γ

π [(h̄ω − εν)2 + γ 2]
, (5)
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where εν is the excitation energy associated with the Dyson or-
bital gν and γ is infinitesimally small (see also the Appendix).
The Dyson orbitals can often be approximated reasonably by
Bloch orbitals as

gk,n(r) = exp(ik · r)
∑

G

C
k,n
G exp(−iG · r), (6)

with the momentum density given by

|gk,n(p)|2 =
∑

G

δ(p − k + G)
∣∣Ck,n

G

∣∣2
. (7)

The label ν = (k,n) is a composite index that codes the Bloch
wave vector k and the energy band index n. The Fourier
coefficients C

k,n
G of the periodic part of the Bloch function are

labeled by the reciprocal vectors G. In this case, the dynamical
structure factor at T = 0 becomes

S(q,ω) = −
∑

n,m,k,k′,G′,G′′,G

(
C

k,n
G′

)∗
C

k′,m
G′+GC

k,n
G′′

(
C

k′,m
G′′+G

)∗

× δ(q + k − k′ − G)
∫ 0

−ω

dεAn(k,ε)Am(k′,ε + ω).

(8)

The dominant part of S(q,ω) is given by the partial sum of
the real positive terms G′ = G′′. Next, following Wen,24 we
neglect the remaining complex terms because the randomness
of their phases produces destructive interferences. A few
straightforward algebraic simplifications then yield3,25

ImχL(q,ω) = −
∫ 0

−ω

dε

2π

∫
d3p

(2π )3
A(p,ε)A(p + q,ε + ω).

(9)
Thus, our approximation scheme leads to an expression for
ImχL(q,ω) similar to the free fermion form26 but with the
spectral function A(p,ε) expressed in terms of the Bloch wave
functions instead of plane waves. The approximation of Eq. (9)
becomes exact when q is large (see, e.g., Ref. [27]). As already
noted above, the asymptotic decay of the imaginary part of
Lindhard susceptibility as a function of q is well described
within the present framework. When q is small, the most
significant features of the susceptibility are produced by band
structure effects, which are fully included in our approach.
Notably, the origin of major peaks in the imaginary part of
the susceptibility lies in FS nesting.28,29 Therefore, we expect
our scheme to produce a reasonable approximation to the
dynamical structure factor in materials.

III. COMPUTATIONAL METHODS

The Dyson orbitals gν needed for the calculation of the
spectral function A(p,ε), as already noted, can be reasonably
replaced by the Kohn Sham orbitals obtained within the density
functional theory (DFT).23 For this purpose, the DFT band
structure calculations in NCCO were performed within the
local density approximation (LDA) using an all-electron, fully
charged self-consistent semirelativistic (KKR) method.30 The
crystal structure used for NCCO was body centered tetragonal
(space-group I4/mmm) with lattice parameters given by
Massidda et al.31 A self-consistent solution was obtained for
x = 0 with a convergence of the crystal potential to about
10−4 Ry.

To demonstrate our approach in a relatively simple but
interesting case, we restrict the calculation to a single band,
namely the copper-oxygen band near the Fermi level in
NCCO. In particular, the possible contribution of the Nd
f-electrons is neglected by removing the f orbital from
the basis set after the Nd self-consistent potential has been
obtained.32 The electronic structure shown in Fig. 1(a) has
been produced with the minority spin part of the self-consistent
ferromagnetic potential. The doping effects were treated
within a rigid band model by shifting the Fermi energy to
accommodate the proper number x of electrons.33–36 In the
electron momentum density (EMD) calculations (see Ref. 37
for details), the momentum mesh was given by a momentum
step (
px,
py,
pz) = (1/128a,1/128a,1/2c)/(2π ).38–40 The
total number of momentum points is 1.54 × 108 p within a
sphere of radius 17.6 a.u.

We show in Fig. 1(a) the calculated band structure of NCCO
near the Fermi level. The band closest to the Fermi level
is shown by the red dotted curve and is well isolated from
other bands. This band ranges from −1.4 eV to 1.9 eV and
the integral of the spectral function in this energy interval,
evaluated with an energy resolution of 40 meV, is shown
in Fig. 1(b). The two-dimensional spectral function A(p,ω)
is calculated by neglecting the small kz dispersion in the
three dimensional electronic band structure.41 Similar EMD
results for NCCO have been obtained within the LMTO.42,43

The resulting momentum density has the same symmetry as
the copper-oxygen dx2−y2 − px,y states in real space which
form this energy band since the wave function in momentum
space is the Fourier transform of the wave function in real
space. Figure 1(b) shows that the low intensity along the
x − y diagonal direction in the 2D-EMD map is a signature
of dx2−y2 symmetry. Moreover, since the radial momentum
dependence of an atomic state of angular momentum � behaves
as p� at small momenta,44 the 2D-EMD intensity at low
momenta is from the O-2p orbitals, while the Cu-3dx2−y2

orbitals contribute at higher momenta.45,46 This implies that the

FIG. 1. (Color online) (a) Band structure of NCCO near the Fermi
level. The CuO2 band is shown by the red dotted line. (b) Calculated
integrated spectral function A(p) for an isolated CuO2 layer in NCCO.
The zone boundaries (for a simple tetragonal approximation) are
marked by black lines. Whites denote large values of A(p), blues
small values. The A(p) shown here contain contributions only from
the CuO2 band.
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signal coming from the O-2p states is more visible in the first
Brillouin zone while the Cu-3d states are better seen in higher
Brillouin zones. We can see from Fig. 1(b) that the 2D-EMD
intensity is strongly modulated by wave function effects, which
suggests that the behavior of ImχL(q,ω) in NCCO in different
zones will also be modified by these effects; however, our
approximation in Eq. (9) neglects some interference effects
produced by the phases of the Fourier coefficients of the Bloch
wave functions.

Equation (9) shows that the ImχL(q,ω) at zero temperature
can be written as a convolution of two spectral functions. This
ImχL(q,ω) captures electron-hole excitations described by
Dyson orbitals22,23 but does not include collective excitations
such as plasmons or phonons. For efficient ImχL(q,ω)
calculations, we replace the momentum space convolution of
A(p,ω) by a simple product of spectral functions B(r,ω) in
real space given by

B(r,ω) =
∫

d3p

(2π )3
A(p,ω) exp(ip r). (10)

This enables us to take advantage of the fast Fourier transform
(FFT) efficiency using the convolution theorem.47 The advan-
tage of our FFT based method can be seen by comparing the
computation time of the FFT method with the time needed to
directly compute ImχL(q,ω) via Eq. (9) using two matrices
of size 2049 × 2049. The CPU time for the FFT method is
12 s, while the direct computation takes 24 min on the same
machine.48

IV. RESULTS

We discuss our results with reference to Figs. 2–5. In
Fig. 2(a), we show −ImχL(q,ω) along high symmetry lines as
a function of ω. The black part of this figure marks the region of
zero intensity where no electron hole transitions are available.
Strong intensity seen near 1 eV around (π,0) is due to a sort of
a Van Hove singularity in ImχL(q,ω), which is associated
with the high energy kink or the waterfall effect in the
electronic spectrum.49 When we compare our Fig. 2(a) to the
experimental RIXS spectrum of overdoped NCCO presented
in Ref. 50, we find that the experiment is well described by
the k resolved joint density of states despite the complicating
effects of the core-hole.8 In particular, the features in the lowest

FIG. 2. (Color online) (a) Calculated −ImχL(q,ω) of NCCO
along high symmetry lines as a function of transition energy.
Whites denote the largest −ImχL(q,ω), blacks the smallest. (b) The
integrated value of −ImχL(q,ω) over q vs transition energy ω.

FIG. 3. (Color online) Calculated −ImχL(q,ω) of NCCO at ω =
1.04 eV plotted over several Brillouin zones. Black circles near the
�-points indicate regions of zero intensity, as in Fig. 2. Index I labels
the first zone; indices II, III mark zones along the (π,0) direction; and
indices IV and V the zones along the (π,π ) direction.

experimental RIXS band within the energy range of ω = 0.5
to ω = 2 eV are well reproduced by our calculations. The
integrated value of −ImχL(q,ω) over q, plotted in Fig. 2(b),
yields the total number of electron-hole transitions at a given
energy. Since the highest peak in Fig. 2(b) is located at 1.04 eV,
we focus on analyzing −ImχL(q,ω) at this particular energy
in the remainder of this article. −ImχL(q,ω) is shown in
Fig. 3 for ω = 1.04 eV over several Brillouin zones marked
by yellow lines. The first Brillouin zone, located at the center
of the figure, has the highest intensity. The intensity is seen to
decrease slowly as q increases, and interesting patterns due to
d electron wave function effects appear in higher zones. In the
first zone, Fig. 3, some strong peaks are present surrounding
the zero-intensity hole centered at � with a relatively low
intensity appearing at the zone corners M .

Further details of −ImχL(q,ω) are shown in Figs. 4(a)–
4(d), which are blow ups of the four Brillouin zones marked
by II, III, IV, and V in Fig. 3. The Brillouin zones displayed in
Figs. 4(a)–4(d) show a similar overall pattern but modulated
with subtle matrix element effects. For instance, regions of
strong intensity spread towards (−π,0) in zone II [Fig. 4(a)],
but towards (−π, ± π ) in zone III [Fig. 4(b)]. The intense
(bright) peaks point along one diagonal direction in zone IV in
Fig. 4(c), but are rotated by 90 degrees in zone V in Fig. 4(d).

Figure 5 presents a cut through −ImχL(q,ω) along the
[100] direction in order to illustrate the decay of −ImχL(q,ω)
as a function of momentum transfer q. The highest intensity has
been normalized to unity for ease of comparison. Surprisingly,
at momenta as large as 6 a.u. one can still see features with
amplitude exceeding 10% of the highest intensity (located
in the first Brillouin zone). This effect can be explained by
the fact that d electron particle-hole transitions can involve
particularly high momentum transfers. We can fit the envelope
of −ImχL(q,ω) by using a simple Lorentzian shape 1

1+( q

k0
)2
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FIG. 4. (Color online) (a–d) Contour maps of −ImχL(q,ω =
1.04 eV) of NCCO in four different Brillouin zones. The symmetry
of the maps in zones II and III is very similar.

with k0 = 1.89 a.u.51 Since RIXS has often been thought to be
related to S(q,ω), it is an interesting question whether a similar
decay factor k0 is found in RIXS experiments. Our results thus
provide a new way to test the hypothesis that the RIXS cross
section is directly related to S(q,ω).

We have also obtained the real part of Linhard suscep-
tibility χL by applying Kramers-Kronig relation. However,
the Linhard susceptibility gives only the response of the
independent electrons to the external potential. In order to
estimate the effect of screening effects, one can consider the
susceptibility within the random phase approximation (RPA)
given by χRPA = χL/(1 − Vqχ

L), where V is the Coulomb
interaction decaying as ∼1/q2. In this approach, the sharp
singularities of χRPA due to the denominator give the plasmon
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FIG. 5. (Color online) Cuts of −ImχL(q,ω = 1.04 eV) taken
along (π,0) in Fig. 3 (extended to higher BZs). The highest
intensity has been normalized to one. The zone-to-zone change in
−ImχL(q,ω = 1.04 eV) is mainly an overall decrease in the intensity
with smaller changes due to matrix element effects. The envelope of
−ImχL(q,ω) is fit by using a simple Lorentzian shape given by the
red dashed line. Labels I, II, and III correspond to the zone indices in
Fig. 3.
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FIG. 6. (Color online) Cuts of −ImχRPA(q,ω = 1.04 eV) (in red
dashed line) and −ImχL(q,ω) (in blue solid line) taken along (π,0) in
Fig. 3 (extended to higher BZs). The highest intensity of each curve
has been scaled by taking the highest intensity of −ImχL(q,ω) as
unity. Labels I, II, and III correspond to the zone indices in Fig. 3. No
plasmon peak is present in this energy slice ω = 1.04 eV.

modes. Figure 6 illustrates the corrections are more important
when the external perturbation is of very long wavelength
(i.e., q small).53 Interestingly when q is of the order of k0,
−ImχRPA(q,ω) recovers back to the −ImχL(q,ω).

V. CONCLUSIONS

We have presented a formalism for a first principles
computation of the Lindhard susceptibility χL(q,ω) in ex-
tended momentum space. We have demonstrated a tremen-
dous improvement in performance by calculating ImχL(q,ω)
through an approximation involving products of real space
spectral functions B(r,ω) and FFTs instead of using the
standard approach involving costly matrix multiplications. Our
theoretical ImχL(q,ω) results for the doped cuprate NCCO
will allow a detailed comparison with the RIXS experiments,
and hence an assessment of the extent to which ImχL(q,ω)
represents a good approximation to the RIXS cross section.
The present work also provides a realistic linear response based
starting point for developing a many-body perturbation theory
of particle-hole excitations within the DFT framework.
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APPENDIX: RELATION BETWEEN SUSCEPTIBILITY AND
SPECTRAL FUNCTION

We introduce the susceptibility matrix element

Fν,μ = f (εν) − f (εμ)

h̄ω + εν − εμ + iγ
. (A1)
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where f (ε) is the Fermi function. The term Im[Fν,μ] can be
also written in terms of the spectral function Aν . By using

Aν(ω) = Im

[
1

h̄ω − εν + iγ

]
, (A2)

we obtain

Im[Fν,μ] = −
∫ 0

−ω

dεAν(ε)Aμ(ε + ω). (A3)

1L. Van Hove, Phys. Rev. 95, 249 (1954).
2E. Isaacs and P. Platzman, Phys. Today 49, 40 (1996).
3W. Schülke, Electron Dynamics by Inelastic X-Ray Scattering
(Oxford University Press, Oxford, 2007).

4A. Kotani and S. Shin, Rev. Mod. Phys. 73, 203 (2001).
5J.-P. Rueff and A. Shukla, Rev. Mod. Phys. 82, 847 (2010); L. J. P.
Ament et al., ibid. 83, 705 (2011).

6P. Abbamonte, C. A. Burns, E. D. Isaacs, P. M. Platzman, L. L.
Miller, S. W. Cheong, and M. V. Klein, Phys. Rev. Lett. 83, 860
(1999).

7J. van den Brink and M. van Veenendaal, Europhys. Lett 73, 121
(2006).

8R. S. Markiewicz and A. Bansil, Phys. Rev. Lett. 96, 107005 (2006).
9K. H. Ahn, A. J. Fedro, and M. van Veenendaal, Phys. Rev. B 79,
045103 (2009); C. J. Jia, C.-C. Chen, A. P. Sorini, B. Moritz, and
T. P. Devereaux, arXiv:1109.3446 [cond-mat.str-el].

10S. Grenier, J. P. Hill, V. Kiryukhin, W. Ku, Y.-J. Kim, K. J. Thomas,
S.-W. Cheong, Y. Tokura, Y. Tomioka, D. Casa, and T. Gog, Phys.
Rev. Lett. 94, 047203 (2005).

11Y. J. Kim, J. P. Hill, C. A. Burns, S. Wakimoto, R. J. Birgeneau,
D. Casa, T. Gog, and C. T. Venkataraman, Phys. Rev. Lett. 89,
177003 (2002).

12K. Ishii et al., Phys. Rev. Lett. 94, 207003 (2005).
13E. Collart, A. Shukla, J.-P. Rueff, P. Leininger, H. Ishii, I. Jarrige,

Y. Q. Cai, S.-W. Cheong, and G. Dhalenne, Phys. Rev. Lett. 96,
157004 (2006).

14G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601
(2002).

15S. L. Adler, Phys. Rev. 126, 413 (1962).
16A. Fleszar, R. Stumpf, and A. G. Eguiluz, Phys. Rev. B 55, 2068

(1997).
17A. Fleszar, A. A. Quong, and A. G. Eguiluz, Phys. Rev. Lett. 74,

590 (1995).
18W. Ku and A. G. Eguiluz, Phys. Rev. Lett. 82, 2350 (1999).
19I. D. Hughes et al., Nature (London) 5, 446 (2007).
20P. Abbamonte, J. P. Reed, Y. I. Joe, Yu Gan, and D. Casa, Phys.

Rev. B 80, 054302 (2009).
21K. Sturm, Z. Naturforsch. A 48, 233 (1993).
22I. G. Kaplan, B. Barbiellini, and A. Bansil, Phys. Rev. B 68, 235104

(2003).
23B. Barbiellini and A. Bansil, J. Phys. Chem. Solids 65, 2031

(2004).
24See, e.g., Xiao-Gang Wen, Quantum Field Theory of Many-Body

Systems (Oxford University Press, Oxford, 2004). On p. 176,
the so-called Wick’s theorem approximation is invoked to derive
Eq. (4.3.16), which gives the imaginary part of the susceptibility
for a system with impurities and/or interactions which break the
Galileo invariance.

25T. K. Ng and B. Dabrowski, Phys. Rev. B 33, 5358 (1986).
26Gerald D. Mahan, Many-Particle Physics (Springer, Berlin, 2000).

27See, e.g., Ref. 3, p. 137.
28R. S. Markiewicz, J. Lorenzana, G. Seibold, and A. Bansil, Phys.

Rev. B 81, 014509 (2010).
29C. Utfeld, J. Laverock, T. D. Haynes, S. B. Dugdale, J. A. Duffy,

M. W. Butchers, J. W. Taylor, S. R. Giblin, J. G. Analytis, J.-H.
Chu, I. R. Fisher, M. Itou, and Y. Sakurai, Phys. Rev. B 81, 064509
(2010).

30A. Bansil, S. Kaprzyk, P. E. Mijnarends, and J. Toboła, Phys. Rev.
B 60, 13396 (1999); S. Kaprzyk and A. Bansil, ibid. 42, 7358
(1990).

31S. Massidda, Jaejun Yu, and A. J. Freeman, Physica C 152, 251
(1988).

32In our LDA calculations, we found a paramagnetic copper layer and
a half-metallic ferromagnetic ground state of Nd. To remove the Nd
levels from the vicinity of the Fermi level, we simply used the
minority spin potential. For a large unit cell, LDA does recover the
correct rare earth antiferromagnetic ground state; see T. Jarlborg,
B. Barbiellini, H. Lin, R. S. Markiewicz, and A. Bansil, Phys. Rev
B 84, 045109 (2011).

33N. P. Armitage, P. Fournier, and R. L. Greene, Rev. Mod. Phys. 82,
2421 (2010).

34The rigid band model is expected to be a good approximation for
doping away from the cuprate layers. It will however be interesting
to examine doping effects by using supercell or other first principles
approaches.35,36

35A. Bansil, Z. Naturforsch., A 48, 165 (1993); H. Asonen,
M. Lindroos, M. Pessa, R. Prasad, R. S. Rao, and A. Bansil,
Phys. Rev. B 25, 7075 (1982); R. Prasad and A. Bansil, ibid. 21,
496 (1980); S. N. Khanna, A. K. Ibrahim, S. W. McKnight, and
A. Bansil, Solid State Commun. 55, 223 (1985).

36H. Lin, S. Sahrakorpi, R. S. Markiewicz, and A. Bansil, Phys. Rev.
Lett. 96, 097001 (2006).

37P. E. Mijnarends and A. Bansil, in Positron Spectroscopy of Solids,
edited by A. Dupasquier and A. P. Mills Jr. (IOS Press, Amsterdam,
1995), p. 25.

38EMD can be probed directly via Compton scattering39 or positron-
annihilation40 experiments.

39Y. Tanaka, Y. Sakurai, A. T. Stewart, N. Shiotani, P. E. Mijnarends,
S. Kaprzyk, and A. Bansil, Phys. Rev. B 63, 045120 (2001);
S. Huotari, K. Hamalainen, S. Manninen, S. Kaprzyk, A. Bansil,
W. Caliebe, T. Buslaps, V. Honkimaki, and P. Suortti, ibid. 62, 7956
(2000); G. Stutz, F. Wohlert, A. Kaprolat, W. Schülke, Y. Sakurai, Y.
Tanaka, M. Ito, H. Kawata, N. Shiotani, S. Kaprzyk, and A. Bansil,
ibid. 60, 7099 (1999).

40P. E. Mijnarends, A. C. Kruseman, A. van Veen, H. Schut, and
A. Bansil, J. Phys.: Condens. Matter 10, 10383 (1998); L. C.
Smedskjaer, A. Bansil, U. Welp, Y. Fang, and K. G. Bailey, Physica
C 192, 259 (1992).

41R. S. Markiewicz, S. Sahrakorpi, M. Lindroos, Hsin Lin, and
A. Bansil, Phys. Rev. B 72, 054519 (2005).

224529-5

http://dx.doi.org/10.1103/PhysRev.95.249
http://dx.doi.org/10.1063/1.881488
http://dx.doi.org/10.1103/RevModPhys.73.203
http://dx.doi.org/10.1103/RevModPhys.82.847
http://dx.doi.org/10.1103/RevModPhys.83.705
http://dx.doi.org/10.1103/PhysRevLett.83.860
http://dx.doi.org/10.1103/PhysRevLett.83.860
http://dx.doi.org/10.1209/epl/i200510366-9
http://dx.doi.org/10.1209/epl/i200510366-9
http://dx.doi.org/10.1103/PhysRevLett.96.107005
http://dx.doi.org/10.1103/PhysRevB.79.045103
http://dx.doi.org/10.1103/PhysRevB.79.045103
http://arXiv.org/abs/arXiv:1109.3446
http://dx.doi.org/10.1103/PhysRevLett.94.047203
http://dx.doi.org/10.1103/PhysRevLett.94.047203
http://dx.doi.org/10.1103/PhysRevLett.89.177003
http://dx.doi.org/10.1103/PhysRevLett.89.177003
http://dx.doi.org/10.1103/PhysRevLett.94.207003
http://dx.doi.org/10.1103/PhysRevLett.96.157004
http://dx.doi.org/10.1103/PhysRevLett.96.157004
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/PhysRev.126.413
http://dx.doi.org/10.1103/PhysRevB.55.2068
http://dx.doi.org/10.1103/PhysRevB.55.2068
http://dx.doi.org/10.1103/PhysRevLett.74.590
http://dx.doi.org/10.1103/PhysRevLett.74.590
http://dx.doi.org/10.1103/PhysRevLett.82.2350
http://dx.doi.org/10.1103/PhysRevB.80.054302
http://dx.doi.org/10.1103/PhysRevB.80.054302
http://dx.doi.org/10.1103/PhysRevB.68.235104
http://dx.doi.org/10.1103/PhysRevB.68.235104
http://dx.doi.org/10.1016/j.jpcs.2004.08.016
http://dx.doi.org/10.1016/j.jpcs.2004.08.016
http://dx.doi.org/10.1103/PhysRevB.33.5358
http://dx.doi.org/10.1103/PhysRevB.81.014509
http://dx.doi.org/10.1103/PhysRevB.81.014509
http://dx.doi.org/10.1103/PhysRevB.81.064509
http://dx.doi.org/10.1103/PhysRevB.81.064509
http://dx.doi.org/10.1103/PhysRevB.60.13396
http://dx.doi.org/10.1103/PhysRevB.60.13396
http://dx.doi.org/10.1103/PhysRevB.42.7358
http://dx.doi.org/10.1103/PhysRevB.42.7358
http://dx.doi.org/10.1016/0921-4534(88)90136-0
http://dx.doi.org/10.1016/0921-4534(88)90136-0
http://dx.doi.org/10.1103/PhysRevB.84.045109
http://dx.doi.org/10.1103/PhysRevB.84.045109
http://dx.doi.org/10.1103/RevModPhys.82.2421
http://dx.doi.org/10.1103/RevModPhys.82.2421
http://dx.doi.org/10.1103/PhysRevB.25.7075
http://dx.doi.org/10.1103/PhysRevB.21.496
http://dx.doi.org/10.1103/PhysRevB.21.496
http://dx.doi.org/10.1016/0038-1098(85)90720-3
http://dx.doi.org/10.1103/PhysRevLett.96.097001
http://dx.doi.org/10.1103/PhysRevLett.96.097001
http://dx.doi.org/10.1103/PhysRevB.63.045120
http://dx.doi.org/10.1103/PhysRevB.62.7956
http://dx.doi.org/10.1103/PhysRevB.62.7956
http://dx.doi.org/10.1103/PhysRevB.60.7099
http://dx.doi.org/10.1088/0953-8984/10/46/005
http://dx.doi.org/10.1016/0921-4534(92)90830-6
http://dx.doi.org/10.1016/0921-4534(92)90830-6
http://dx.doi.org/10.1103/PhysRevB.72.054519


YUNG JUI WANG et al. PHYSICAL REVIEW B 85, 224529 (2012)

42P. Blandin, S. Massidda, B. Barbiellini, T. Jarlborg, P. Lerch,
A. A. Manuel, L. Hoffmann, M. Gauthier, W. Sadowski, E. Walker,
M. Peter, Jaejun Yu, and A. J. Freeman, Phys. Rev. B 46, 390 (1992).

43B. Barbiellini, S. B. Dugdale, and T. Jarlborg, Comput. Mater. Sci.
28, 287 (2003).

44P. E. Mijnarends, Physica 63, 235 (1973).
45Similar matrix element effects are seen in angle-resolved photoe-

mission spectra of the cuprates.46

46M. Lindroos and A. Bansil, Phys. Rev. Lett. 77, 2985 (1996);
A. Bansil, M. Lindroos, S. Sahrakorpi, and R. S. Markiewicz,
Phys. Rev. B 71, 012503 (2005); J. C. Campuzano, L. C.
Smedskjaer, R. Benedek, G. Jennings, and A. Bansil, ibid. 43, 2788
(1991); M. C. Asensio, J. Avila, L. Roca, A. Tejeda, G. D. Gu,
M. Lindroos, R. S. Markiewicz, and A. Bansil, ibid. 67, 014519
(2003).

47H. N. Rojas, R. W. Godby, and R. J. Needs, Phys. Rev. Lett. 74,
1827 (1995).

48The CPU used in the calculations is the Intel Core i7-920.
49Susmita Basak, Tanmoy Das, Hsin Lin, J. Nieminen, M. Lindroos,

R. S. Markiewicz, and A. Bansil, Phys. Rev. B 80, 214520
(2009).

50Y. W. Li, D. Qian, L. Wray, D. Hsieh, Y. Xia, Y. Kaga, T. Sasagawa,
H. Takagi, R. S. Markiewicz, A. Bansil, H. Eisaki, S. Uchida, and
M. Z. Hasan, Phys. Rev. B 78, 073104 (2008).

51We would like to point out that this fit has no direct consequences
for the f -sum rule since it involves only the energy slice ω =
1.04 eV while the f -sum rule is the result of an integration
on all the energies. The f -sum rule is automatically fulfilled by
our approximation if one neglects self energy corrections and
one considers the linear response Lindhard susceptibility (used in
this paper) as shown in Ref. 52. Moreover we have numerically
checked that

∫
ωImχL(q,ω = 0)dω is zero (below 10−17) as a direct

consequence of the f -sum rule.
52See, e.g., G. F. Giuliani and G. Vignale, Quantum Theory of the

Electron Liquid (Cambridge University Press, Cambridge, 2005),
Chap. 3.

53Interestingly, a full matrix treatment of the susceptibility χRPA

shows that plasmons from the first Brillouin zone can couple with
excitations at large momentum transfer. See, e.g., R. Hambach,
C. Giorgetti, F. Sottile, L. Reining, N. Hiraoka, Y. Q. Cai, A. G.
Marinopoulos, and F. Bechstedt, Phys. Rev. Lett. 101, 266406
(2008).

224529-6

http://dx.doi.org/10.1103/PhysRevB.46.390
http://dx.doi.org/10.1016/S0927-0256(03)00114-9
http://dx.doi.org/10.1016/S0927-0256(03)00114-9
http://dx.doi.org/10.1016/0031-8914(73)90311-X
http://dx.doi.org/10.1103/PhysRevLett.77.2985
http://dx.doi.org/10.1103/PhysRevB.71.012503
http://dx.doi.org/10.1103/PhysRevB.43.2788
http://dx.doi.org/10.1103/PhysRevB.43.2788
http://dx.doi.org/10.1103/PhysRevB.67.014519
http://dx.doi.org/10.1103/PhysRevB.67.014519
http://dx.doi.org/10.1103/PhysRevLett.74.1827
http://dx.doi.org/10.1103/PhysRevLett.74.1827
http://dx.doi.org/10.1103/PhysRevB.80.214520
http://dx.doi.org/10.1103/PhysRevB.80.214520
http://dx.doi.org/10.1103/PhysRevB.78.073104
http://dx.doi.org/10.1103/PhysRevLett.101.266406
http://dx.doi.org/10.1103/PhysRevLett.101.266406

