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Quantum superposition of three macroscopic states and superconducting qutrit detector
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Superconducting quantum coherent circuits have opened up a novel area of fundamental low-temperature
science since they could potentially be the element base for future quantum computers. Here we report a
quasi-three-level coherent system, the so-called superconducting qutrit, which has some advantages over a
two-level information cell (qubit) and is based on the qutrit readout circuit intended to measure individually the
states of each qubit in a quantum computer. The designed and implemented radio-frequency superconducting
qutrit detector (rf SQUTRID) with atomic-size ScS-type contact utilizes the coherent-state superposition in the
three-well potential with energy splitting �E01/kB ≈ 1.5 K at the 30th quantized energy level with good isolation
from the electromagnetic environment. The reason why large values of �E01 (and thus using atomic-size Nb-Nb
contact) are required is to ensure an adiabatic limit for the quantum dynamics of magnetic flux in the rf SQUTRID.
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I. INTRODUCTION

The phenomenon of the superposition of states of a
macroscopic object predicted for a superconducting quan-
tum interferometer device (SQUID) in the low-dissipation
limit1–3 was revealed in spectroscopic experiments.4,5 Al-
though much progress has been made in demonstrating the
coherent quantum behavior of various systems with Josephson
junctions,6 there has not been an experimental presentation
of a readout device based on the quantum superposition of
macroscopically distinct states in flux qubits. The dependence
of this fundamental property of quantum mechanics, the
superposition of states, on the symmetry of the potential
energy in flux qubits can be taken as a basis for creating a
radio-frequency superconducting qubit detector (rf SQUBID)
similar to the manner of how the Josephson current-phase
relation is used in building rf SQUIDs.7 This device would
be a principal element in quantum readout circuits meant for
weak continuous measurement of states of the flux qubits
incorporated in the quantum computer architecture.

However, there is a pitfall on this way. In the literature, the
flux qubit [a superconducting ring closed by a superconductor-
insulator-superconductor (SIS) junction] is described as the su-
perposition of the two states |�〉 = c1(t)|�1〉 + c2(t)|�2〉 that
appear in this quantum system with a double-well potential. If
the tunneling amplitude is large (in other words, if coefficients
c1 and c2 vary quickly enough), the system behavior becomes
adiabatic when changing the external magnetic flux; that is,
it can be considered in terms of quasistationary superposition
levels. In this case, it becomes impossible to distinguish be-
tween the experimental characteristics of a common classical
SQUID in a nonhysteretic regime and a double-well SQUBID.
Both devices behave as parametric inductances (Josephson
inductance for SQUID and quantum inductance for SQUBID),
with both inductances being maximized at the same external
flux, �e = (n + 1/2)�0 (where n is an integer and �0 = h/2e

is the superconducting flux quantum), so that some additional
evidence is required for establishing the quantum nature of the
object under study. Unlike this situation, with the superposition
of three classically separated states in the superconducting

ring, the characteristics of a radio-frequency superconduct-
ing qutrit detector (rf SQUTRID) will possess essential
distinctions,8 allowing one to state definitely their quantum
origin. Particularly, the quantum inductance extrema in the
qutrit should be observed at external magnetic flux �e = n�0.

Here we present experimental evidence and a theoretical
analysis for the fact that a rf SQUID with atomic-size ScS
contact can be put into superposition of three distinct states
with a macroscopically large time of energy relaxation to lower
levels and thus be turned into a rf SQUTRID. We explore the
voltage-current and voltage-flux (signal) characteristics of this
new device. Note that in the qutrit we study, the superposition
states are formed due to the fast tunneling of flux through
potential barriers in the triple-well symmetrical potential in
the phase space and the removal of the degeneracy of states of
equal energy in each well, unlike in Ref. 9, where the transmon
with its three lowest energy levels was used as a qutrit whose
superposition states were prepared by exciting the transmon
from the base energy level to two higher ones.

A substantial difference between the Josephson properties
of ScS and SIS contacts at low temperatures has been
predicted10–13 in the microscopic theory of superconducting
weak links. The singular potential corresponds to the case of a
“clean” ScS contact with a dimension d much smaller than the
superconducting coherence length ξ0 and the electron elastic
mean free path � (the so-called ballistic regime d � �). This
fact leads to some peculiarities in the macroscopic quantum
tunneling14,15 and the quantum coherence of magnetic flux
states in a superconducting ring closed by ScS contact. The
major ones are an appreciable increase in the qutrit key perfor-
mance parameter, the splitting of degenerate energy levels in
separate potential wells,8 and the emergence of high nonlin-
earity in the resulting qutrit superpositional levels that can be
used in the rf SQUTRID based on rf SQUID circuitry (Fig. 1).

II. THE SQUTRID MODEL

Currently, two types of point contacts are distinguished,
depending on the ratio between the contact dimension d and the
electron wave length λF = h/pF : d � λF for a classical point
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FIG. 1. (Color online) Circuit diagram of the SQUTRID. Exper-
imental setup is characterized by the following parameters: LT =
1.2 μH, CT = 630 pF, IP (t) = I0 cos ωt , ωT /2π = 5.794 MHz,
Q = 302, M = k

√
LqLT = 1.52 nH, and Lq = 0.3 nH; the qutrit

values Ic and C are discussed in the text. The inset shows the fully
niobium 3D toroidal construction of the qutrit cell, where 1 is the
pusher, 2 is the membrane, 3 is a part of the LT coil, 4 is the toroidal
quantization loop (cavity), 5 is the body, and 6 is the needle.

contact and d ∼ λF for a quantum point contact.10 In metals,
actually, a quantum point contact is necessarily of atomic
dimensions, as the electron wave length is of the same order of
magnitude as the atomic separation. For both classical11 and
quantum12 ScS point contacts with the critical current Ic, at
T = 0 the current-phase relation reads

Is(ϕ) = Ic sin
ϕ

2
sgn

[
cos

ϕ

2

]
, Ic = π�0

eRN

, (1)

where �0 is the superconducting energy gap and RN is the
normal-state resistance of ScS contact. The critical current of
the atomic-size (quantum) ScS contact was predicted12 to be
quantized (as a consequence of the quantization of the contact
conductance R−1

N , in units of G0 = 2e2/h), Ic = N (e�0/h̄),
which was observed experimentally.10 From (1) one gets the
Josephson coupling energy of ScS contact in the form UJ =
−(Ic�0/π )| cos(ϕ/2)|.

To develop the SQUTRID model in a zero-temperature
approximation, we take the quantum Hamiltonian in the
flux representation of the superconducting loop (Fig. 1) of
inductance Lq closed by a clean atomic-size ScS contact with
critical current Ic and self-capacitance C (so that parameter
g = EJ /EC = �0IcC/(2πe2) � 1) in the form8,14–16

Ĥq = P̂ 2

2M
+ Û (f ; fe)

= − h̄2

2M

∂2

∂f 2
+ �0Ic

2π

[
− 2| cos(πf )| + 2π2(f − fe)2

βL

]
,

M = �2
0C, βL = 2πLqIc

�0
, (2)

where f = �/�0 and fe = �e/�0 are the normalized internal
magnetic flux � in the loop and external magnetic flux �e

applied to the loop. The quantum dynamical observable of
the internal magnetic flux in the loop is given by an operator
of flux conjugated to an operator of charge in the contact
capacitance: [�̂,Q̂] = −ih̄.16 The key feature of Hamiltonian
(2) is its singular potential U (f ; fe) following from the nonsine
current-phase relation (1) for ScS contact. Note that a model
with both the potential attributed to ScS contact and the
dissipation vanishing at zero temperature can satisfactorily
describe the experiments on macroscopic quantum tunneling
in a ring with a clean ScS contact,15 as shown in Ref. 14.

The solutions of the stationary Schrödinger equation

Ĥq(f ; fe) �(f ) = E(fe) �(f ) (3)

with Hamiltonian (2) yield wave functions �(f ) and energies
E(fe) of the stationary states of the superconducting loop with
ScS contact at a specified external magnetic flux fe. Let us
consider the SQUTRID superconducting loop where a three-
well potential is formed. We get a series of states appeared
during fast (with rf generator rate ω) increasing of external
flux �e from 0 to �0 (Fig. 2) using parameters in Eq. (3) close
to our experimental values: Lq = 0.3 nH, C = 4.36 fF, and
βL = 4.0 (Ic ≈ 4.4 μA). It is seen from these solutions that,
with a change in external flux, the initial state of a three-well
symmetrical potential localized in the central well at �e = 0
[Fig. 2(a)] transforms through intermediate states [Figs. 2(b)
and 2(c)] into a superposition state in a three-well symmetrical
potential at �e = �0 [Fig. 2(d)]. Note that the energy exchange
rate between the two classically separated states in a two-well
symmetrical potential at �e = �0/2 is exponentially small
at the specified parameters, so the system state remains
localized in the starting potential well during the increase
in external flux toward the point �e = �0. In this point, the
superposition qutrit state |�S0〉 = c1|�1〉 + c2|�2〉 + c3|�3〉
of the wave functions of all three separate wells is formed in
the three-well symmetrical potential, similar to the formation
of the superposition qubit state in the two-well potential.

Quantum coherence of the qutrit flux state |�S0〉 in a
three-well potential manifests itself as coherent oscillations
of magnetic flux between all the three potential wells due
to its fast tunneling through the potential barriers separating
the central and the side wells. Numerical analysis of Eq. (3)
shows that, for resonant tunneling in a three-well potential
of the superconducting loop of inductance Lq = 0.3 closed
by a clean ScS contact with C = 3 − 6 fF (βL = 4.0), the
flux oscillation rate between wells ν01 = �E01/h reaches 25–
40 GHz. The magnetic moment of the flux states corresponding
to the side wells of the three-well potential μ(1,3)

s = IsS �
10−11 J/T � 1012μB (where Is � 0.6�0/Lq ≈ 4 μA is the
supercurrent in the side-well flux states, S � 2 × 10−6 m2

is the loop area, and μB = 0.93 × 10−23 J/T is the Bohr
magneton), and the magnetic moment of the central flux
state μ(2)

s = 0 (since the supercurrent is zero in this state).
Thus, we have the coherent superposition of wave functions
corresponding to the three distinct macroscopic flux states in
the three-well symmetrical potential of the qutrit at �e = n�0.

Let us refer to |�S0〉, which is the three-well superposition
state with minimum energy, as the “base” SQUTRID super-
position state since adiabatic movement along the respective
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(a) (b)

(c) (d)

FIG. 2. (Color online) Forming the base superposition SQUTRID
state by rapid change of external flux �e. The set of nonstationary
potential energies U (f )/kB , in terms of temperature, and squared
wave functions |�(f )|2 are shown vs normalized internal flux
f = �/�0 at various �e; βL = 4.0. Subscript after E refers to the
energy level number. (a) The SQUTRID is initially in its ground
state; its wave function is localized in the absolute minimum of the
symmetrical potential. (b) The potential becomes asymmetrical with
two wells, but the system is still in its ground state, and the wave
function is localized in the minimum of the deeper well. (c) The
wave function remains surprisingly localized in the same well since
the potential changes too quickly in comparison with the tunneling
rate (the interwell barrier is rather high in this case). (d) The base
state |�S0|2 of the three-well superposition is formed in the potential
symmetry point when the barriers are small, and tunneling time is
consequently short. The relaxation time of this state turns out to be
macroscopically large, so that it becomes stable enough and “latched”
for many further cycles of �e.

energy level ES0 plays the main role in our experiments. State
|�S0〉 in the potential U (f ; fe) is characterized by quantum
number n � 1 [n = 30 for the above-cited parameter values;
see Fig. 2(d)]; i.e., the deep central well (�U/kB � 300 K)
contains a large number of quantum levels. The time τε of the
energy relaxation of the base SQUTRID state to underlying
states in the central well must be macroscopically large to
enable measuring the superpositional nonlinearity. This is
achieved due to the design of the qutrit loop in the form of a
high-quality three-dimensional (3D) toroidal superconducting
cavity (see inset in Fig. 1 and Sec. III), which has no resonant
modes with frequencies corresponding to the frequencies
(energies) of transitions from the base superpositional level
ES0 to underlying energy levels.

Figure 3(a) displays numeric solutions of Eq. (3) for the
squared absolute value of the wave function of the base
superposition state |�S0(f )|2 and energy levels ES0,ES1, and
ES2 of the three superposition states as well. The fact that
splitting �E01/kB = (ES1 − ES0)/kB = 1.65 K between the
base and the nearest superposition energy levels substan-

(a)

(b)

(c)

(d)

FIG. 3. (Color online) Superposition of three states in the su-
perconducting loop closed by a clean ScS contact. Distributions of
squared wave functions |�S0(f )|2 among the three potential wells vs
normalized internal flux f = �/�0 for two close values of external
magnetic fluxes �e corresponding to (a) fully symmetrical and
(b) slightly tilted potential U (f ); βL = 4.0. Superposition energy
levels are denoted ES0,ES1, and ES2. The process of energy relaxation
of the base superposition state �S0(f ) from level ES0 to level E−1

with characteristic time τε is shown by arrows. (c) Superposition
energy levels ES0,ES1, and ES2 vs normalized external magnetic
flux fe = �e/�0. (d) Normalized quantum inductance of the base
superposition level ES0 vs fe: curve 1 is zero-noise (LqL

−1
Q )(fe), and

curve 2 is noise-affected (LqL
−1
Q )eff (fe) averaged over low-frequency

noise with σ = √〈δf 2
e 〉 = 0.013.

tially exceeds the environment temperature for the chosen
parameters is key in the present experiment (�E01/kBT =
1.65/0.45 ≈ 3.7). As a result, the broadening of level ES0

because of statistical averaging over the equilibrium density
matrix δES0 = �E01/[1 + exp(�E01/kBT )] � �E01 is rel-
atively small (δES0/kB ≈ 0.04 K) and can be neglected in
the analysis of the system energy structure (zero-temperature
approximation). Also, it is obvious that the large tunnel
splitting, which multiply overruns the temperature value,
guarantees good “quantumness” of the superconducting loop
closed by a clean ScS contact provided that the environment
and the measurement circuit noises are effectively suppressed.
At the same time, the base superposition level ES0 is situated
far below the potential barrier top Ub, (Ub − ES0)/kB ≈
5 K � T , so that thermal transitions rate over the barrier
is vanishingly small, and the process of relaxation of the
metastable base superposition state into the deep central
well can be strongly limited for the chosen parameters since
(ES0 − E−1)/kB ≈ 8 K.

Small adiabatic variations of the external flux relative
to symmetry points �e = n�0 lead to tilting the three-well
potential, with a change in the wave functions and the energy
levels. As seen from Fig. 3(b), when the flux shifts apart from
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the symmetry point �e = �0, the wave packet of the base
state |�S0(f )|2 partially transfers into the deeper side potential
well. A rearrangement of the superposition wave packets
and thus the formation of the superposition energy levels
ES0(fe),ES1(fe), and ES2(fe) [shown in Fig. 3(c)] occur over
the time span reciprocal to the flux tunneling rate, tS ≈ ν−1

01 . In
experiment, we deal with relatively low-frequency (adiabatic)
processes, in which the time-dependent superposition levels
practically coincide with the stationary ones.

The superconducting qutrit detector is built on the basis of
rf SQUID circuitry. That is, the qutrit is inductively coupled to
a high-quality LT CT superconducting tank (Fig. 1) serving
as a linear classical detector (h̄ωT � kBT ). Only a small
fraction of the flux in the LT CT tank (M/LT ≈ 0.0013 in
our experiment, where LT is the tank inductance and M is the
mutual inductance between the qutrit and the tank) is trans-
ferred to the qutrit, which allows making use of the concept
of weak continuous quantum measurements.17–19 When the
characteristic frequency of the classical detector (LT CT tank)
is much lower than that of the quantum object (in our system
the ratio ω/ν01 ∼ 10−3), the latter’s dynamics can be studied
by means of quantum-mechanical equations with the detector
classical field treated as the external adiabatic parameter.20–22

Within this semiclassical approach of treating the qutrit
plus tank system, one obtains the classical equation for the
LT CT tank containing the parametric quantum inductance
contribution [see Eq. (7)], instead of the parametric Josephson
inductance contribution probed in rf SQUID by means of the
impedance measurement technique (IMT). The IMT with a
weak continuous quantum readout was successfully applied to
studying different types of qubits.23–25

For an LT CT tank driven by rf-bias current I0 cos ωt ,
the measured output functions are the amplitude of voltage
oscillations VT and the voltage-current phase shift αT . The
equation for voltage V (t) across an LT CT tank having a quality
factor Q = ωT RT CT , with the current contribution due to the
weakly coupled qutrit MIq0/LT taken into account, reads

CT V̇ + V

RT

+ 1

LT

∫
V dt + MIq0

LT

= IP (t),
(4)

IP (t) = I0 cos ωt.

Here

Iq0(�e) = ∂〈�S0|Ĥq |�S0〉
∂�e

= ∂ES0(�e)

∂�e

(5)

is the current circulating in the superconducting loop of the
qutrit in its base quantum superposition state as a function of
the total external flux �e.

In further considerations it is convenient to use the function
L−1

Q (fe), which is called the reciprocal quantum inductance,
defined as

L−1
Q (fe) = ∂Iq0(�e)

∂�e

= ∂2ES0(�e)

∂�2
e

= 1

�2
0

∂2ES0(fe)

∂f 2
e

. (6)

This function, being, in fact, the local curvature of energy
level ES0(fe), describes the nonlinear properties of the qutrit
in the base quantum superposition state at small variations of
the external magnetic flux. At the same time, it characterizes

the parametric inductance inserted in the LT CT tank due to a
weakly coupled quantum device.

Considering the emf induced in the qutrit loop �̇e =
MİL = MV (t)/LT , we obtain

V̈ + ω2
T V = f (V,V̇ ,t) ,

f (V,V̇ ,t) = −k2 LqL
−1
Q [�e(t)]ω2

T V − ωT

Q
V̇ + 1

CT

İP , (7)

�e(t) = �dc + �ac(t) = �dc + M

LT

∫
V (t)dt,

where �dc is the direct (low-frequency signal) external flux
biasing the qutrit loop and �ac(t) is the alternating external
flux applied to the loop due to the tank flux oscillations. Thus,
the strongly nonlinear reciprocal quantum inductance function
L−1

Q (fe) [Eq. (6)], characterizing the curvature of the qutrit
base superposition energy level, will determine the solution
of Eq. (7). If the condition f (V,V̇ ,t) � ω2

T V is fulfilled,
which is valid when Q � 1, I0 � ωT CT VT ,K2LqL

−1
Q � 1,

the Krylov-Bogolubov method for solving weakly nonlinear
equations26 can be applied to solve Eq. (7). Substituting
voltage V (t) in the form

V (t) = VT (t) cos[ωt + αT (t)], (8)

where VT (t) and αT (t) are slowly varying functions (with small
relative variation over the oscillation period T = 2π/ωT ), we
get abridged equations for V̇T (t), α̇T (t), and the equations for
the voltage amplitude and phase shift of steady-state [V̇T (t) =
0, α̇T (t) = 0] oscillations in the LT CT tank:

VT = ωT LT Q I0√
1 + 4ξ (VT ,�dc)2Q2

, tan αT = −Q(1 + ξ0)ξ,

(9)

ξ = ξ0 − k2

2π

∫ 2π

0
LqL

−1
Q

[
�dc + MVT

ωLT

sin τ

]
cos2 τ dτ,

where ξ0 = (1 − ωT /ω) is a detuning parameter set to zero
hereinafter since ω � ωT in experiment. As seen from
Eqs. (9), voltage-current VT (I0) and voltage-flux (signal)
VT (�dc) characteristics of the SQUTRID are determined by
the reciprocal quantum inductance L−1

Q (�e) averaged over a
period of oscillations in the tank. Due to the sharp dependence
of L−1

Q (�e) in the vicinity of �e = �0 [see Fig. 3(d)],
small variations of signal magnetic flux δ�dc will lead to a
substantial change in the reactive part of the tank impedance
and therefore in the VT (t) and αT (t) dependencies.

Equations (9) should be solved numerically because of
the strong nonlinearity of the L−1

Q (�e) function, to which the
sought tank voltage amplitude VT enters through the external
flux �e. We are also interested in taking into account the
effect of noise (generally of complex nature and spectrum)
influencing the qutrit on the measured VT (I0) and VT (�dc)
dependencies. To this end, a simplified model is used in
which the major part of the noise influencing the qutrit loop
is considered to be caused by the measurement circuit. The
noise from the circuit produces fluctuations of external flux
applied to the qutrit loop that change the qutrit quantum
response and, in turn, its back action to the LT CT tank. If
the inequality ωT � ωi � �E01/h̄ is valid for all the noise
spectrum components ωi affecting the SQUTRID loop from
the side of the measurement circuit, then the task becomes
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easier, and the value (LqL
−1
Q )eff(fe) effectively contributing

to the tank can be found using the method of averaging
over quasistationary thermodynamic fluctuations.27 In the
Gauss-distributed noise approximation we get

(LqL
−1
Q )eff(fe) = 1

σ
√

2π

∫
df ′e−f ′2/2σ 2(

LqL
−1
Q

)
(fe + f ′),

(10)

where σ = √〈δf 2
e 〉 is the standard deviation of the noise flux

associated with the measurement circuit (and σ 2 is the noise
flux variance). Substituting this function, (LqL

−1
Q )eff(fe), of

the effective reciprocal normed to Lq quantum inductance
[see Fig. 3(d)] into Eqs. (9), one can numerically obtain
voltage-current VT (I0) and voltage-flux VT (�dc) character-
istics of the SQUTRID that account for the measurement-
induced noise flux parametrized by its variance.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The main objective of the experimental design is to provide
conditions at which (i) degenerate levels of the separated wells
become split with �E01 � kBT due to interwell tunneling
and (ii) all the frequencies in the spectrum of the environment
noise ωi will be small compared to the rate of transitions to
the superposition level ES1 and the lower level E−1 situated
in the middle well, i.e., ωi � �E01/h̄; (ES0 − E−1)/h̄ . In
order to meet these conditions, a 3D toroidal SQUTRID loop15

with inductance Lq = 0.3 nH was made from pure (99.999%)
niobium (Nb). The design of the 3D toroidal superconducting
loop (inset in Fig. 1), which, in fact, becomes a closed 3D
cavity, favorably eliminates undesirable coupling of the qutrit
to the external electromagnetic environment. The only way for
electromagnetic interference to come in is through the narrow
(0.5 mm) and long (8 mm) channel made in the qutrit body
for wiring the coupling coil placed inside the qutrit toroidal
cavity. With these dimensions, such a channel acts as a below-
cutoff waveguide for all frequencies of up to several hundred
gigahertz, providing very high attenuation. The coupling coil
leads are properly filtered. Adjusted in situ atomic-size ScS
contact was realized between a surface-cleaned Nb needle
and an annealed Nb plate with a crystallite size close to 0.5
mm. A number of atoms N in the contact opening can be
assessed as the ratio of the contact critical current Ic to its
quantizing value (e�0/h̄), giving N ∼ 10. The sample, the
main part of the resonance tank, and the filter were cooled
down to T = 450 mK in a 3He pumped refrigerator cell (see
Fig. 1). The first stage of the rf amplifier and additional filters
were placed at T = 1.5 K. A triple μ-metal shield around the
liquid 4He Dewar and a superconducting Pb shield around the
measuring cell were used to reduce and stabilize the ambient
magnetic field.

An unusually low resonance frequency ωT /2π =
5.79 MHz of the LT CT tank was chosen to decrease the
potential variation rate and to meet the adiabatic conditions
for the qutrit quantum dynamics even at high (such that
MI0Q ∼ �0) amplitudes of the rf generator current I0. The
calculated time (τ ∼ 10−9 s) of passing the dip of the function
(LqL

−1
Q )eff(fe) [Fig. 3(d)] for this frequency considerably

exceeds the superposition setting time (τS ∼ 3 × 10−11 s) in

(a) (b)

(c) (d)

FIG. 4. (Color online) SQUTRID characteristics: (a) experimen-
tal voltage-flux (signal) characteristics VT (�dc/�0) obtained for
several amplitudes of rf generator current I0 (indicated as the curve
parameter) and (b) set of voltage-flux characteristics calculated
accounting for noise with standard deviation σ = 0.013 at currents
I0 close to the experimental values (curve parameter). Indepen-
dently measured SQUTRID parameters Lq = 3 × 10−10 H, βL = 4.0,
LT = 1.2 × 10−6 H, M = 1.52 × 10−9 H, Q = 302, k2Q = 1.89,
and capacitance C = 4.36 fF were used in the calculations.
(c) Experimental (dots) and theoretical voltage-current characteristics
VT (I0) calculated for noise flux standard deviations σ = 0.013
(dotted line) and σ = 0.023 (dashed line) at �dc = �0 and no-
superposition experimental (squares) voltage-current characteristic
VT (I0) at �dc = �0/2; (d) smearing of VT (I0) curves when the
refrigerator temperature rises to T = 1.05 K. Nonlinearities due to
the superposition (circled) almost vanish.

the three-well symmetrical potential [Fig. 3(a)]. The resonance
tank permanently measures the state of the quantum system
which is weakly coupled to it and, at the same time, generates
additional noise in the superconducting loop. Thus, we should
expect that the measurement process limits the quantum
superposition in our system. However, detecting the averaged
curvature of the base energy level is still possible since the
uncertainty of the magnetic flux associated with the effect of
the measurement circuit and temperature is estimated to be as
low as ∼10−2�0.

Figure 4(a) exhibits a set of experimental voltage-flux char-
acteristics VT (�dc) of the SQUTRID with βL ≈ 4 obtained
while sweeping the external magnetic flux �dc for several rf
generator current amplitudes I0. Note that plateaus exist in the
range around �dc = �0(n + 1/2), shrinking with increasing
I0. These plateaus correspond to a quasiautonomous LT CT

tank with characteristic resonance impedance Rc = VT /I0 =
13.3 K� and indicate that no inductance is inserted into the
tank from the qutrits that receive external flux �e(t) = �dc +
�ac(t),�ac(t) = MV (t)/(ωT LT ), while sweeping �dc flux.
This, in turn, is evidence of the function (LqL

−1
Q )eff(fe)
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becoming zero [see Fig. 3(d), curve 2] and of a no-
superposition qutrit state in the respective range of �e(t).
The onset of nonlinearity in the VT (�dc) curve is observed at
�e(t) = �dc + �ac(t) ≈ n�0 when the magnetic flux �e(t)
falls into the narrow region around n�0 [Fig. 3(d), curve 2]
where the qutrit superposition nonlinearity is localized. Par-
ticularly, for the triangle-shaped signal curve [at I0 = 2.55 nA
in Fig. 4(a)] with a plateau degenerated into the point (�dc =
0.5�0,VT = 30 μV), we have �e = �dc + �ac ≈ �0, where
�ac = MVT /(ωT LT ) ≈ 0.5�0 is the amplitude of the ac
flux coming to the qutrit from the tank. As clearly seen in
Fig. 4(a), the VT (�dc) characteristics of the tank are maximally
affected by the quantum inductance inserted from the qutrit
at symmetry points �dc = n�0 where the qutrit superposi-
tion nonlinearity is maximum. At low to moderate current
amplitudes, VT (�dc) dependencies are well described by the
theoretical model [see Fig. 4(b)] that takes into account the
noise influence of the measuring channel, with independently
measured SQUTRID parameters and capacitance C = 4.36 fF
being used.

Figure 4(c) presents the initial parts of the SQUTRID
VT (I0) characteristics (βL ≈ 4) registered for two values of
the magnetic flux, �dc = �0 and �dc = �0/2. The theoretical
curves VT (I0) are derived from Eqs. (9) with experimentally
measured SQUTRID parameters and averaging the superpo-
sition nonlinearity of the quantum system over low-frequency
noise (10) with standard deviations σ = 0.013 and σ = 0.023.
For the V -I curves with �dc = n�0, the effective reciprocal
quantum inductance of the base superposition qutrit level,
introduced into the tank at low rf generator currents (I0 �
0.4 nA), leads to a large shift in the tank resonance frequency
from the generator frequency, which results in a decrease
in the voltage detected at the LT CT tank down to a value
comparable to the noise level. As seen from Eqs. (9) and (10), at
�dc = n�0 and a low current (linear) regime the voltage reads
approximately as VT ≈ ωT LT I0Q/|k2Q(LqL

−1
Q ) min

eff |; that is,

it is reduced by a factor of |k2Q(LqL
−1
Q ) min

eff | � 1 compared
to the autonomous LT CT tank voltage.

The theoretical curve VT (I0) with noise standard deviation
σ = 0.013 coincides with the experimental curve in the range
of low to moderate generator currents. At higher σ , the factor
|k2Q(LqL

−1
Q ) min

eff | decreases, and the slope of the V -I curve
in the area of small rf generator currents becomes higher than
in experiment [see the curve with σ = 0.023 in Fig. 4(c)]. At
I0 > 2.5 nA, the amplitude of ac magnetic flux induced in
the SQUTRID loop �ac = MVT (I0)/(ωT LT ) exceeds the half
width of the “main dip” of the effective reciprocal quantum
inductance, �ac > 0.02�0 [see Fig. 3(d)], and then VT rapidly
rises with the increase in the rf generator current. Such behav-
ior at high rf generator currents I0 (nonlinear regime) is well
described by the proposed theoretical model. The observed
quantitative deviation can be attributed to both simplifications
made when deriving the theoretical model (ideal ScS contact,
zero SQUTRID temperature, and Gaussian noise distribution)
and an experimental error in determining the SQUTRID
parameters. The no-superposition quasiautonomous-tank ex-
perimental V -I curve at �dc = �0/2, which is related to
the considered “plateau regime” in VT (�dc) characteristics,
is shown in Fig. 4(c). It is seen that this V -I curve follows
Ohm’s law at a specified βL ≈ 4. As discussed above, with a

(a) (b)

FIG. 5. (Color online) Superposition of states in the supercon-
ducting ring closed by ScS contact, with a four-well potential.
(a) Experimental voltage-current characteristics of the SQUTRID
with βL ≈ 7.3 obtained at T = 450 mK for external magnetic fluxes
�dc = �0/2 and �dc = �0. The areas where the effect associated
with maximal local curvature of the base superposition level appears
are circled. The jumps shown by the arrows are due to relaxation
events. (b) Potential energy and superposition energy levels calculated
for the SQUTRID parameters taken from experimental data. Three
superposition levels still form in this four-well potential and are
situated far above two middle wells.

high enough barrier, separating the two wells in the two-well
potential, the qutrit wave function remains localized in one of
them during the variation of the potential by the ac component
of the external magnetic flux.

The impact of thermodynamic fluctuations on the effective
reciprocal quantum inductance (10) and on the rf V -I
characteristics of the SQUTRID is illustrated in Fig. 4(d).
The nonlinearity due to the superposition of states is severely
smeared out by temperature at T = 1.05 K and becomes
completely unobservable in our experiments at helium bath
temperature T � 1.5 K. This result can be explained by an
increase in the higher-level population because of the reduction
of the ratio �E01/kBT � 1 and an essential increase in the
noise flux variance σ 2.

To see nonlinearities caused by the superposition of states
in more complicated potentials, we have increased the critical
current of the SQUTRID ScS contact up to Ic ≈ 8 μA. An in-
creased Ic and, thus βL, parameter corresponds to contacts with
a greater number of atoms (atomic rows) at their opening and
hence decreased values of their normal-state resistance RN .
Figure 5(a) displays rf V -I characteristics of the SQUTRID
with βL ≈ 7.3 obtained at temperature T = 450 mK for
magnetic fluxes �dc = n�0 and �dc = (n + 1/2) �0. The
initial parts of both branches of the V -I curves remain almost
linear due to dynamic localization of the qutrit wave function.
The effect of the reciprocal quantum inductance determined
by the effective curvature (10) of the base superposition level
ES0 is observable at generator currents less than those needed
to form “classical” steps in SQUID rf V -I characteristics.
Figure 5(b) shows superposition energy levels calculated for
βL = 7.3 that appear in the four-well symmetrical potential
at �e(t) = 1.5�0. Despite the fact that, at chosen SQUTRID
parameters, the environment needs to absorb a considerable
amount of energy [(ES0 − E−1)/kB ≈ 7 K] when the system
relaxes to the lower level, the relaxation events often occurred
in the experiment. This can be caused by very high numbers
of superposition energy levels (n = 100 in our case) that are
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less stable with respect to noise and by possible dissipation
effects related to an increase in the number of atoms in the
contact. The effect of the energy relaxation resulting in a jump
to a linear part of another (�dc = 0) no-superposition branch
of the V -I curve is shown in Fig. 5(a) by the up arrow. The
reverse process of the transition from the no-superposition
V -I branch to the superposition one shown by the down arrow
reflects the formation of the superposition state in the four-well
symmetrical potential configuration at a driving current that
gives the total external flux �e(t) = 1.5�0.

Note that small amplitudes of the SQUTRID driving current
in quantum measurements are the most favorable for quantum
informatics. The obtained conversion ratio (η = dVT /d�e ≈
3 × 1010 V/Wb) and the SQUTRID performance in the
three-well superposition (at βL ≈ 4) can be further increased
by increasing the frequency ω while simultaneously and
proportionally reducing the generator current I0. For example,
at pumping frequency ω/2π = 100 MHz we have η of up
to 5 × 1011 V/Wb. In this case the SQUTRID voltage-flux
characteristics would be similar to those shown in Figs. 4(a)
and 4(b) for small (I0 � 0.4 nA) current amplitudes. Since,
as shown in Ref. 28, the detector and the tank temperature
in these measurements may be as low as 10 mK and the
SQUTRID acts as a sensor of parametric quantum inductance
under adiabatic conditions, such a device can be consid-
ered to be a representative of the class of quantum-limited
detectors.

IV. SUMMARY AND CONCLUSIONS

We have constructed and studied an ideal parametric
detector of magnetic flux named rf SQUTRID which is based
on quantum superposition of three macroscopic flux states of
a 3D toroidal superconducting loop closed by Nb-Nb atomic-
size point contact. Due to the specific form of the potential
barrier, the small contact capacitance, and the fast tunneling
dynamics of formation of a coherent three-well superposition
state (τS ∼ 3 × 10−11 s), the adiabatic conditions in the rf
SQUTRID are valid up to frequencies ω/2π ≈ 3 GHz for

small driving amplitudes (MI0 ∼ 10−3�0). Therefore, the flux
detectors based on the dependence of the local curvature of
the base superposition energy level (or quantum inductance)
on the external magnetic flux at low temperatures fall well
within the class of fast and sensitive devices. Note that unlike
the rf SQUTRID/SQUBID based on the atomic-size point
contact, similar detectors with contacts of the SIS type will
have slow tunneling dynamics of flux wave packets and,
respectively, a lower operating speed. The rf SQUTRID (as
well as rf SQUBID) is the flux magnetometer “dual” to the rf
single electron transistor (SET) electrometer,29 and so the main
applications of the rf SQUTRID will initially be experimental
study of physical processes in flux qubits and engineering
readout systems (sensors) for reading states in the small-scale
superconducting quantum registers using weak continuous
measurements.

We stress the following results of this paper: (i) The
coherent superposition state �S0(f ) of wave functions corre-
sponding to three distinct macroscopic states is formed in the
three-well symmetrical potential configuration at �e = n�0

in the superconducting circuit with the clean atomic-size ScS
contact under study. (ii) The energy relaxation time τε of the
base superposition state �S0(f ) to lower energy states can
be macroscopically large to perform quantum measurements.
(iii) Unlike classical rf SQUID in a nonhysteretic regime,
the nonlinear properties of the superposition in the three-
well potential under the condition ω/2π � ν01 � �0/h

enable making a sensitive and fast parametric detector of
magnetic flux without a quasiparticle current, i.e., principally
a nondissipative rf SQUTRID device. (iv) An unusually large
splitting �E01/kB = 1.5–2 K and a very large (at low noise
variance) LqL

−1
Q ≈ 200, specifying the nonlinearity of the

studied quantum system, make the rf SQUTRID with a ScS
contact a very promising element for quantum informatics.
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