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Superfluidity of metastable glassy bulk para-hydrogen at low temperature
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Molecular para-hydrogen (p-H2) has been proposed theoretically as a possible candidate for superfluidity,
but the eventual superfluid transition is hindered by its crystallization. In this work, we study a metastable
noncrystalline phase of bulk p-H2 by means of the path integral Monte Carlo method in order to investigate
at which temperature this system can support superfluidity. By choosing accurately the initial configuration
and using a noncommensurate simulation box, we have been able to frustrate the formation of the crystal in
the simulated system and to calculate the temperature dependence of the one-body density matrix and of the
superfluid fraction. We observe a transition to a superfluid phase at temperatures around 1 K. The limit of zero
temperature is also studied using the diffusion Monte Carlo method. Results for the energy, condensate fraction,
and structure of the metastable liquid phase at T = 0 are reported and compared with the ones obtained for the
stable solid phase.
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I. INTRODUCTION

Superfluidity and Bose-Einstein condensation (BEC) have
been stunningly shown in metastable dilute alkali gases,
magnetically confined at ultralow temperatures.1 The extreme
diluteness of these gases allows for the achievement of BEC
with an almost full occupation of the zero-momentum state
that has been possible to observe and measure quite easily.
This contrasts with the difficulties encountered in the measure
of the condensate fraction in liquid 4He, which amounts to
only 8% at the equilibrium density.2 However, liquid 4He is
a stable superfluid below the lambda transition Tλ = 2.17 K
and is therefore a more easily accessible system. Before the
blowup produced in the field of quantum fluids by the first
experimental realization of BEC gases, liquid helium was the
only paradigm of a superfluid. For a long time, there has been
great interest in the search for superfluid condensed phases
other than liquid helium. Spin-polarized atomic deuterium
and tritium are predicted to be fermionic and bosonic liquids,
respectively, in the limit of zero temperature.3,4 However,
their experimental study has proven to be very elusive due
to their high recombination rate, and only the case of atomic
hydrogen, whose ground state is a gas, has been experimentally
driven to its BEC state.5 The next candidate for superfluidity
is molecular hydrogen, which has been studied for a long
time.6 This seems a priori an optimal system due to its very
light mass but it crystallizes at relatively high temperature as
a consequence of the intensity of its intermolecular attraction,
without exhibiting any superfluid transition in the liquid phase.
In the present work, we study the properties of metastable
liquid or glass molecular hydrogen at very low temperatures
using quantum Monte Carlo methods.

In 1972, Ginzburg and Sobyanin7 proposed that any Bose
liquid should be superfluid below a certain temperature Tλ,
unless it solidifies at temperature Tf higher than Tλ. To give
a first estimation of Tλ, they used the ideal Bose gas theory,
obtaining

Tλ = 3.31
h̄2

g2/3mkB

ρ2/3, (1)

where m is the atomic mass, g is the spin degeneracy, kB is
the Boltzmann constant, and ρ is the density of the system.
Ginzburg and Sobyanin proposed molecular para-hydrogen
(p-H2) as a plausible candidate for superfluidity: Being a
spinless boson (g = 1) with a small mass, p-H2 should
undergo a superfluid transition at a relatively high temperature
[according to Eq. (1), Tλ � 6 K].

The estimation of Tλ, given by Eq. (1), is clearly inaccurate
in the case of dense liquids because it cannot account for the
observed dependence of Tλ with the density. In fact, Tλ slightly
decreases in liquid 4He when ρ increases, a manifestly oppo-
site behavior to the increase with ρ2/3 given by the ideal gas
formula (1). In order to provide a more reasonable estimation
of Tλ, Apenko8 proposed a phenomenological prescription for
the superfluid transition, similar to the Lindemann criterion
for classical crystal melting. In this way, he was able to take
into account quantum decoherence effects due to the strong
interatomic potential and to relate the critical temperature for
superfluidity with the mean kinetic energy per particle above
the transition. For p-H2, he concluded that Tλ should vary
between 1.1 and 2.1 K, depending on the density of the system.

Superfluid p-H2 is not observed in a stable form because it
crystallizes at temperature Tf = 13.8 K, which is significantly
higher than the expected Tλ. Several studies about crystal
nucleation in p-H2 have been performed in order to understand
if the liquid can enter a supercooled phase (i.e., a metastable
phase in which the liquid is cooled below its freezing
temperature without forming a crystal). Maris et al.9 calculated
the rate �(T ) of homogeneous nucleation of the solid phase
from the liquid as a function of the temperature T , showing
a maximum of � around T = 7 K and a rapid decrease at
lower temperature. This suggests that, if it would be possible
to supercool the liquid through the range where � is large,
one might be able to reach a low-temperature region where the
liquid is essentially stable. However, recent experiments have
indicated that, even at T ∼ 9 K, the rate of crystal growth is
so high that the liquid phase freezes quickly into a metastable
polymorph crystal.10

Even though several supercooling techniques have been
proposed to create a metastable liquid phase in bulk p-H2,11–13
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none of them has proven so far to be successful and no direct
evidence of superfluidity has been detected. However, there are
evidences of superfluidity in several spectroscopic studies of
small doped p-H2 clusters. In 2000, Grebenev et al.14 analyzed
the rotational spectra of a linear carbonyl sulfide (OCS)
molecule surrounded by 14–16 p-H2 molecules absorbed in
a larger helium droplet, which fixes the temperature of the
cluster. When p-H2 is immersed in a 4He droplet (T = 0.38 K),
the measured spectra show a peak indicating the excitation of
angular momentum around the OCS axis. On the other hand,
if the small p-H2 cluster is put inside a colder 4He-3He droplet
(T = 0.15 K), the peak disappears: The OCS molecule is then
able to rotate freely inside the hydrogen cluster, pointing to the
superfluidity of the surrounding p-H2 molecules. These results
have been confirmed in a later experiment on small p-H2

clusters doped with carbon dioxide.15 From a precise analysis
of the rotational spectra, it has been possible to measure the
effective momentum of inertia of these small systems, and thus
of their superfluid fraction ρs , providing a clear evidence of
superfluidity in clusters made up of N � 18 p-H2 molecules.
These clusters are too small to extract reliable predictions of a
metastable liquid phase and larger clusters would be desirable.
To this end, Kuyanov-Prozument and Vilesov16 have been able
to stabilize liquid clusters with an average size of N ≈ 104

p-H2 molecules down to temperature T = 2 K, but they do not
see any evidence of superfluidity. Other attempts of producing
liquid p-H2 well below Tf (T = 1.3 K) are based on the
generation of continuous hydrogen filaments of macroscopic
dimensions.13

The search for a superfluid p-H2 phase has been intense
also from the theoretical point of view. The rather simple
radial form of the p-H2-p-H2interaction and the microscopic
accuracy achieved by quantum Monte Carlo methods have
stimulated a long-standing effort for devising possible scenar-
ios where supercooled p-H2 could be studied. In practically
all the cases, the search is focused on systems of reduced
dimensionality or in finite systems. Path integral Monte Carlo
(PIMC) simulations of p-H2 films adsorbed on a surface
with impurities observed superfluidity for some arrangements
of these impurities,17 but these results were posteriorly
questioned by other PIMC studies.18 In a one-dimensional
channel, like the one provided experimentally by narrow
carbon nanotubes, it has been predicted a stable liquid phase
in the limit of zero temperature.19 The largest number of
theoretical works have been devoted to the study of small
clusters, both pure20–29 and doped with impurities.30–32 All
these simulations show that p-H2 becomes superfluid below
a certain temperature T = 1–2 K and that the superfluid
fraction depends on the number of molecules of the cluster.
When the cluster becomes larger than a certain molecular
number (N > 18–25), solidlike structures are observed and
the superfluidity vanishes.

In the present work, we deliver a PIMC study of a
metastable glass/liquid phase at very low temperature. Our
main purpose has been to determine for the first time at which
temperature this metastable phase becomes superfluid and the
value of the superfluid density and condensate fraction close
to this temperature. The simulations are carried out following
schedules which are similar to the ones used in a recent study
of a glass 4He phase evolving from a normal to a superfluid

state (superglass).33 Our results show that this transition
temperature is T � 1 K, a value that is close to the Apenko
estimation8 and also close to the values observed in simulations
of small clusters. As a complementary aspect, we address the
calculation of the equation of state of the metastable liquid
p-H2 phase in the limit of zero temperature using the diffusion
Monte Carlo (DMC) method. The simulation of the liquid
phase in this limit is easier than at finite temperature and
therefore DMC is able to provide accurate information on its
main energetic and structure properties.

The rest of the paper is organized as follows. In Sec. II,
we introduce the quantum Monte Carlo methods used in the
study, the DMC and PIMC methods, and report specific details
on how the simulations are carried out. Section III contains
the results of the equation of state, structure properties,
and condensate fraction of metastable liquid p-H2 at zero
temperature. PIMC results at finite temperature are reported in
Sec. IV, and finally the main conclusions of the present work
are discussed in Sec. V.

II. QUANTUM MONTE CARLO METHODS

The H2 molecule, which is composed of two hydrogen
atoms linked by a covalent bond, is spherically symmetric in
the para-hydrogen state (total angular momentum zero). The
energy scale involved in electronic excitations (∼105 K) is or-
ders of magnitude larger than the intermolecular one (∼101 K),
thus modeling the p-H2-p-H2 interaction by means of a radial
pair potential and considering the molecules as pointlike turns
out to be justified upon the condition of low or moderate
pressures. In this work, we have chosen the well-known
and commonly used semiempirical Silvera-Goldman pair
potential.34 This potential has proved to be accurate at low tem-
perature and in the pressure regimes in which we are interested.

The study in the limit of zero temperature has been
performed with the DMC method. DMC is a first-principles
method which can access exactly the ground state of bosonic
systems. It is a form of Green’s function Monte Carlo which
samples the projection of the ground state from the initial
configuration with the operator exp [−(H − E0)τ ]. Here, H
is the Hamiltonian,

H = − h̄2

2m

N∑
i=1

∇2
i +

N∑
1=i<j

V (rij ), (2)

E0 is a norm-preserving adjustable constant, and τ is the imag-
inary time. The simulation is performed by advancing in τ via a
combination of diffusion, drift, and branching steps on walkers
R (sets of 3N coordinates) representing the wave function of
the system.35 The imaginary-time evolution of the walkers is
“guided” during the drift stage by a guiding wave function φG,
which is usually a good guess for the wave function of the
system. This function contains basic ingredients of the system
as its symmetry, phase, and expected behaviors at short and
long distances according to its Hamiltonian. Technically, φG

allows importance sampling and thus reduces the variance of
the ground-state estimations. It is straightforward to show that
for the HamiltonianH and any operator commuting with it, the
expectation value is computed exactly within statistical error.
Other diagonal operators which do not fulfill this condition

224513-2



SUPERFLUIDITY OF METASTABLE GLASSY BULK . . . PHYSICAL REVIEW B 85, 224513 (2012)

require a special treatment, known as pure estimation,36 which
also leads for this case to unbiased results.

The phase of the system is imposed within the typical
imaginary-time length by the guiding wave function. This
property of the DMC method is here a key point if we are
pursuing an investigation of the properties of the metastable
liquid p-H2 phase. Then, for the liquid phase φG is taken in a
Jastrow form,

φG(R) =
N∏

1=i<j

f (rij ), (3)

with a two-body correlation function,37

f (r) = exp
[

− 1

2

(
b

r

)5

− L

2
exp

[
−

(
r − λ

�

)2]]
. (4)

In order to compare the results obtained for the liquid phase
with the ones corresponding to the stable hcp solid we have
carried out some simulations with a guiding wave function of
the Nosanow-Jastrow type,

φs
G(R) =

N∏
1=i<j

f (rij )
N∏

i=1

g(riI ), (5)

the set {rI } being the lattice points of a perfect hcp lattice.
Optimal values for the parameters entering Eq. (4) are
b = 3.68 Å, L = 0.2, λ = 5.24 Å, and � = 0.89 Å for the
liquid phase, and b = 3.45 Å, L = 0.2, λ = 5.49 Å, and
� = 2.81 Å for the solid one. The Nosanow term is chosen in
Gaussian form, g(r) = exp(−γ r2). The density dependence
of the parameters in the Jastrow term is small, and neglected
in practice when used in DMC, whereas the Nosanow term
parameter γ is optimized for the whole range of densities.
We have used 256 and 180 particles per simulation box for
the liquid and hcp solid phases, respectively. The number of
walkers and the time step have been adjusted to reduce any
bias coming from them to the level of the statistical noise.

At finite temperature T , the microscopic description of
the quantum system is made in terms of the thermal density
matrix, ρN (R′,R; β) = 〈R′|e−βH|R〉, with β = (kBT )−1. The
partition function Z, which allows for a full description of the
properties of a given system, satisfies the relation,

Z = Tr(e−βH) �
∫ M∏

i=1

d Ri ρN (Ri ,Ri+1; ε) , (6)

that relies on the convolution property of the density matrix.
In Eq. (6), ε = β/M and the boundary condition RM+1 = R1

applies. The remarkable feature of Eq. (6), on which PIMC is
based, is that one has access to information at a temperature T

by convoluting density matrices at higher temperature MT .38

PIMC describes the quantum N -body system considering
M different configurations Rj of the same system, whose
sequence constitutes a path in imaginary time. This means
that the N -body quantum system is mapped onto a classical
system of N ring polymers, each one composed by M beads.
The different beads can be thought as a way to describe the
delocalization of the quantum particle due to its zero-point
motion. For sufficiently large M , one recovers the high-
temperature density matrix, where it is legitimate to separate

the kinetic contribution from the potential one (primitive
action). In this way, it is possible by applying Eq. (6) to reduce
the systematic error due to the analytical approximation for
ρN below the statistical uncertainty. However, the primitive
action is too simple to study extreme quantum matter and a
better choice for the action is fundamental to reduce both the
complexity of the calculation and ergodicity issues. To this end,
we have used a high-order Chin action39,40 to obtain an accurate
estimation of the relevant physical quantities with reasonable
numeric effort even in the low-temperature regime, where the
simulation becomes harder due to the large zero-point motion
of particles. We have analyzed the dependence of the p-H2

energy on the parameter ε and determined an optimal value
ε = 1/60 K−1 for which the bias coming from the use of a
finite ε value is smaller than the characteristic statistical noise.

A relevant issue one has to deal with when approaching the
low-temperature limit with PIMC simulations arises from the
indistinguishable nature of the particles. In the path integral
formalism, the exchanges between L different particles are
represented by long ring polymers composed by L × M beads.
If we study a bosonic system like p-H2, the indistinguishability
of the particles does not affect the positivity of the integrand
function in Eq. (6) and the symmetry of Z can be recovered by
the sampling of permutations between the ring polymers. In
the present study, we have used the worm algorithm41 which
provides a very efficient sampling in permutation space.

The key aspect of the worm algorithm is to work in an
extended configuration space, containing not only the usual
diagonal configurations made up of ring polymers, but also
off-diagonal configurations which are characterized by the
presence of an open polymer (defined as the worm). By
working with off-diagonal configurations, it is possible to
sample the bosonic permutations by means of single-particle
movements, like the swap update, whose acceptance rate can
be made comparable to that of the other updates in the sampling
of polymers. In order to fulfill this condition, it is important
to optimize two parameters of the worm algorithm. The first
of them is C, which regulates the acceptance probability
of the movements switching from diagonal to off-diagonal
configuration and vice versa. In our simulations, we choose
C to get the number of sampled off-diagonal configurations
to about 65%–70% of the total number of configurations.
In this way, the system is allowed to spend enough time
both in off-diagonal configurations, where the sampling of
permutations is done, and in diagonal configurations, where
relevant observables such as the energy or the superfluid
density are evaluated. The second one is Ms , which is the
number of beads rebuilt in the swap update. The parameter Ms

has to be chosen as a compromise between a small value, which
would make difficult the search of the partner of the worm in
the swap movement, and a large value which would make
difficult the reconstruction of the polymer once the partner has
been chosen. In our simulations, we use Ms which maximizes
the acceptance rate of the swap update: The typical value of
Ms is about 10% of the number of beads M .

III. ZERO-TEMPERATURE RESULTS

We have calculated the main properties of the metastable
liquid and stable hcp solid phases of p-H2. Our main goal has
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FIG. 1. (Color online) DMC energies per particle as a function
of the density. Squares and circles correspond to the liquid and solid
phases, respectively. Solid and dashed lines are the polynomial fits to
the DMC energies for the liquid and solid, respectively. The diamond
is the experimental energy of hcp molecular hydrogen from Ref. 43

been to know the properties of a hypothetical bulk liquid phase
and compare them with the ones of the stable solid. In order to
achieve reliable estimations of liquid p-H2 it is crucial to work
with a guiding wave function of liquid type, as we have dis-
cussed in the preceding section. Within the typical imaginary-
time length of our simulations we have not seen the formation
of any crystal structure [i.e., no signatures of Bragg peaks in
the structure function S(k) have been registered so far].

In Fig. 1, we plot the DMC energies per particle of
metastable liquid p-H2 as a function of the density. For
comparison, we also report the results obtained for the hcp
crystal phase. Our hcp energies are in close agreement with
the ones reported in Ref. 42 using the same Silvera-Goldman
potential. In the figure, we also show the experimental
estimation at T = 0 K from Ref. 43, E/N = −89.9 K, that lies
a bit below our results. This is again in agreement with previous
DMC results42 which show that the experimental energy
is, in absolute value, underestimated and overestimated by
the Silvera-Goldman and Buck potential,44 respectively. Our
results for both phases are well reproduced by the polynomial
law,

E

N
=

(
E

N

)
0

+ A

(
ρ − ρ0

ρ0

)2

+ B

(
ρ − ρ0

ρ0

)3

, (7)

(E/N)0 and ρ0 being the equilibrium energy per particle and
equilibrium density, respectively. These equations of state
are shown in Fig. 1 with lines. The optimal parameters of
the fits are as follows: ρ0 = 0.026 137(20) Å−3, (E/N)0 =
−87.702(37) K, A = 235(2) K, B = 140(10) K for the solid,
and ρ0 = 0.023 386(40) Å−3, (E/N)0 = −76.465(51) K, A =
188(1) K, B = 131(10) K for the liquid. As expected, our
DMC results show that the solid phase is the stable one with a
difference in energy per particle at the respective equilibrium
points of ∼10 K, the equilibrium density of the liquid being
∼10% smaller than the solid one. The same trend was observed
in a DMC simulation of two-dimensional p-H2, but there the
differences were significantly smaller.45 It is worth noticing
that about one-half of the energy difference in the bulk systems
comes from the decrease of the kinetic energy per particle

−50

 50

 150

 250

 0.017  0.021  0.025  0.029  0.033  0.037

P
 [

M
P

a]

ρ [Å−3]

FIG. 2. (Color online) Pressure of the liquid (solid line) and solid
(dashed line) p-H2 phases as a function of the density. Experimental
points for the solid phase46 are shown as solid circles.

going from the liquid to the solid: At density ρ = 0.03 Å−3, it
amounts to 93.3(1) and to 89.5(1) K for the liquid and solid,
respectively.

From the equations of state (7), it is easy to deduce
the pressure of the system at any density using the relation
P (ρ) = ρ2[d(E/N)/dρ]. The results obtained for metastable
liquid and stable solid phases are shown in Fig. 2. As one can
see, at a given density the pressure of the liquid is larger than
the one of the solid mainly because of the different location of
the equilibrium densities (P = 0). The results for the solid are
compared with experimental data from Ref. 46 showing good
agreement especially for not very large pressures. The density
at which the function P (ρ) has a zero slope defines the spinodal
point; beyond this limit the system is no more thermodynami-
cally stable as a homogeneous phase. At this point, the speed
of sound c(ρ) = [m−1(dP/dρ)]1/2 becomes zero. Results for
c(ρ) are shown for both phases in Fig. 3. The speed of sound
decreases when the density is reduced and drops to zero at the
spinodal point: [ρc = 0.0176(1) Å−3, Pc = −12.6(5) MPa]
and [ρc = 0.0193(1) Å−3, Pc = −18.5(5) MPa] for liquid and
solid, respectively.

DMC produces also accurate results for the structure of the
bulk system. In Fig. 4, we show results for the two-body radial
distribution function g(r) of the liquid p-H2 phase for a set
of densities. This function is proportional to the probability of
finding two molecules separated by a distance r . Increasing the
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FIG. 3. (Color online) Speed of sound of the liquid (solid line)
and solid (dashed line) p-H2 phases as a function of the density.
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FIG. 4. (Color online) (Top) Two-body radial distribution func-
tion of the liquid p-H2 phase at different densities: solid, long-dashed,
short-dashed, and dotted lines stand for densities ρ = 0.0180, 0.0245,
0.0300, and 0.0340 Å−3, respectively. (Bottom) Static structure factor
of the liquid phase. Same densities and notation as in the top panel.

density, the main peak becomes higher and moves to shorter
interparticle distances; at least three peaks are observed. All
these features point to the picture of a very dense liquid, with
much more structure than in stable liquid 4He. In the same
Fig. 4, we show results for the static structure factor S(k),
related to g(r) by a Fourier transform. As one can see, the
main peak increases quite fast with the density suggesting a
highly structured metastable liquid. Nevertheless, we have not
observed within the scale of the simulations the emergence of
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FIG. 5. (Color online) Static structure function of liquid and solid
p-H2 at density ρ = 0.0245 Å−3. The result for the liquid SL(k) (left
scale) is shown with a solid line; the one for the hcp solid SS(k) (right
scale) is shown with a dashed line.
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FIG. 6. (Color online) Condensate fraction of metastable liquid
p-H2 as a function of the density. The points are the DMC results and
the line is an exponential fit to them.

any Bragg peak which would point to formation of crystallites
in the simulation box. In Fig. 5, we illustrate the comparison
between S(k) for the liquid and solid systems at a density
ρ = 0.0245 Å−3, close to the equilibrium density of the liquid.
The difference is the one expected between a liquid and a solid:
oscillating function towards one at large k for the liquid and a
sequence of Bragg peaks, corresponding to the hcp lattice, for
the solid.

One of the most relevant properties of a superfluid is
the mean occupation of the zero-momentum state (i.e., the
condensate fraction n0). As is well known, n0 can be obtained
from the asymptotic behavior of the one-body density matrix
ρ1(r),

n0 = lim
r→∞ ρ1(r), (8)

with ρ1(r) being obtained as the expectation value of the
operator, 〈

�(r1, . . . ,ri + r, . . . ,rN )

�(r1, . . . ,rN )

〉
. (9)

DMC results for the condensate fraction of liquid p-H2 as
a function of the density, obtained using the extrapolated
estimator (there are no reliable pure estimators for nondiagonal
operators), are shown in Fig. 6. The decrease of n0 with the
density is well described by an exponential decay (line in
the figure). The strong interactions induced by the deep
attractive potential well produce a big depletion of the
condensate state. At the equilibrium density, our estimation
for the condensate fraction is n0 = 0.0037(7). This value is
more than one order of magnitude smaller than the measured
condensate fraction2 of liquid 4He at equilibrium (0.08).

IV. SUPERFLUID TRANSITION TEMPERATURE

One of the main goals of our work has been to determine
the temperature at which a disordered phase of p-H2 becomes
eventually superfluid. Recently, a similar approach has been
used to study the superfluid properties of a glass phase of
4He,33 a system that has been named superglass and that it has
been argued to be related with some of the effects observed in
torsional oscillator experiments on solid 4He.
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The first difficulty we have to deal with when investigating
computationally a disordered phase of p-H2 at low temperature
is to provide a good equilibration of the system. The PIMC
method, indeed, is aimed at studying the thermodynamic
properties of quantum systems at thermal equilibrium. On
the contrary, our purpose here is to study a configuration
different from the one of minimum free energy, which for
p-H2 at low temperature is the crystalline one. In order to do
that, it is fundamental to choose thoroughly the dimensions of
the simulation box and the number of particles, which must
not be commensurate with any crystalline lattice. In addition,
it is important to choose a good initial configuration which
evolves, as the Monte Carlo simulation goes on, towards a
noncrystalline phase which remains metastable for a number
of Monte Carlo steps large enough to get good statistics of the
relevant quantities of the system. In this equilibration process,
special attention must be paid to the thermalization of the
polymers used within the PIMC formalism. A bad choice
of initial conditions may cause the evolution of the system
towards a configuration where the polymers representing each
molecule are not allowed to spread and thus are not able to
describe properly the zero-point motion of the molecules. This
eventuality may represent a serious problem in our simulation,
since we are mainly interested in the investigation of the
superfluid properties of p-H2.

To check whether an equilibration scheme is efficient or not,
it is important to monitor how the numerical estimations of the
physical quantities change with the number of Monte Carlo
steps. If we see that, as the simulation goes on, the computed
variables do not show any evident trend but fluctuate around
a certain value, we can conclude that the system has reached
the metastability. To check if this eventual metastable phase is
crystalline or not, we can calculate the static structure factor
S(k) and observe if it presents the Bragg peaks typical of a
crystal configuration.

We have used different technical schemes to get the desired
metastable glass/liquid configuration. In many cases, we were
not able to stabilize this phase and after some time the liquid
froze. Finally, we managed to devise a successful approach that
is based on the following two steps. In the first part, we perform
the simulation of a fictitious system of quantum particles with
a mass equal to the one of the p-H2 molecules, but interacting
through the 4He-4He Aziz potential.47 Compared with the H2

Silvera-Goldman pair interaction, the Aziz potential does not
present a so deep attractive well and thus it is not able to
freeze the system. Once this fictitious system is equilibrated,
we change the Aziz interaction by the Silvera-Goldman one
and equilibrate again towards the metastable p-H2 phase.
At all the temperatures we consider in our study, we have
verified that the superfluid properties of p-H2 do not depend
on the fact that permutations are allowed or not in the first
step of the equilibration. To test this equilibration scheme,
we have performed a simulation of N = 100 p-H2 molecules
interacting through the Silvera-Goldman potential,34 inside
a cubic box at the equilibrium density of the liquid phase
at zero temperature (see Sec. III), ρ = 0.0234 Å

−3
. For a

preliminary test, we choose to perform the PIMC simulation
at temperature T = 10 K, that is an intermediate temperature
below the freezing temperature, where the liquid phase should
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FIG. 7. (Color online) Static structure factor S(k) of metastable
bulk p-H2 at T = 10 K obtained with PIMC (solid line). This result
is compared with the static structure factor of liquid p-H2 at zero
temperature obtained with DMC (dotted line).

be unstable, but above the estimated superfluid transition
temperature, in order to make the simulation easier. It is
worth noticing that after equilibration the glass phase is better
sampled, and thus crystallization is avoided, when the center
of mass of all the polymers are moved simultaneously and
accepted or not collectively by a single Metropolis step.

In Fig. 7, we have plotted the static structure factor S(k) of
the metastable phase and compared it with the same quantity
computed for the liquid phase with DMC. We can see that
the curve obtained at T = 10 K presents the first peak at
the same k as the S(k) of the liquid and follows the same
behavior up to the second maximum which is at k � 4 Å

−1
.

Even though the PIMC calculation gives a peak which is higher
and narrower than the peak obtained with DMC, and indicates
that the PIMC configurations are slightly more structured than
the DMC ones, we can conclude that our equilibration scheme
is able to create a metastable liquid phase, at least in the range
of intermediate temperature below the freezing point Tf and
above the expected superfluid transition Tλ.

Since our main purpose is to localize the superfluid
transition of this noncrystalline phase, it is worth testing
this equilibration scheme at lower temperatures, closer to
the expected Tλ. For this reason, we have performed a
simulation with N = 90 p-H2 molecules at the same density,
ρ = 0.0234 Å

−3
, but at a lower temperature, T = 2 K. Once

the mean value of the energy was stable, we computed the
static structure factor S(k). The result is shown in Fig. 8,
in comparison with the static structure factor of the zero-
temperature liquid. As we can see, S(k) obtained in the PIMC
simulation presents narrow maxima in the range of small k and
is different from the typical S(k) of a liquid phase. However,
these maxima tend to disappear at higher k and their height is
much lower than the height of the Bragg peaks appearing in
the S(k) of a crystal. This indicates that the system simulated
with PIMC has relaxed to a glass phase, which is structured
at short range but lacks the long-range coordination typical of
the crystal structures.

Even if a glassy configuration can make the diffusion of
particles harder, the lack of long-range coordination makes
possible the appearance of off-diagonal long-range order and
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FIG. 8. (Color online) Static structure factor S(k) of metastable
bulk p-H2 at T = 2 K obtained with PIMC (solid line). For
comparison, we also show the S(k) of liquid p-H2 at zero temperature
obtained with DMC (dotted line).

it is worth studying the superfluid properties of this phase. To
do that, we have studied the temperature dependence of the
one-body density matrix ρ1(r). The first simulation has been
performed at T = 2 K, using N = 90 p-H2 molecules inside
a cubic box at density ρ = 0.0234 Å

−3
. The result for ρ1(r)

obtained in this simulation is shown in Fig. 9: At T = 2 K,
we can clearly see an exponential decay of ρ1(r) at large r ,
indicating that Bose-Einstein condensation is not present in
the system. In fact, we have noticed that in this calculation the
swap update (the update responsible for bosonic exchanges
in our PIMC sampling) has a very low acceptance rate and
does not allow the formation of long-permutation cycles with
a nonzero winding number. Nevertheless, one can think that
the low acceptance of the swap update is a consequence of
the difficulties in the sampling of the coordinates due to the
strength of the intermolecular potential. We may therefore
suspect that the system remains stuck in a configuration
without permutation because of sampling issues. To be sure
about our result, we have performed another simulation of
the same system but starting from an initial configuration
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FIG. 9. (Color online) One-body density matrix ρ1(r) for glass
p-H2 at density ρ = 0.0234 Å

−3
and at different temperatures. T =

0.7 K (crosses), T = 1.0 K (open squares), T = 1.0 K, and N = 130
(triangles), T = 1.2 K (diamonds), T = 1.5 K (solid squares), and
T = 2.0 K (circles).

presenting a nonzero winding number. To create this initial
configuration, we have allowed particles to permute even in
the fictitious simulation used to equilibrate the system. When
we start the PIMC simulation of p-H2 from the permutated
configuration, we see that the percentage of particles involved
in bosonic exchanges tends to decrease and, at the end of the
equilibration, the system has relaxed to a phase presenting zero
winding number (i.e., the superfluid density is zero). This last
result confirms our conclusion that the p-H2 glass we simulate
is not superfluid at T = 2 K.

In Fig. 9, we have also shown ρ1(r) estimated at other
temperatures. At each of the temperatures studied, we have
performed simulations starting both from a permutated and a
nonpermutated configuration, observing that once the system
has been equilibrated the results for ρ1(r) do not depend on
the initial configuration. From the comparison of the curves
at different temperatures, we can easily see a change of
the behavior of ρ1 at large r as the temperature decreases:
this indicates that, at temperatures close to T = 1 K, the
system presents a transition to a superfluid phase presenting
off-diagonal long-range order. The condensate fraction at
low temperature is n0 ∼ 3 × 10−4, appreciably smaller than
the DMC estimation for the liquid phase at T = 0. The
observation of a finite value for the condensate fraction at
T = 1 K agrees with the measure of a finite value for the
superfluid density. Our results show that the superfluid density,
derived from the winding number estimation, is zero within
our numerical uncertainty for T > 1.2 K and at T = 1 K is
already ρs/ρ = 0.36 ± 0.08. In order to give a more precise
estimation of the superfluid transition temperature Tλ, it would
be necessary to perform a pertinent finite-size scaling study.
However, the achievement of the metastable state is quite hard
for systems made up of more than ∼100 molecules. In our
study, we have been able to stabilize the amorphous phase
for a system made up of 130 p-H2 molecules at T = 1 K. The
result for ρ1(r) is also shown in Fig. 9. We notice that this result
is in agreement with the one calculated for the smaller system
of 90 p-H2 molecules at the same temperature, supporting
our conclusion that the system has undergone a superfluid
transition. At higher temperatures, instead, the system made
up of 130 p-H2 molecules relaxes to a crystalline phase and
it has not been possible to calculate ρ1(r) for the amorphous
configuration. This result seems to indicate that the disordered
phase is somehow “more stable” at lower temperature, when
the p-H2 molecules begin to permutate. A similar behavior has
also been found in PIMC simulations of small p-H2 clusters.21

V. CONCLUSIONS

We have carried out extensive quantum Monte Carlo cal-
culations of p-H2 at temperatures well below its solidification
point. Our interest has been to know better the properties of
the metastable liquid/glass phase at very low temperatures
and to determine where the superfluid transition is expected to
appear. In the limit of zero temperature we have used the DMC
method, which is a very efficient tool to sample this metastable
phase through the use of a proper guiding wave function. The
results point to a very structured liquid with a large depletion
of the condensate fraction, significantly larger than in stable
liquid 4He.
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Our estimation of Tλ ∼ 1 K is slightly smaller than the
prediction obtained using a phenomenological approach8

for which, at the density ρ = 0.0234 Å
−3

studied in our
simulations, the transition temperature is estimated to be
Tλ ∼ 1.7 K. It is also interesting to notice that our result for Tλ

is quite close to the temperatures at which, according to PIMC
simulations, superfluid effects should appear in small p-H2

clusters.20,21 These calculations show that clusters made of
N � 20 p-H2 molecules exhibit a nonzero superfluid fraction
below T ∼ 2 K. This transition temperature depends on the
dimension of the cluster, decreasing when the number of
molecules increases. However, it is difficult to hypothesize on
the superfluid behavior of large enough p-H2 systems from the
simulation of small clusters, because the calculated superfluid
fraction ρs is significantly depressed when the number of

molecules becomes N � 30. This unexpected behavior of
ρs with N has been explained by relating the changes in
the superfluid properties to structural changes that make the
molecules arrange according to a solidlike configuration when
the dimension of the cluster becomes large. In our simulation of
bulk glass p-H2, we have been able to frustrate crystallization
with an efficient equilibration of the system and to measure
finite values of both the condensate fraction and superfluid
density.
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