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Asymptotic motion of a single vortex in a rotating cylinder
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We study numerically the behavior of a single quantized vortex in a rotating cylinder. We study in
particular the spiraling motion of a vortex in a cylinder that is parallel to the rotation axis. We determine
the asymptotic form of the vortex and its axial and azimuthal propagation velocities under a wide range of
parameters. We also study the stability of the vortex line and the effect of tilting the cylinder from the rotation
axis.
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I. INTRODUCTION

Since the discovery of quantized vortices, the motion of
those vortices under various conditions has attracted continued
attention of researchers.1–7 In recent years emphasis has been
shifting to the study of the so-called quantum turbulence and
numerical simulations with a large number of vortices.8–14

This requires a considerable amount of computing power,
especially when calculations are performed using the full
Biot-Savart equations.3 There is, however, still a need to better
understand the motion of a single vortex. Since the motion of
a curved vortex line is somewhat counterintuitive, and solving
the equations analytically is difficult and prone to errors, it is
convenient to use numerical simulations. For single vortices,
it also becomes a realistic possibility to scan a large volume
of parameter space, that is, various combinations of pressure
p, temperature T , rotational velocity �, vessel size and shape,
and initial vortex configurations.

Existing computer software, previously used mainly for
studying the large scale behavior of many vortices,15–17 is
applied to study the motion of a single vortex line. More
specifically, we study the motion of a single superfluid vortex
filament in a rotating infinite cylinder, as illustrated in Figs. 1
and 2. This case has recently been studied using analytic
approximations in Ref. 18. A closely related problem, where
a wire is placed on the axis of the cylinder, has been studied
earlier.19–22

Our main point of interest is the asymptotic velocity of the
vortex end touching the side wall of the cylinder. We calculate
the evolution of the vortex from the initial state using the
vortex filament model of the two-fluid paradigm with Biot-
Savart formalism, until the asymptotic situation is reached.
We assume the normal fluid component of the velocity to be
in rigid body rotation. Although we have used 3He-B-specific
parameters in our calculations, the methods and the results
can be generalized to vortices in other superfluids and Bose-
Einstein condensates in many cases.

One surprising effect discovered in our calculations is the
stability of the vortex, even in the low temperature limit. This
contradicts the expectations based especially on experimental
results in 3He-B.13,23 We assume that the discrepancy with
experiments is caused by some surface effects not accounted
for in our model (such as pinning), or due to some uncontrolled
heat leaks or superflows that may destabilize the vortices in
the experiments.

II. MODEL

We study a superfluid in an infinite cylinder of radius R that
rotates at constant angular velocity �. For the most part in this
paper the axis of rotation is assumed to be the cylinder axis.
The effects caused by a rotation axis that is tilted with respect
to the cylinder axis are considered in Secs. VI and VII at the
end of the paper. We use cylindrical coordinates (r,φ,z) fixed to
the cylinder. Our study is based on the two-fluid model, where
the normal and superfluid components have velocities vn and
vs, respectively. The normal component is assumed to be in
rigid body rotation vn = � × r. This is a good assumption in
3He-B, because mutual friction is weak in comparison to the
viscosity of the normal fluid.4

The superfluid velocity vs is determined by vortex lines.3

The positions on the vortex lines are given by s(ξ,t), which is
parametrized by the vortex length ξ and time t . (The direction
in which ξ increases conforms to the right-hand rule for the
superfluid circulation around the vortex.) Partial derivatives
with respect to ξ are denoted by primes. Then, the unit tangent
of the vortex core line is the first derivative of s with respect
to ξ . This is denoted by s′ (or ŝ′ to emphasize that it is a unit
vector). The superfluid velocity vs is calculated using the (full)
Biot-Savart formalism:

vs(r,t) = vω + vb, (1)

with

vω = κ

4π

∫
L

(s1 − r) × ds1

|s1 − r|3 , (2)

where L denotes all the vortex lines and κ is the circulation of
the superfluid velocity around a vortex line; all the positions
and velocities are in laboratory coordinates. The first term vω

in Eq. (1) needs to be numerically calculated from the integral
(2). It has a divergence on the vortex core, which has to be cut
off at the vortex core radius24 a, see Refs. 3 and 25 for details.
The second term vb is the boundary field, or image velocity
field, needed to prevent flow across the vessel boundary. The
boundary field vb can be calculated from the Laplace equation,
or by the method of image vortices. To calculate vb we use the
method of approximate image vortices as in Ref. 25.

The derivative of s(ξ,t) with respect to time defines the
vortex line velocity vL except that the component of vL parallel
to the line is not defined. The equation of motion is commonly
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FIG. 1. (Color online) The evolution of a vortex in a rotating
coordinate system. The total time span 2.79/α� comprises 61
snapshots. Other parameters are Reα = 3.63 (∼0.4Tc in 3He-B) and
2πR2�/κ = 85.5.

written in laboratory coordinates as3

vL = vs + αŝ′ × (vn − vs) − α′ŝ′ × [ŝ′ × (vn − vs)]. (3)

It contains the mutual friction parameters α and α′. They
depend on temperature and pressure, but the temperature
dependence is usually much stronger, for example, in the
case of superfluid 3He-B the temperature dependence is
dramatic.26,27 A useful new quantity involving α and α′ can
be defined as Reα := (1 − α′)/α. It has some similarity with
the Reynolds number defined in normal fluids.23,28,29 In 3He-B
the quantity Reα(T ) decreases monotonically from ∞ to 0,
when the temperature increases from 0 to Tc. Furthermore, the
experimentally accessible range of Reα in 3He-B essentially
covers this whole range. Table I contains some approximative
values of the parameters α, α′, and Reα , as functions of
temperature.

Using the fact that the normal component is in rigid body
motion (vn = � × r in the laboratory coordinates), we can
rewrite the equation of motion (3) in rotating coordinates
(where vn = 0) as

vL = α(Reαvs − ŝ′ × vs). (4)

From now on all velocities will be in rotating coordinates,
unless explicitly stated otherwise.

We study in particular the velocity of the vortex end in the
long-time limit (t → ∞). For that we define vLz and vLφ by
writing in the rotating frame:

vL = vLzêz + vLφ êφ. (5)

It is also possible to define the climbing angle β of the vortex
in the rotating frame by tan β = vLz/vLφ . The climbing angle
in the laboratory frame satisfies tan β = vLz/(vLφ + R�).
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FIG. 2. (Color online) The evolution of the vortex shown in Fig. 1
presented in cylindrical coordinates fixed to the rotating frame. (a)
(r,z) plot with 37 snapshots in time span 4.19/α�. (b) Polar plot with
31 snapshots in time span 1.40/α�.

III. SCALING PROPERTIES

The parameter space of the system (without considering
the parameters describing the initial vortex configuration)
consists of mutual friction parameters α and α′, the vortex
core radius a, the circulation quantum κ , the cylinder radius
R, the angular velocity �, and for a tilted cylinder the
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TABLE I. Tabulated values of α, α′, and Reα used in the numerical
calculations. These values approximately correspond to those in 3He-
B at 29.34 bars at the temperatures shown on the left. The limit values
of the parameters at T = 0 and T = Tc are also shown.

T/Tc α α′ Reα

0.00 0 0 ∞
0.25 1.265828E−02 5.255042E−03 7.858453E+01
0.30 4.701086E−02 3.032361E−02 2.062665E+01
0.35 1.200093E−01 8.150743E−02 7.653512E+00
0.40 2.328964E−01 1.556440E−01 3.625457E+00
0.45 3.467192E−01 2.429385E−01 2.183500E+00
0.50 4.565632E−01 3.333683E−01 1.460108E+00
0.55 5.620771E−01 4.201522E−01 1.031616E+00
0.60 6.732573E−01 4.999895E−01 7.426737E−01
0.65 8.104478E−01 5.719796E−01 5.281283E−01
0.70 1.004341E+00 6.365370E−01 3.618920E−01
0.75 1.295975E+00 6.946998E−01 2.355757E−01
0.80 1.736739E+00 7.478107E−01 1.452085E−01
0.85 2.448636E+00 7.974992E−01 8.269943E−02
1.00 ∞ 1 0

tilting angle θ . The exploration of this parameter space is
simplified by dimensional analysis. Let us, for example,
study the asymptotic axial velocity vLz (5) of the vortex end
in the absence of tilting, θ = 0. According to dimensional
analysis, the dimensionless velocity vLz/R� can only depend
on dimensionless quantities appearing in the problem, which in
this case are R/a, R2�/κ , α, and α′. Thus the parameter space
is four dimensional. Using properties specific to the present
problem, we show in the following that this space can further
be reduced to three dimensions exactly and to two dimensions
approximately.

Let us consider the evolution of a vortex state from a fixed
initial configuration. We see from Eq. (4) that varying α but
keeping Reα constant has the effect of changing the time scale
only.30 This means that the dimensionless time is α�t and the
dimensionless line velocity is vL/αR�, but otherwise there is
no dependence on α. (Note that the dimensionless superfluid
velocity vs/R� does not have α.) Since the asymptotic velocity
is obtained in the limit t → ∞, the dependence on α�t drops
out. Since the system is dissipative (for α �= 0), the same final
state can be obtained by a variety of initial states, that is, the
details of the initial state are not important either. Thus we
conclude that the asymptotic velocity has the form

vLz = αR�Gz

(
R2�

κ
,
R

a
,
1 − α′

α

)
, (6)

with some, as yet unknown, function Gz. A similar analysis
can be done for the azimuthal velocity, and the result can be
written as

vLφ = (α′ − 1)R�Gφ

(
R2�

κ
,
R

a
,
1 − α′

α

)
(7)

with a function Gφ . Note that Eq. (7) is valid only in the rotating
frame; the laboratory frame azimuthal velocity vLφ + R� does
not have this form. Because the parameter R2�/κ appears
repeatedly, we define a dimensionless angular velocity:

ω := 2πR2�

κ
. (8)

FIG. 3. (Color online) The effect of the parameter R/a. The solid
lines have R/a equal to 1, 0.5, and 0.25 times 1.77 × 105 while
other parameters have constant values (α�t = 0.75, Reα = 3.63, and
ω = 85.5). These can be contrasted to two cases, which differ by
±10% in the value of � from the middle case (the dashed line has
α�t = 0.82 and ω = 94.1 and the dash-dotted line has α�t = 0.67
and ω = 77.0). The vortices are shown in the rotating coordinate
system.

We also remind that the last parameter in Eqs. (6) and (7) has
the short-hand Reα ≡ (1 − α′)/α.

Another, in this case approximate, simplification is offered
by the fact that vL has only a weak logarithmic dependence
on R/a (see, e.g., Refs. 31 and 32). Hence, different values
of R/a have only a minor effect on the the results; this is
demonstrated in Fig. 3. Because of this weak dependence, we
have fixed R/a = 1.77 × 105 in all other calculations in this
paper except in the ones presented in Fig. 7.

We consider explicitly the case, where the lower end of
the cylinder (small z side) is in a vortex state with positive
circulation and the angular velocity � is positive. The case
of negative circulation and negative angular velocity has the
same vLz and opposite vLφ .

IV. CRITICAL ANGULAR VELOCITIES

Two critical angular velocities are important for our
problem. They can be found analytically by studying the
following expression of free energy F (per unit length) of
the superfluid with an axially oriented vortex line displaced at
the distance r from the cylinder axis:2,33,34

F (r,�) = ρsκ
2

4π

[
ln

R

a
+ ln

(
1 − r2

R2

)
− 2πR2�

κ

(
1 − r2

R2

)]
.

(9)

This expression is valid when a � R.
In the order of increasing �, the first critical velocity �m

corresponds to an axial vortex becoming metastable. It can be
obtained from the condition

∂2F (r,�m)

∂r2

∣∣∣∣
r=0

= 0. (10)
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(∂F/∂r = 0 is automatically satisfied at r = 0 for all � � 0.)
This condition gives

�m = κ

2πR2
. (11)

In dimensionless form: ωm ≡ (2πR2/κ)�m = 1. This first
critical angular velocity is analogous to a critical field in a type
II superconductor, above which the so-called Bean-Livingston
barrier35 is created.

The second critical velocity �s corresponds to a single axial
vortex becoming absolutely stable, that is, its free energy (8)
becomes less than the Landau-state free energy F = 0. This
leads to

�s = κ

2πR2
ln

R

a
. (12)

In dimensionless form: ωs ≡ 2πR2�s/κ = ln(R/a), which
in our case (R/a = 1.77 × 105) has the value 12.08. The
second critical angular velocity is an analog of the lower
critical magnetic field, at which the phase transition between
the Meissner state and the mixed state takes place in type II
superconductors.

The one-vortex state loses absolute stability when the two-
vortex state becomes stable,33,34 but it still remains metastable.
The critical velocity vc for vortex nucleation at the cylindrical
wall limits the metastability of the one-vortex state to ω <

ωc := 2πRvc/κ . We study below a wide range of ω, but the
results are applicable only as long as ω remains below ωc. For
3He-B in a vessel with smooth walls ωc 	 1 can be achieved,
which justifies the present study.

V. ASYMPTOTIC VORTEX VELOCITY
IN A NONTILTED CYLINDER

The evolution of the vortex is solved by numerically
integrating Eq. (4) forward in time in the rotating frame. Our
numerical scheme uses a half-infinite cylinder, but the results
for the asymptotic velocity and the vortex form in an untilted
cylinder are equally valid for an infinite cylinder. For large
rotation velocities we typically use a quarter vortex ring as our
initial condition. The radius of the ring is half of the cylinder
radius. The ring is situated so that the vortex starts from the
bottom of the cylinder and ends at the cylinder wall. For small
rotational velocities (� � �s) the initial configuration was
taken from previous iterations at somewhat larger �. This was
necessary in order to reach the steady state quickly enough,
or even in order to avoid the shrinking away of the initial
configuration. Both ends of the vortex are allowed to move
freely. Any vortex end touching the wall is always normal to
it. In principle, a vortex line may also form a closed loop,
without touching the boundary at all. A vortex loop may be
created when a vortex line reconnects with itself. If a vortex
loop comes very close to the wall, it reconnects with it, that is,
snaps open, with the two vortex ends connecting to the wall
orthogonally.

The use of a quarter vortex ring as the initial condition is
not necessary. What matters is whether the required asymptotic
evolution (if it exists) is reached from the initial condition or
not, and a quarter ring is suitable in a large parameter range.
However, if the temperature is low and the shape of the vortex
is far from the asymptotic one, the vortex may oscillate a long

time before reaching a stable form. For Reα � 100, even the
quarter ring vortex leads to long-lasting oscillations in the
vortex shape.

Our goal is to study the velocity of the end point of the
vortex vL (5). Before going to the general case, we consider
some limiting cases where analytic solutions are found.

In the limit ω 	 1, the cylinder wall at r = R can be
thought of as a plane and we assume that the vortex line
approaches the wall as a straight line normal to it. We can
now put � = �êz, r = Rêr , a point on the large cylinder wall
(or plane) and ŝ′ = êr . This gives vs = −R�êφ in rotating
coordinates, and inserting it into Eq. (4) we get

vL = R�[αêz + (α′ − 1)êφ]. (13)

Hence vLz = αR�, vLφ = (α′ − 1)R�, and tan β = −Re−1
α .

Another exact result corresponds to vanishing velocity of
the vortex line vL = 0 at the critical angular velocity � = �s

(12). Since at � = �s the one-vortex and no-vortex states are
in equilibrium, there is no force to drive the vortex. Therefore
at � = �s the vortex must be stationary in the rotating frame,
for all temperatures 0 < T < Tc.

A third special case is the limit T → 0. In this limit the
normal fluid component vanishes and thus the vortex does
not feel the rotation of the container. Therefore the shape
and the motion of the vortex, as measured in the laboratory
coordinates, do not depend on the rotational velocity of the
vessel. As the previous limiting case (� = �s) extends to
this limit as well, we expect that the shape of the vortex
in the T → 0 limit is the same as the equilibrium shape at
� = �s. This implies that the velocity in the laboratory system
is vLz = 0 and vLφ = R�s. In the rotating frame these translate
to vLz = 0 and vLφ = R(�s − �).

Based on these limiting cases, we can refine the dependen-
cies (6) and (7) by introducing

vLz = αR (� − �s) (1 − λz) , (14)

vLφ = (α′ − 1)R (� − �s) (1 − λφ). (15)

We have defined new dimensionless functions λz and λφ ,
which, similarly as Gz and Gφ , are functions of ω (8), R/a,
and Reα . The rationale here is that the λ functions are small
compared to unity, so that a crude approximation can be
obtained by neglecting λz and λφ in Eqs. (14) and (15). This
already implies that the sign of vLz is determined by � − �s:
the vortex grows for � > �s and shrinks for � < �s. The sign
of vLφ is determined similarly, but noting that the coefficient
α′ − 1 is negative.

The numerically calculated asymptotic velocities vLz and
vLφ are shown in Figs. 4 and 5. The results are presented using
the λ functions defined in Eqs. (14) and (15). The figures
show some scatter especially for � close to �s that arises
from inaccuracies in the numerical calculation. In spite of this,
we can conclude that the limiting cases mentioned above are
consistent with the data. In particular, both λz and λφ are finite
functions, which guarantees stationarity at � = �s. Both λz

and λφ approach zero in the limit of large ω. In the limit T → 0,
λφ approaches zero irrespective of ω. There is no restriction on
λz in the limit T → 0 since the prefactor α → 0 in Eq. (14).

From Figs. 4 and 5 one can see that both λz and λφ

are constants (independent of T ) at � = �s. This can be
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FIG. 4. (Color online) The axial velocity of the vortex vLz

expressed by λz (14). The curves are plotted as a function of
ω ≡ 2πR2�/κ . The used values of Reα are given in Table I.
They correspond approximately to temperatures T/Tc = 0.25,0.30,

0.35, . . . ,0.85 in 3He-B. The two vertical dashed lines correspond to
the two critical angular velocities �m and �s. The value of �s used
in calculating λz and λφ is an average obtained numerically from
the calculated data �s = 12.55�m, which deviates slightly from the
theoretical value �s = ln(R/a)�m = 12.08�m. Using this numerical
value instead of the theoretical one eliminates a peak in λz and λφ

near �s that we believe to be a numerical artifact. The data still
shows some numerical error, especially at low temperatures and for
angular velocities � ≈ �s. The numerical calculation is consistent
with the expectation that λz is a constant at � = �s, and gives the
value λz ≈ 0.14.

understood by considering the mutual friction as a small
perturbation in the vicinity of � = �s. As the mutual
friction parameters appear explicitly in Eqs. (14) and (15),
the functions λz and λφ should not depend on (1 − α′)/α
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FIG. 5. (Color online) The azimuthal velocity of the vortex vLφ

in the rotating frame, expressed by λφ (15). The curves are plotted
as a function of ω at the same values of the parameter Reα as used
in Fig. 4, again corresponding to approximate temperatures from
0.25Tc to 0.85Tc in 3He-B. The two vertical dashed lines correspond
to the two critical angular velocities �m and �s. The value of �s

used for calculating λφ is the same as for λz in Fig. 4. Here also,
numerical errors are prominent for low temperatures and for � � �s.
The numerical results are consistent with the expectation that λφ

vanishes at � = �s, and in the low temperature limit. The negative
values of λφ most likely arise from numerical inaccuracy.

at � = �s. Generalizing this argument, we can say that
around � = �s there is an inertial regime, where the vortex
shape is dominated by nondissipative forces. This regime
is characterized by λz ≈ 0.14. There is a complementary
dissipative regime, where λz � 0.14. The boundary between
the two is at � − �s ≈ Reα�s. Both the inertial and dissipative
limits seem to correspond to vanishing λφ , but nonvanishing
values appear in the crossover regime.

We note that although the curves in Figs. 4 and 5 are
labeled by temperature, the results are completely general. The
temperatures correspond to different values of Reα according
to Table I and the dependence on α or α′ is through the scaling
relations (6) and (7), or (14) and (15).

For large ω we can identify the approximate power laws

vLz � αR�[1 − (�/�z)
kz ],

(16)
vLφ � (α′ − 1)R�[1 − (�/�φ)kφ ].

Fitting in the range � ∈ [85�m,5472�m] at Reα = 0.083
(∼0.85Tc) gives kz = −0.72 and �z = 10.6�m. Fitting in the
range � ∈ [684�m,5472�m] at Reα = 0.083 (∼0.85Tc) gives
kφ = −0.71 and �φ = 6.47�m.

These results for the full Biot-Savart model can be com-
pared with those for a local induction approximation3,36,37

(LIA) method, where the Biot-Savart integral (2) is replaced
by a local term:

vω = κ

4π
ln

(
8

e1/2a|s′′|
)

ŝ′ × s′′. (17)

We have made numerical tests using this approximation. The
main difference to the results above is that the effective value
of �s is increased by 5%–7%. An alternative form of LIA is to
assume that the logarithmic factor in (17) is a constant, which
then can be adjusted to reproduce the exact value of �s.18

Even if the LIA model gives a suitable approximation for the
velocities, it gives wrong results in some cases, an example
being the prediction �m = 0.

The shape of the top part of a rotating vortex is depicted
in Fig. 6. The equilibrium shape at ω = ωs (solid line) is
independent of the friction parameters, as discussed above. The
equilibrium shape in the local induction approximation can be
solved analytically if a constant cut-off radius is assumed.18

This result (dotted line) slightly differs from the result of our
numerical full Biot-Savart calculation. The most important
difference in the vortex shape is that within the LIA model
the vortex approaches the rotation axis exponentially, while
the full Biot-Savart model gives slower convergence towards
the rotation axis (possibly with some power law). This is due
to vortex segments near r ≈ R, which induce an azimuthal
velocity field that vanishes slower than exponentially. Both of
these structures lie in a single plane, that is, φ as a function of
z (or r) is a constant. At higher rotational velocity the shape
of the vortex changes. In Fig. 6 the curve at 0.85Tc (dashed
line) represents the dissipation-dominated case. In this limit
the vortex is again confined to a single plane. In the crossover
regime there are deviations from a single plane, the curve at
0.25Tc (dash-dotted line) representing an extreme example.

The vortex shape can also be analyzed as follows. Once
we know the line velocity from Figs. 4 and 5, we can invert
the equation of motion (4) to find the transverse part of the
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FIG. 6. (Color online) Asymptotic vortex shape. The different
curves are for the equilibrium shape at ω = ωs, for two temperatures
(T = 0.25Tc and 0.85Tc) at a high rotation velocity (ω = 452.9ωs)
and for the equilibrium shape in the local induction approximation
(LIA).18 It is expected that the same equilibrium shape as at ω = ωs

is reached also in the low temperature limit T → 0. (a) r against z

showing all four curves both with a unit aspect ratio (horizontal scale
at top) and with a compressed z scale (horizontal scale at bottom); and
(b) φ against z (horizontal scale at top) and φ against r (horizontal
scale at bottom). Out of the four cases, only one (452.9ωs,0.25Tc)
shows significant deviation from planar shape. In this figure z = 0
corresponds to the end of the vortex at r = R. The temperatures are
approximative values for 3He-B, corresponding to the Reα values in
Table I. (The arrows indicate the scale corresponding to the curves.)

superfluid velocity vs at the vortex line. We apply this to the
end point of the vortex at the cylindrical wall (r = R) and find

vs,z = −λz + λφ

Re−1
α + Reα

R(� − �s), (18)

vs,φ =
(

Re−1
α λz + Reαλφ

Re−1
α + Reα

− 1

)
R(� − �s). (19)

A nonzero vs,z can arise from the Biot-Savart integral (2) only
if the vortex is not in a single plane. Thus the vortex can be
planar only when the right-hand side of Eq. (18) vanishes. This
happens only in special cases such as � = �s, or T → Tc, or
T → 0, or ω → ∞.

The results above can be compared to the case of many
vortices forming a vortex front. The comparison of the axial
velocity is made in Fig. 7. The velocity of a moving front
is affected by the twisting of vortices behind the front. An
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FIG. 7. (Color online) Comparison of numerically calculated
asymptotic velocities between a single vortex end (vLz and vLφ) and
a vortex front (vFz and vFφ). The lines are for a single vortex, giving
the axial (solid line) and azimuthal (dash-dotted line) components.
The data points are for the vortex front, giving the axial (circles)
and the azimuthal velocities (crosses). All azimuthal velocities are in
the rotating coordinate system. The front velocity is from numerical
simulations, originally presented in Ref. 12, p. 3219. The parameters
are ω = 213.8 and R/a = 0.88 × 105.

analytic formula has been applied to analyze the effect of
this twisting on the front velocity.16,38 What is studied in this
paper could be termed as the single vortex contribution to
the vortex front velocity; twisting of vortices adds another
contribution, surface friction yet another, and phenomena
associated with turbulence (reconnections, Kelvin cascade,
vortex tangle diffusion), yet another. Understanding the motion
of such a vortex front is an open problem. In particular,
experiments seem to indicate that a vortex front has a nonzero
propagation velocity even in the zero-temperature limit. This
cannot be fully explained by our filament model, which lacks
a mechanism of dissipating free energy at zero temperature.

However, such a mechanism that changes the free energy
in the low temperature limit (a necessity to sustain the
propagation of a vortex, or of a vortex front) may be provided
by the pinning of vortices to the container wall. This pinning
can be seen as an effective surface friction, pumping energy
into, or out of, the system. Also, the quasiparticle states in the
vortex cores may transfer energy between the fluid and the
container, when the vortex is attached to the wall.

VI. STABILITY OF VORTICES

Our numerical calculations indicate that once we have a
vortex, whose end moves upward, it is found to be stable
at all temperatures, even in the zero-temperature limit. This
is somewhat surprising since the previous simulations and
experimental studies in 3He-B have indicated that below a
certain temperature, roughly 0.5Tc (or Reα � 1.5), a single
vortex becomes unstable.13,23,39 We suggest that this kind of
single vortex instability is due to some surface effects (such
as pinning), or heat leaks causing extra counterflow. Earlier
simulations, which also neglected surface friction, additionally
assumed a cubical container instead of a cylindrical one.23
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FIG. 8. (Color online) Value of counterflow projected on the
vortex tangent, nontilted cylinder. There is a clear peak near the
top of the vortex, then a rapid drop to zero. The critical value of
projected counterflow velocity for Kelvin waves with wavelength R

is vc,OG = 0.1634 R�, which is clearly not reached. The parameters
are the same as for the last vortex state in Fig. 2(a).

Studies of a decaying vortex array (spin-down)40 also indicate
that vortices in a cylindrical container are much more stable
than vortices in a cubical one.

Another source of instability is related to the creation and
growth of Kelvin waves. The so-called Ostermeier-Glaberson
instability41,42 appears when the counterflow vcf := vn − vs

along the vortex line is sufficiently strong, and causes straight
vortex lines to become unstable towards the appearance of
Kelvin waves. For a single axially oriented straight vortex,
the critical counterflow velocity, above which the ampli-
tude of Kelvin waves with a wave vector k are able to
grow, is

vc,OG = � + ηk2

k
, where η = κ

4π
ln

1

ka
. (20)

In our case of a nontilted cylinder with a vortex attached to
the cylinder wall this effect may exist in some situations.
From Fig. 2(b) one observes that the vortex has a small
component along the azimuthal direction. This results in a
nonzero counterflow along the vortex and could in principle
cause Ostermeier-Glaberson instability.

However, growing Kelvin waves are not observed in
simulations when the tilt is absent. The reason becomes
apparent if one looks at Fig. 8, where we have plotted the
counterflow along the vortex. The counterflow along the vortex
line has its maximum in the top part of the vortex and falls
sharply below it. Near the axis it is practically zero. The
maximum value for the counterflow indicates that the Kelvin
waves that could grow have a wavelength much longer than
the cylinder radius, and, therefore, larger than the region of
this finite counterflow. Hence, the Kelvin waves cannot grow
and Ostermeier-Glaberson instability does not play any role.

In contrast, the situation in a tilted rotating cylinder is
different. With enough tilting, the boundary superfluid velocity
vb creates a sufficiently strong counterflow, which results in
the appearance of Kelvin waves. These Kelvin waves then
produce a change from a laminar to a more turbulent fluid
motion, possibly resulting in a vortex tangle, see Fig. 9.

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

FIG. 9. (Color online) Kelvin waves created in a rotating tilted
cylinder. The appearance of Kelvin waves, (which can be clearly
seen in the lower left quadrant of the polar plot) is due to Ostermeier-
Glaberson instability caused by the background velocity field vb. This
background velocity field is nonzero in a rotating tilted cylinder and in
this case causes a sufficiently strong counterflow along the vortex line
to create Kelvin waves. The parameters are α�t = 0.56, Reα = 20.6
(∼0.3Tc in 3He-B), 2πR2�/κ = 85.5, and θ = 60◦.

Yet another phenomenon is the Crow instability43 which
applies to vortices that are close to each other, or close to
the wall (which can be interpreted as being close to the
image vortex). This instability is due to the fact that vortices
of opposite direction attract each other. Thus, the parts of
vortices that are slightly closer to each other start moving
faster towards each other, deforming the vortices even more,
and eventually resulting in a large number of reconnections and
new vortices. In our case the Crow instability does not work
in the untilted cylinder since the rotation provides a stabilizing
effect.

VII. EFFECT OF TILTING

Tilting the vessel has the advantage of breaking the
cylindrical symmetry. A small tilt may be useful in calculations
also for detecting effects that occur due to this asymmetry,
unavoidably present in experimental situations.

The most prominent effect caused by the tilt is, as noted
above, the instability of the vortex. At low temperatures and
for a large tilt, several initial configurations (at large enough
rotation) lead to growing Kelvin waves and eventually to a
creation of a vortex tangle via reconnections. However, with an
initial state close to the steady state, the vortex smoothly adopts
its new asymptotic form and no new vortices are generated.

A second noticeable effect of tilting is the oscillation of vLz

about a constant value (close to αR� cos θ ). This is due to a
sinusoidal component of the boundary field.25

A somewhat surprising effect was also found. At a large
enough tilt angle the azimuthal velocity of the vortex end may
approach zero (in moving coordinates). Thus, in the asymptotic
limit, the vortex end becomes locked at some azimuthal angle,
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FIG. 10. (Color online) Vortex evolution for different tilting
angles. Twenty-one snapshots are shown for each tilting with angles
θ = 10◦, 20◦, 30◦, 40◦, 50◦, and 60◦. With increasing tilting some
qualitative differences appear. The starting point of the vortex may
climb on the side wall. The end point may start moving axially. All
plots are in the rotating coordinate system. The total time is 2.33/α�,
Reα = 3.63, and ω = 85.5.

while a constant axial velocity component remains. A detailed
study of this phenomenon has not been done yet, but this sort

of behavior can be seen in the last two pictures of Fig. 10,
corresponding to tilting angles 50◦ and 60◦.

VIII. CONCLUSIONS

While one could say that we have been “hitting a mosquito
with a cannonball,” using a code created for brute force large
scale vortex tangle calculations to do a very simple job, there
still is, we believe, some potentially useful information to be
gained from this endeavor.

Vortex motion in a cylinder with smooth walls was found
to be quite stable, both in the untilted and moderately tilted
(�30◦) cases. This limits the causes for the experimentally
observed single vortex instability13,23,39 to areas not covered
in this study, such as surface effects and heat flows.

In our ideal cylindrical environment, vortex motion can be
estimated by considering the limiting cases at T → 0, � = �s,
and � → ∞. In a more general case the correct motion can
be characterized by introducing a small correction to these
limiting cases. Our scaling argument additionally emphasizes
that this correction depends only on the dimensionless pa-
rameters R2�/κ , Reα , and R/a, the last dependence being
weak (logarithmic). At large enough rotational velocities the
vortex motion is dominated by dissipative effects. Near �s

one may observe an inertial regime where nondissipative
forces dominate. In general, the asymptotic vortex shape is
three dimensional, but for example, at � = �s the vortex
configuration is confined to a plane. Deviations from the plane
structure are typically small, the largest deviations appearing at
low temperatures, and with relatively large rotation velocities.

This study highlights the role of scaling properties in
superfluids and other analogous systems. A deeper analysis
to connect these formulas to the velocity of the vortex front
should be carried out. The azimuthally locked motion in the
tilted case was an unexpected result.
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