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Fermi-liquid theory for thin arbitrarily polarized 3He films
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We study the thermodynamic response, effective masses, and collective excitations for thin (submonolayer) 3He
films as a function of density and polarization using Fermi liquid theory. The Landau parameters f ↑↑,f ↑↓,f ↓↓

are obtained to quadratic order in the low-density s-wave and p-wave T-matrix interaction parameters. Values for
the effective interaction components are determined by fitting zero-polarization experimental data for the cases
of thin 3He films on graphite and also thin 3He films in surface states of thin superfluid 4He films. By fitting
the interaction parameters, we can calculate the Landau parameters to all orders, and we show results for
the behavior of F̃

↑↑
� for � � 30. With knowledge of the Landau parameters we calculate the polarization

dependence of the state-dependent effective masses, compressibility, spin susceptibility, and zero-sound spectra
for the mobile submonolayer range of areal densities. Our results predict a dramatic decrease in the effective
masses for 3He on graphite as a function of polarization at higher coverages. At fixed density, the compressibility is
shown to decrease monotonically with increasing polarization. At small polarization the inverse spin susceptibility
is largest for small density whereas at large polarization it is largest for large density. We show that zero sound
will propagate at all densities and polarizations whereas spin zero sound does not propagate in these systems.
The condition for thermodynamic stability in an arbitrarily polarized Fermi liquid film is derived and discussed.
We show explicitly the Fermi surface distortion due to the presence of a zero-sound mode. A table of predicted
values for the zero polarization Fermi liquid parameters F s

0 and F a
1 is provided.

DOI: 10.1103/PhysRevB.85.224511 PACS number(s): 67.30.ep, 67.30.hr

I. INTRODUCTION

Thin 3He films have been studied for many years as
prototypical two-dimensional Fermi liquids.1–6 Fermi liquid
theory, developed by Landau7 in the mid-1950s, showed how
the low-temperature collective excitations and thermodynamic
properties could be encoded in a few parameters, the Landau
parameters, and that these parameters were related to a certain
limiting value of the microscopic scattering function.8

In the 1970s, experiments on 3He adsorbed onto exfoliated
graphite stimulated theoretical work on Fermi liquid theory for
two-dimensional systems.9,10 In particular, Bloom9 adapted
Galitskii’s approach11 for the three-dimensional Fermi gas to
the two-dimensional Fermi gas and evaluated the resulting
principal value integrals numerically. In 1992, Engelbrecht,
Randeria, and Zhang12 (ERZ) obtained an analytic solution for
the s-wave contribution to the low-density, unpolarized Fermi
gas in two dimensions. The perturbation theory approach used
by ERZ was applied to the low-density Fermi gas in three
dimensions by Abrikosov and Khalatnikov (AK).13 The exact
solution by ERZ provided some corrections to the previous
numerical results of Bloom. As stressed by ERZ the key to
obtaining analytic results in two dimensions is the constant
density of states.

In a recent paper14 (AM) the perturbation theory approach
of ERZ was generalized to include p-wave T-matrix inter-
actions. The Landau parameters were calculated exactly and
analytically to quadratic order in the interaction parameters.
These Landau parameters can thus be used at arbitrarily
high values of the polarization. A rigorous discussion of the
generalization of Fermi liquid theory to polarized systems was
given by Bedell and Quader.15

In this paper, we utilize the polarization-dependent results
of AM and also include density dependence. We determine
Landau parameters for both second-layer 3He films on a

graphite substrate and also submonolayer 3He adsorbed in thin
4He superfluid films. In Sec. II we very briefly describe the
perturbation theory needed to compute the Landau parameters,
and in Sec. III we review the expressions for the polarization-
dependent effective masses, heat capacity, compressibility,
spin susceptibility, zero-sound and spin-zero-sound collective
excitations that were derived in AM. We also derive and discuss
the conditions for thermodynamic stability in an arbitrarily
polarized Fermi liquid film. In Sec. IV we discuss our results
for second-layer 3He films on graphite and in Sec. V we discuss
our results for the adsorbed film mixtures. In order to compute
the values of the s-wave and p-wave interaction components
we fit existing measurements of the effective mass and spin
susceptibility in these thin film systems. Section VI is the
conclusion.

II. FERMI LIQUID THEORY

In this section, we very briefly review those results from
Fermi liquid theory necessary to analyze the thermodynamics
and collective excitations in thin 3He films. For the details of
the derivations of these expressions, please see AM.

A. Landau parameters

We examine a system of N = N↑ + N↓, spin- 1
2 fermions

in a box of area L2. The particles have bare mass m, and
interact with two-body potential V (r) that is assumed to
depend only on the scalar distance between the particles.
The particles fill two Fermi seas up to Fermi momenta k↑
and k↓, and we introduce the convention that the spin-down
Fermi sea will always be the minority Fermi sea in the case
of nonzero polarization. The term polarization denotes the
magnetization per particle M/N = (N↑ − N↓)/N . The terms
coverage and areal density (N/L2) are used interchangeably.

224511-11098-0121/2012/85(22)/224511(16) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.224511


DAVID Z. LI, R. H. ANDERSON, AND M. D. MILLER PHYSICAL REVIEW B 85, 224511 (2012)

In second-order of perturbation theory, the ground-state energy
can be written16

E = 1

2

∑
p,q,σ

(V (0) − V (2p))
(
np+ q

2 ,σ n−p+ q
2 ,σ

)

+ 1

2

∑
p,q

V (0)
(
np+ q

2 ,↑ n−p+ q
2 ,↓ + np+ q

2 ,↓ n−p+ q
2 ,↑

)

+ 1

2

∑
p,p′,q,σ

|V (p − p′)|2 − V (p − p′)V (−p − p′)
�T

×(
np+ q

2 ,σ n−p+ q
2 ,σ

(
1 − np′+ q

2 ,σ

) (
1 − n−p′+ q

2 ,σ

))
+

∑
p,p′,q

|V (p − p′)|2
�T

(
np+ q

2 ,↑ n−p+ q
2 ,↓

(
1 − np′+ q

2 ,↑
)

× (
1 − n−p′+ q

2 ,↓
))

, (2.1)

where the kinetic energy denominators are given by

�T = h̄2

m
(p2 − p′2). (2.2)

The spin variable σ = ↑,↓ and the nk,σ are the noninteracting
distribution functions, equal to 1 for k < kσ and 0 for k >

kσ . The potential function V (p) is the Fourier transform of
some local two-body interaction V (r) as defined by the box
normalized form:

V (p) = 1

L2

∫
drV (r)eip·r. (2.3)

It is important to note that V (r) is an appropriately defined
effective interaction and is not the very strong, bare 3He-3He
interaction. For discussions pertaining to the construction of
an effective interaction within the correlated basis functions
approach, see Refs. 17 and 18.

Using the notation of Randeria, Duan, and Shieh,19

〈k |V | m〉 ≡ V (k − m), the momentum matrix element can
be written

〈k |V | m〉 =
∞∑

�=0

α�T�(cos θkm)V (�)
km , (2.4)

where θkm = θk − θm, and we have defined

V
(�)
km = 2π

L2

∫ ∞

0
dr rJ�(kr)V (r)J�(mr), (2.5a)

the J�’s are integer order Bessel functions, and

α� =
{

1 if � = 0,

2 if � � 1.
(2.5b)

The functions T�(cos θ ) ≡ cos (�θ ) are Chebyshev polynomi-
als of the first kind.20 They play the same role for angular
variables in two dimensions that Legendre polynomials play
in three dimensions.

The low-density theory is obtained by truncating the series
Eq. (2.4) after the � = 1 term and then taking the low-density
limits kr 	 1 in the Bessel functions:

V (k − m) ≈ V0 + 2 cos(θkm)kmV1, (2.6)

where the s-wave and p-wave low-density potential parame-
ters are defined by

lim
k,m→0

V
(0)
km ≡ V0 = 2π

L2

∫ ∞

0
dr rV (r),

(2.7)

lim
k,m→0

V
(1)
km ≡ kmV1 = km

4

2π

L2

∫ ∞

0
dr r3V (r).

Thus, we find

V (±p − p′) = V0 ± 2 cos(θpp′)pp′V1. (2.8)

If one substitutes Eq. (2.8) into the energy Eq. (2.1) then one
immediately finds divergences in the terms that are quadratic
in the distribution functions. This was noticed by AK in
three dimensions and was discussed in detail by ERZ for two
dimensions. The divergences can be removed by replacing the
bare interaction by an effective interaction, the two-particle T
matrix.

Introducing an angular decomposition of the T-matrix
Lippman-Schwinger equation yields

T
(�)
pp′ = V

(�)
pp′ + L2

∫ ∞

0

dk

2π
kV

(�)
pk

(
1

E − 2ε0
k + iη

)
T

(�)
kp′ ,

(2.9)

where ε0
k ≡ h̄2k2/2m. Inverting the low-density � = 0,1 equa-

tions and then truncating to second order in the T-matrix
components yields

V0 = τ0 (1 − P0τ0) , (2.10a)

V1 = τ1 (1 − P1τ1) , (2.10b)

where, τ0 and τ1 are the low-energy limits of the T matrices,

lim
E→0

T
(0)
pp′ = τ0, (2.11a)

lim
E→0

T
(1)
pp′ = pp′τ1, (2.11b)

and P0 and P1 are integrals over the propagators that are used
to cancel the divergences. For the details of the argument, see
AM.

The Landau parameters f σ σ ′
k k′ are defined by

f σ σ ′
k k′ = δ2E

δnk,σ δnk′,σ ′
. (2.12)

Taking the functional derivatives and using symmetry argu-
ments to simplify the expressions, we find

f
↑ ↑
k k′ = 4 sin2(θk,k′/2)k2

↑τ1 − 16
m

h̄2

∑
p,p′,q

(pp′ cos(θpp′ ))2τ 2
1

p2 − p′2
[
δp+ q

2 ,k′δ−p+ q
2 ,knp′+ q

2 ,↑ + 2δp+ q
2 ,k′δp′+ q

2 ,kn−p+ q
2 ,↑

]

− 2m

h̄2

∑
p,p′,q

τ 2
0 + 4pp′ cos(θpp′)τ0τ1 + 4(pp′ cos(θpp′))2τ 2

1

p2 − p′2
[
δp+ q

2 ,k′δp′+ q
2 ,kn−p+ q

2 ,↓
]
. (2.13)
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The Landau parameter f
↓↓
k k′ is obtained from Eq. (2.13) by reversing all the spins. We note again that in the following, as a matter

of convention, we will consider the spin-down Fermi sea as the minority Fermi sea when the polarization is nonzero. Finally, we
have

f
↑ ↓
k k′ = τ0 + 1

2
(k − k′)2τ1 − m

h̄2

∑
p,p′,q

τ 2
0 + 4pp′ cos(θpp′)τ0τ1 + 4(pp′ cos(θpp′))2τ 2

1

p2 − p′2

×[
δp′+ q

2 ,kδ−p+ q
2 ,k′np+ q

2 ,↑ + δp+ q
2 ,kδ−p+ q

2 ,k′np′+ q
2 ,↑ + δp+ q

2 ,kδ−p′+ q
2 ,k′n−p+ q

2 ,↓ + δp+ q
2 ,kδ−p+ q

2 ,k′n−p′+ q
2 ,↓

]
. (2.14)

The details of the integrations needed to evaluate Eqs. (2.13) and (2.14) can be found in AM. It is customary to use dimensionless
forms for the parameters by multiplying the f σ σ ′

k k′ ’s by a density of states. 7 In the following we denote these dimensionless
parameters by F̃ , that is, F̃ σ σ ′

k k′ = Ñ0f
σ σ ′
k k′ , where Ñ0 = mL2/2πh̄2 is the bare single spin-state density of states. We introduce this

tilde notation because it is customary to use an actual density of states in this definition. Our dimensionless Landau parameters
thus differ from those introduced in Ref. 12 by the use of the bare mass instead of the effective mass and also by a factor of
two. This choice is simply a matter of notational convenience and no physics depends on it. We also use the Ñ0’s to redefine the
T-matrix parameters, τ0 and τ1:

g0 = Ñ0τ0, (2.15a)

g1 = Ñ0τ1. (2.15b)

We note that with this definition, g0 is dimensionless, whereas g1 has the dimensions of length squared.
The final results for the Landau parameters are

F̃
↑↑
k k′ = 4k2

↑ sin2

(
θkk′

2

)
g1 +

[
1 −

√√√√1 − k2
↓

k2
↑ sin2

(
θkk′
2

)�

(
k2
↑ sin2

(
θkk′

2

)
� k2

↓

) ]
g2

0 +
[ ((

1 − 16

3
sin2

(
θkk′

2

))
k2
↑ + k2

↓

)

−
√√√√1 − k2

↓
k2
↑ sin2

(
θkk′
2

) ((
1 − 20

3
sin2

(
θkk′

2

))
k2
↑ − 1

3
k2
↓

)
�

(
k2
↑ sin2

(
θkk′

2

)
� k2

↓

)]
g0g1

+
[ (

25 − 108 sin2

(
θkk′

2

)
+ 2240

15
sin4

(
θkk′

2

))
k4
↑
4

+ k4
↓
4

+
(

1 − 3 sin2

(
θkk′

2

))
k2
↑k2

↓

−
√√√√1 − k2

↓
k2
↑ sin2

(
θkk′
2

)[ (
1 − 12 sin2

(
θkk′

2

)
+ 448

15
sin4

(
θkk′

2

))
k4
↑
4

+ k4
↓

20
+

(
1

2
− 19

15
sin2

(
θkk′

2

))
k2
↑k2

↓

]

×�

(
k2
↑ sin2

(
θkk′

2

)
� k2

↓

)
+ k4

↑ tan2

(
θkk′

2

) {
(1 + 2 cos θkk′) −

[
cos θkk′ + sin2 θkk′ ln

(
tan

(
θkk′

2

))]}]
g2

1 (2.16)

The quantities �(x) are generalized step functions and are defined such that �(x) = 1 if x is true, and 0 if x is not true.
In the limit of zero polarization, we simply have F̃

↓↓
k k′ = F̃

↑↑
k k′ and F̃

↓↓
k k′ is obtained from (2.16) by reversing all the spins. In the

following, we assume finite polarization and k↓ < k↑:

F̃
↓↓
k k′ = 4k2

↓ sin2

(
θkk′

2

)
g1 + g2

0 +
[(

1 − 16

3
sin2

(
θkk′

2

))
k2
↓ + k2

↑

]
g0g1

+
[(

25 − 108 sin2

(
θkk′

2

)
+ 2240

15
sin4

(
θkk′

2

))
k4
↓
4

+ k4
↑
4

+
(

1 − 3 sin2

(
θkk′

2

))
k2
↓k2

↑

+ k4
↓ tan2

(
θkk′

2

) {
(1 + 2 cos θkk′) −

[
cos θkk′ + sin2 θkk′ ln

(
tan

(
θkk′

2

))]}]
g2

1 . (2.17)

F̃
↑↓
k k′ = g0 + 1

2
|−→k − −→

k′ |2g1 +
[(

k2
↑ − k↑k↓ cos θkk′

|k − k′|2
)

+
(

k2
↓ − k↓k↑ cos θkk′

|k − k′|2
)

− ln

(
2p

q

)]
g2

0

+
[
−

(
2p

q

)
cos θpq(k2

↑ − k2
↓) + (k2

↑ − k↑k↓ cos θkk′)

[
1 − 8

3

(k2
↑ − k↑k↓ cos θkk′)2

|−→k − −→
k′ |4

]

+ (k2
↓ − k↓k↑ cos θkk′)

|−→k − −→
k′ |2

(
k2
↓ + (k2

↑ − 2k↑k↓ cos θkk′) − 8

3

(k2
↓ − k↓k↑ cos θkk′)2

|−→k − −→
k′ |2

)]
g0g1
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+
[

(k2
↑ − k↑k↓ cos θkk′)

|−→k − −→
k′ |2

k2
↑
2

[
(k2

↓ − 2k↑k↓ cos θkk′) − k2
↑

|−→k − −→
k′ |2

(k2
↑ − 2k↑k↓ cos θkk′ + k2

↓ cos 2θkk′) − k2
↑
2

]

+ (k2
↓ − k↑k↓ cos θkk′)

|−→k − −→
k′ |2

k2
↓
2

[
(k2

↑ − 2k↑k↓ cos θkk′) − k2
↓

|−→k − −→
k′ |2

(k2
↓ − 2k↑k↓ cos θkk′ + k2

↑ cos 2θkk′) − k2
↓
2

]

+
1
4 [(k2

↑ − k↑k↓ cos θkk′)(k2
↓ − 2k↑k↓ cos θkk′)2] + 1

4 [(k2
↓ − k↑k↓ cos θkk′)(k2

↑ − 2k↑k↓ cos θkk′)2]

|−→k − −→
k′ |2

+
[

(k2
↑ − k↑k↓ cos θkk′)3

[
− 4

3
(k2

↓ − 2k↑k↓ cos θkk′) + k2
↑

|−→k − −→
k′ |2

(
k2
↑ − 2k↑k↓ cos θkk′ + k2

↓

(
cos 2θkk′ + 2

3
sin2 θkk′

))]

+ (k2
↓ − k↑k↓ cos θkk′)3

[
− 4

3
(k2

↑−2k↑k↓ cos θkk′) + k2
↓

|−→k − −→
k′ |2

(
k2
↓ − 2k↑k↓ cos θkk′ + k2

↑

(
cos 2θkk′ + 2

3
sin2 θkk′

))]]

× 1

|−→k − −→
k′ |4

+ 4

5

(k2
↑ − k↑k↓ cos θkk′)5 + (k2

↓ − k↑k↓ cos θkk′)5

|−→k − −→
k′ |6

−
(

4p2

q2

)
cos(2θp,q )

(
1

4
(k4

↑ + k4
↓

)
+

(
−p2 + q2

4

)
1

2
(k2

↑ + k2
↓)

)
+

[
4p2 cos2 (θpq)

1

2
(k2

↑ + k2
↓)

+
(

−p2 + q2

4

)
p2

2

(
1 + 4p2

q2

)
cos(2θpq) − (2p4) ln

(
2p

q

)]]
g2

1, (2.18)

where |−→k − −→
k′ |2 = (k2

↑ + k2
↓ − 2k↑k↓ cos θkk′),2−→p = −→

k − −→
k′ ,−→q = −→

k + −→
k′ .

We can now specialize these results to the unpolarized limit F̃ σ σ ′
k k′ (0) with the magnetization M/N = (N↑ − N↓)/N = 0, and

the fully polarized limit F̃ σ σ ′
k k′ (1) with M/N = 1. For the unpolarized limit, we set k = k′ = kF,

F̃
↑↑
k k′(M/N = 0) = F̃

↓↓
k k′(M/N = 0) = 4 sin2

(
θkk′

2

)
k2

Fg1 + g2
0 + 2

(
1 − 8

3
sin2

(
θkk′

2

))
k2

Fg0g1

+
[(

30 − 120 sin2

(
θkk′

2

)
+ 448

3
sin4

(
θkk′

2

))
+ 4 tan2

(
θkk′

2

)[
(1 + 2 cos θkk′)

−
(

cos θkk′ + sin2 θkk′ ln

(
tan

(
θkk′

2

)))]]
k4

F

4
g2

1, (2.19)

F̃
↑↓
k k′(M/N = 0) = g0 + 2 sin2

(
θkk′

2

)
k2

Fg1 +
(

1 − ln

(
2p

q

))
g2

0 + 4

3
sin2

(
θkk′

2

)
k2

Fg0g1 +
[

8

(
2

5
− ln

(
2p

q

))
sin4

(
θkk′

2

)

+ 2 tan2

(
θkk′

2

)
(1 + 2 cos θkk′) − 2 cos θkk′ sin2

(
θkk′

2

) (
1 + tan2

(
θkk′

2

)) ]
k4

F

4
g2

1 . (2.20)

For the fully polarized limit, we set k↑ = kF,k↓ = 0,

F̃
↑↑
k k′(M/N = 1) = 4 sin2

(
θkk′

2

)
k2

Fg1 + 4

3
sin2

(
θkk′

2

)
k2

Fg0g1 +
[ (

6 − 24 sin2

(
θkk′

2

)
+ 448

15
sin4

(
θkk′

2

))

+ tan2

(
θkk′

2

)
(1 + 2 cos θkk′) − tan2

(
θkk′

2

) (
cos θkk′ + sin2 θkk′ ln

(
tan

(
θkk′

2

))) ]
k4

Fg
2
1, (2.21)

F̃
↓↓
k k′(M/N = 1) = g2

0 + k2
Fg0g1 + 1

4
k4

Fg
2
1, (2.22)

F̃
↑↓
k k′(M/N = 1) = g0 + 1

2
k2
F g1 + g2

0 − 8

3
k2

Fg0g1 + 26

20
k4

Fg
2
1 . (2.23)

III. THERMODYNAMICS AND COLLECTIVE
EXCITATIONS

In this section, we present relations for the two-dimensional
arbitrarily polarized Fermi system that connect the angular mo-
ments of the Landau parameters to measurable thermodynamic

properties and collective excitations. Detailed derivations of
the expressions can be found in AM. As shown by Landau8

and Nozières and Luttinger21 the Landau parameter F̃ σ σ ′
p p′ is

determined by the singular behavior of the scattering function
with the momenta p and p′ fixed at the Fermi momentum.
Thus, the only degree of freedom is the angle between the
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momenta. In two-dimensions the angular decomposition can
be written

F̃ σ σ ′
p p′ =

∞∑
�=0

α�F̃
σ σ ′
� T�(cos θpp′), (3.1)

where α� is the parameter defined in Eq. (2.5b), and
T�(cos θpp′) = cos(�θpp′) are the Chebyshev polynomials of
the first kind introduced in the previous section. This form for
the angular decomposition requires that F̃ (θ ) is periodic in θ

with period 2π , that F̃ (θ ) is real, and that F̃ (θ ) is even in θ .
Inverting the decomposition,

F̃ σ σ ′
m = 1

π

∫ +1

−1
dxw(x)F̃ σ σ ′

p p′ Tm(x), (3.2)

where w(x) = 1/
√

1 − x2 is the integration weight. In obtain-
ing Eq. (3.2) we have used the inner product of two Chebyshev
polynomials [Eq. (3.3)]:∫ +1

−1
dxw(x)Tm(x)T�(x) = π

αm

δm,�. (3.3)

In general, when an integrand consists of powers
of cos(θ ) times Chebyshev polynomials then integrals
over θ from 0 to 2π can be changed to integrals over
cos(θ ) from −1 to +1 multiplied by a factor of 2.

A. Thermodynamic quantities

The state-dependent effective mass for an arbitrarily polar-
ized two-dimensional Fermi liquid is given by

m

m∗
σ

= 1 −
(

F̃ σ σ
1 + kF −σ

kF σ

F̃ σ −σ
1

)
. (3.4)

In this expression the notation −σ simply denotes the opposite
of σ ; thus, if σ = ↑ then −σ = ↓.

We can now obtain the effective masses in the unpolarized
and fully polarized limits. For zero polarization, in agreement
with ERZ, we obtain

m∗

m
= 1

1 − 2F̃ s
1

= 1 + 2F s
1 , (3.5)

where F s
1 = (m∗/m)F̃ s

1 ≡ N0f
s
1 is a dimensionless Landau

parameter written in terms of a single spin-state density
of states that itself contains the effective mass. [Here and
henceforth N0 ≡ m∗L2/2πh̄2 is used to denote the single
spin-state density of states in the zero polarization case. In
this paper all dimensionless Landau parameters are scaled
by a single spin-state density of states.] The symmetric and
antisymmetric Landau parameters used in the zero polarization
limit are defined, as usual, by

F̃ σ σ ′
� = F̃ s

� + σσ ′F̃ a
� , (3.6)

where for this definition we associate σ (↑) = +1, and σ (↓) =
−1. In the fully polarized limit (k↑ = kF,k↓ = 0):

m∗
↑

m
= 1

1 − F̃
↑↑
1

, (3.7a)

m∗
↓

m
= 1

1 − k↑limk↓→0
( F̃

↑↓
1
k↓

) . (3.7b)

These results are similar to those in three-dimensions where
they were discussed by Bedell.22 Bedell argued from scattering
theory that limk↓→0 F̃

↑↓
� → 0 and limk↓ → 0 F̃

↓↓
� → 0

for � � 1.
The low-temperature heat capacity is simply proportional

to the number of available states. Thus, in a derivation that
follows that in three dimensions,23 we find

C = π2

3
Ñ0

(
m∗

↑
m

+ m∗
↓

m

)
k2

BT = πk2
BL2

6h̄2

(
m∗

↑ + m∗
↓
)
T .

(3.8)

The inverse isothermal compressibility is defined by

κ−1
T = −A

(
∂P

∂A

)
T ,N↑,N↓

. (3.9)

In terms of the Landau parameters, we find for arbitrary
polarization

κ−1
T = 2πh̄2

m

[(
m

m∗
↑

+ F̃
↑↑
0

)
n2

↑ + 2F̃
↑ ↓
0 n↑n↓

+
(

m

m∗
↓

+ F̃
↓↓
0

)
n2

↓

]
. (3.10)

The compressibility is related to the first sound speed c1

by mc2
1 = κ−1/n. As pointed out by Landau, first sound

does not propagate in fermion systems at absolute zero. The
propagating mode, zero sound, is discussed in the next section.
In the limit of zero polarization n↑ = n↓ = n/2, and full
polarization n↑ = n, n↓ = 0, we find

κ−1
T (0) = πh̄2

m∗ n2

[
1 + 2

m∗

m
F̃ s

0

]
= πh̄2

m∗ n2[1 + 2F s
0

]
,

(3.11a)

κ−1
T (1) = 2πh̄2

m∗
↑

n2

[
1 + m∗

↑
m

F̃
↑↑
0

]
, (3.11b)

where in Eqs. (3.10), (3.11a), and (3.11b) nσ ≡ Nσ/A are areal
densities.

The isothermal spin susceptibility is defined by

χ = 1

A

(
∂M

∂h

)
T ,N

. (3.12)

In terms of the Landau parameters, the spin susceptibility is
given by

χ−1 = πh̄2

2m

[(
m

m∗
↑

+ F̃
↑↑
0

)
− 2F̃

↑ ↓
0 +

(
m

m∗
↓

+ F̃
↓ ↓
0

)]
.

(3.13)

For alternative derivations of the spin susceptibility, see
Ref. 24. In the limit of zero and full polarization, we find

χ−1(0) = πh̄2

m∗

[
1 + 2

m∗

m
F̃ a

0

]
= πh̄2

m∗
[
1 + 2Fa

0

]
, (3.14a)

χ−1(1) = πh̄2

2m

[(
m

m∗
↑

+ F̃
↑↑
0

)
− 2F̃

↑ ↓
0 +

(
m

m∗
↓

+ F̃
↓↓
0

)]
.

(3.14b)
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B. Collective excitations

The derivation of the zero-sound dispersion relations proceeds as in three dimensions beginning with Landau’s linearized kinetic
equation:23

(sσ −cos θ )ukσ (θ )−cos θ
∑
σ ′

m∗
σ ′L2

4π2h̄2

∫ 2π

0
dθ ′f σ σ ′

kk′ uk′σ ′(θ ′)=0, (3.15)

where ukσ (θ ) is a Fermi-surface displacement function, q is the wave vector of the mode, θ is the angle between k and q, θ ′ is the
angle between k′ and q, and sσ ≡ ω/qvFσ is the usual dimensionless frequency. Then after introducing angular decompositions
we find

(sσ − cos θ )
∞∑

�=0

α�u�σ T�(cos θ ) − cos θ
∑
σ ′

Nσ ′
0

∞∑
�=0

α�f
σσ ′
� u�σ ′T�(cos θ ) = 0. (3.16)

There are two basic ways to analyze Eq. (3.16). The simpler approach, carried out in AM, is to truncate the series after � = 2,
and then to compute moments by multiplying with Tm(cos θ ) and integrating over θ . We then find

c2
0± = 1

2

(
A↑↑v2

F↑ + A↓↓v2
F↓

)
± 1

2

√[
A↑↑v2

F↑ + A↓↓v2
F↓

]2 − 4(A↑↑A↓↓ − A↑↓A↓↑)v2
F↑v2

F↓. (3.17)

The parameters are defined by

A↑↑ =
(

1 + 1

2

m∗
↑

m
F̃

↑↑
0

) (
1 + m∗

↑
m

F̃
↑↑
1

)
+ 1

2

m∗
↑m∗

↓
m2

F̃
↑↓
1 F̃

↓↑
0

vF↓
vF↑

, (3.18a)

A↓↓ =
(

1 + 1

2

m∗
↓

m
F̃

↓↓
0

) (
1 + m∗

↓
m

F̃
↓↓
1

)
+ 1

2

m∗
↓m∗

↑
m2

F̃
↓↑
1 F̃

↑↓
0

vF↑
vF↓

, (3.18b)

A↑↓ =
(

1 + 1

2

m∗
↓

m
F̃

↓↓
0

)
m∗

↓
m

F̃
↑↓
1 + 1

2

m∗
↓

m
F̃

↑↓
0

(
1 + m∗

↑
m

F̃
↑↑
1

)
vF↑
vF↓

, (3.18c)

A↓↑ =
(

1 + 1

2

m∗
↑

m
F̃

↑↑
0

)
m∗

↑
m

F̃
↓↑
1 + 1

2

m∗
↑

m
F̃

↓↑
0

(
1 + m∗

↓
m

F̃
↓↓
1

)
vF↓
vF↑

. (3.18d)

In the weak coupling limit Aσσ ′ = 1 and thus c0σ = vFσ . For
convenience, in the following we refer to this approach as the
truncated series method.

In the zero-polarization limit (A↑↑ = A↓↓, A↑↓ =
A↓↑, vF = vF↑ = vF↓), and c2

0± = (A↑↑ ± |A↑↓|)v2
F. In terms

of the Landau parameters,

c2
0 s,a

v2
F

= (
1 + F

s,a
0

) (
1 + 2F

s,a
1

)
, (3.19)

where we changed + and − to symmetric and antisymmetric,
respectively. The symmetric mode corresponds to zero sound
and the antisymmetric mode corresponds to spin zero sound.
In the “simplest approximation”25 we set F

s,a
1 = 0 and find

c2
0 s,a ≈ (

1 + F
s,a
0

)
v2

F. (3.20)

Thus, in the zero-polarization, strong coupling limit we
find limF

s,a
0 →∞ c0 s,a/vF ≈

√
F

s,a
0 . In the limit of full polar-

ization (vF = vF↑ and vF↓ = 0), we immediately find c2
0+ =

A↑↑v2
F and c2

0− = 0. Thus, in terms of the Landau parameters

c2
0+ =

(
1 + 1

2

m∗
↑

m
F̃

↑↑
0

) (
1 + m∗

↑
m

F̃
↑↑
1

)
v2

F. (3.21)

For the second approach to analyze the kinetic equation we
follow Khalatnikov and Abrikosov26 (see also Refs. 7 and 23)

and rewrite the kinetic equation,

umσ −
∑
σ ′

Nσ ′
0

∞∑
�=0

α�f
σσ ′
� u�σ ′�σ

m,� = 0, (3.22)

where the angular integrals are defined by

�σ
m,� ≡ 1

π

∫ +1

−1
dxw(x)Tm(x)

(
x

sσ − x

)
T�(x). (3.23)

The integrals can be evaluated analytically and we find

2�σ
m,� = 1 + z2

0

1 − z2
0

(
zm+�

0 + z
|m−�|
0

) − δm,� − δm,0δ�,0, (3.24)

where

z0 ≡ zσ
0 = sσ −

√
s2
σ − 1. (3.25)

In the “simplest approximation” we ignore all terms except
m = 0. Then the zero-sound velocity, in the zero-polarization
limit for simplicity, is determined by the solution of 1 −
2F s

0 �0,0 = 0, where

�0,0 = s√
s2 − 1

− 1. (3.26)

Solving for the zero-sound velocity,

c2
0s

v2
F

=
(
1 + 2F s

0

)2

1 + 4F s
0

. (3.27)
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The Khalatnikov/Abrikosov approach has the correct weak
coupling limit, and in the strong coupling limit c2

s /v
2
F ∼ F s

0 ,
it is in agreement with Eq. (3.20). In numerical work to be
discussed below, we show that we need to include contributions
up to � = 3 terms in the set of coupled equations, Eq. (3.22) to
ensure accurate results. The zero-sound and spin-zero-sound
speeds are then the real eigenvalues of an 8 × 8 determinant.
We note that in the important range of values of F s

0 ≈ 1, the
zero-sound speeds calculated with Eq. (3.20) tend to be slightly
higher than those calculated with Eq. (3.27).

It is customary to compare the zero-sound speed with the
first sound speed. From Eq. (3.11a) the zero-polarization first
sound speed is given by

c2
1

v2
F

= 1

2

(
1 + 2F s

1

) (
1 + 2F s

0

)
. (3.28)

Thus, in the strong coupling limit c2
1/v

2
F ∼ F s

0 , and the zero-
sound and first-sound speeds become equal, the same as in
three dimensions. In the weak coupling limit c2

1/v
2
F ∼ 1/2,

and thus c1/c0 ∼ 1/
√

2.

C. Thermodynamic stability

The onset of instability is signaled by a pole in the scattering
amplitudes.25 Expressions for the scattering amplitudes of
an arbitrarily polarized two-dimensional Fermi liquid can be
found in Eqs. (3.47) in AM. The denominator of the scattering
amplitude is isomorphic to the zero-frequency linearized
kinetic equation. Thus, the intimate connection between the
divergence of the scattering amplitude and the appearance of
a soft mode. The general stability relation can be written(

m

m∗
↑

+ F̃
↑↑
�

) (
m

m∗
↓

+ F̃
↓↓
�

)
� (F̃ ↑↓

� )2. (3.29)

The stable regime is the one where the inequality in Eq. (3.29)
is obeyed. This can only be shown by analyzing the response
functions and the thermodynamic potential.

For simplicity, we introduce an alternate notation:

a
↑
� = m

m∗
↑

+ F̃
↑↑
� , (3.30a)

a
↓
� = m

m∗
↓

+ F̃
↓↓
� , (3.30b)

b� = F̃
↑↓
� . (3.30c)

The inverse compressibility and the inverse spin susceptibility
Eqs. (3.10) and (3.13), respectively, can be written

κ−1
T = 2πh̄2

m
[a↑

0 n2
↑ + a

↓
0 n2

↓ + 2b0n↑n↓], (3.31)

χ−1 = πh̄2

2m
[a↑

0 + a
↓
0 − 2b0]. (3.32)

We note that these expressions only involve the � = 0 Landau
parameters. We can now apply the following inequality:

a
↑
� + a

↓
� � 2

√
a

↑
� a

↓
� = 2|b�|. (3.33)

The equal sign in Eq. (3.33) simply denotes the zero of the
stability condition. By inspection we see that the response
functions are positive when the stability inequality Eq. (3.29)

a
↑
0 a

↓
0 > b2

0 is satisfied. Further, the response functions pass
through zero when a

↑
0 a

↓
0 = b2

0, and finally they become
negative when a

↑
0 a

↓
0 < b2

0.
The general stability relation also ensures positive effective
masses at the Fermi surface and thus positive heat capacities.
If one takes the lim m∗

↑ → 0+ say, the left-hand side of (3.29)
becomes large and positive and the inequality is obeyed. How-
ever, when one passes through the pole then the left-hand side
becomes large and negative and the inequality is not obeyed.
From Eq. (3.4) we note that the condition for positive effective
masses in terms of the Landau parameters can be written:
F̃ σ σ

1 + (kF −σ /kF σ )F̃ σ −σ
1 < 1 . In the zero polarization limit

this becomes 2F s
1 > −1 where F s

1 = (m∗/m)F̃ s
1 . We note

that the expression for the effective mass Eq. (3.4) can be
substituted into the general stability relation to derive an
inequality for the � = 1 Landau parameters.
An alternate path to showing that the stable regime is defined
by Eq. (3.29) is to follow Pomeranchuk27 and expand the
thermodynamic potential to second order in deformations
of the Fermi surface δpFσ . We can then show that the
general stability relation determines the regime in which the
thermodynamic potential is a minimum. We follow Baym
and Pethick23 to obtain for the second-order variation in the
thermodynamic potential

δE − μδN =
∞∑

�=0

α�

1

2
Ñ0[η2

↑a
↑
� + 2η↑η↓b� + η2

↓a
↓
� ], (3.34)

where ησ = (m∗
σ /m)v�σ and the v�σ are the expansion coeffi-

cients for the Fermi surface deformations:

vFσ δpFσ =
∞∑

�=0

α�v�σ T�(cos θ ). (3.35)

The argument of the sum in Eq. (3.34) is in the same form as
that of the inverse compressibility, and so we can conclude that
the thermodynamic potential is a minimum when the general
stability relation is obeyed.

IV. 3He THIN FILMS ON GRAPHITE

We begin by determining values for the effective interaction
parameters g0 and g1. We do this by fitting them to the experi-
mental values of the effective mass and spin susceptibility as a
function of density. The application of the low-density theory
of Sec. II to films where the typical density is approximately
one-half of a monolayer needs to be discussed. We need to
emphasize that all that we are requiring of the low-density
perturbation theory is that the functional form for the energy
be a reasonable approximation at these moderate densities.
The g0 and g1 that we find from this procedure are not the
values one would calculate from first principles in the zero
density limit. The fitted parameters clearly must include
contributions from the higher � states. Thus, we call them
effective interaction parameters. We show a posteriori that
the effective interaction parameters have only a very modest
dependence on density.

For second-layer 3He adsorbed on graphite, the spin
susceptibility data can be obtained from Fig. 1 of Ref. 4, and
the effective mass data can be obtained from Fig. 12 of Ref. 3.
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FIG. 1. (Color online) The fitted values of the effective interaction
parameters g0 and k2

Fg1 as a function of film coverage. The triangles
are determined from measurements of the effective mass and spin
susceptibility of second-layer 3He on a graphite substrate from Refs. 3
and 4, respectively. The squares and circles are from 3He-4He thin
mixture film data of Ref. 28.

All experiments are done at small or zero polarization. The
five densities at which results are reported in this section are
n = 0.0132, 0.0252, 0.0370, 0.0459, and 0.0543 Å−2.

In Fig. 1 we show the values obtained for the effective
interaction parameters as a function of 3He density. In order
to compare approximately the magnitudes of the s-wave and
p-wave interaction components, we multiply g1 by k2

F to create
a dimensionless quantity. Then g1k

2
F is the quantity displayed

in Fig. 1. The effective interaction parameters for the second
layer of 3He on graphite data are shown as triangles. Both
g0 and k2

Fg1 increase monotonically as a function of coverage.
Nevertheless, the density dependence is modest considering
that the range of density from smallest to largest covers almost
a factor of six. The squares and circles are from 3He-4He thin
mixture film data Ref. 28 and are discussed in the next section.

With values for the s-wave and p-wave interaction com-
ponents, we can follow the analysis in Sec. II and compute
the Landau parameters {F̃ ↑↑,F̃ ↑↓,F̃ ↓↓} for a 3He thin film.
We then compute the components of an angular momentum
decomposition of the Landau parameters which, from Sec. III,
yield various measurable quantities.

Figures 2 and 3 show the � = 0,1 angular components of
the Landau parameters. The Landau parameter F̃

↑↑
0 increases

monotonically with increasing density at fixed polarization,
and also increases monotonically with increasing polarization
at fixed density. At zero polarization, the F̃

↑↓
0 are similar in

magnitude to F̃
↑↑
0 at a given density; however, they decrease

monotonically with increasing polarization at a fixed density.
The F̃

↓↓
0 , as usual, increase with increasing density at a fixed

polarization; however, they then pass through a minimum at
around 70% polarization at the higher densities.

Figure 3 shows that the � = 1 parameters are almost all
monotonically decreasing functions of polarization at a given
density. The negative values of F̃

↑↑
1 at high polarizations

FIG. 2. (Color online) The Landau parameters F̃
↑↑
0 ,F̃

↑↓
0 ,

and F̃
↓↓
0 for a thin 3He film on graphite at five coverages as a function

of polarization. In each figure the lowest curve corresponds to the
lowest coverage, and the curves progress in order up to the highest
curve at the highest coverage. The five coverages are n = 0.0132,
0.0252, 0.0370, 0.0459, and 0.0543 Å−2.

drive the high-polarization values of m∗
↑/m to below 1, as

is discussed below. At zero polarization the F̃
↑↓
1 parameter

dominates, whereas at complete polarization the F̃
↑↑
1 has

the greatest magnitude, as is to be expected. Further, at
complete polarization F̃

↑↓
1 = F̃

↓↓
1 = 0, which ensures that

the spin-down effective mass in that limit Eq. (3.7b) is well
defined.

In order to examine the convergence of the angular expan-
sion Fig. 4 shows the Landau parameters F̃

↑↑
� as a function of �

for polarizations 0,0.5,1.0 at density n = 0.0132 Å−2. One of
the advantages of fitting the effective interactions rather than

FIG. 3. (Color online) The Landau parameters F̃
↑↑
1 ,F̃

↑↓
1 ,

and F̃
↓↓
1 for a thin 3He film on graphite at five coverages as a function

of polarization M/N . In each figure the lowest curve corresponds to
the lowest coverage, and the curves progress in order up to the highest
curve at the highest coverage. The five coverages are n = 0.0132,
0.0252, 0.0370, 0.0459, and 0.0543 Å−2.
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FIG. 4. (Color online) The Landau parameters F̃
↑↑
�

as a function of � for 3He on graphite at a coverage of n = 0.0132
Å−2 for three polarizations: M/N = 0, 0.5, and 1.0. The series
oscillates in sign for � � 2. Notice that the � = 1 terms and the � = 2
terms have the same sign. Further, the magnitude of the � = 2 terms
are greater than the magnitudes of the � = 1 terms.

the Landau parameters directly is that we can readily compute
Landau parameters for any value of �. The magnitudes of the
parameters certainly decrease as a function of �. However, it is
not clear that the angular decomposition could be considered
as converged with only the � = 0 and � = 1 terms, as is
sometimes assumed for the bulk 3He system. In fact, the � = 2
terms have the same sign and a greater magnitude than � = 1
terms. It is because of this behavior that we investigate the
importance of keeping components up to � = 3 in order to
ensure accurate zero-sound speeds in the following section.
For � � 2 the series oscillates in sign, with the signs for the
odd terms positive and the signs for the even terms negative,
and decreases uniformly in magnitude.

1. Thermodynamics

The expression for the effective mass as a function of
polarization is given in Eq. (3.4). Using the � = 1 Landau
parameters shown in Fig. 3 we calculate the results shown
in Fig. 5. Both the spin-up and the spin-down effective
masses are a maximum at zero polarization. They increase
monotonically with increasing density at fixed polarization
and decrease monotonically with increasing polarization at
fixed density. At a fixed density and polarization, m∗

↓ � m∗
↑.

This behavior is in qualitative agreement with arguments
presented by Bedell15 for the three-dimensional system. The
zero polarization value for the effective masses is one of
the experimental numbers (from Ref. 3) used to determine
the effective interaction components, g0 and g1. Thus, the
behavior of m∗

σ /m as a function of polarization is one of the
key predictions for this model. The distinguishing feature of
these results is the dramatic decrease in the spin-up effective
masses at the larger coverages as a function of polarization.
Another interesting prediction of Fig. 5 is that m∗

↑ falls below
m at high polarization. From Eq. (3.7a) it is clear that this

FIG. 5. (Color online) The spin-up and spin-down effective
masses m∗

σ /m for a thin 3He film on graphite as a function of
polarization. The zero polarization limits are from Ref. 3, as discussed
in the text.

behavior is being driven by F̃
↑↑
1 becoming negative at high

polarization. Further, from Eq. (2.21) it is clear that in the
limit g1 = 0 we would have m∗

↑ = m for the majority spin
effective mass in the limit of 100% polarization.

The expression for the low-temperature heat capacity as a
function of polarization is given in Eq. (3.8). In Fig. 6 we plot
the slope of the specific heat. Since the number of accessible
states gets smaller with increasing polarization, we expect that
the heat capacity would decrease monotonically as a function
of polarization and this is clearly shown in this figure. This
behavior simply mirrors the decrease in the magnitude of the
effective mass with increasing polarization.

In Fig. 7 we show the first sound speed c1, essentially the
inverse of the square root of the compressibility, as a function
of polarization at five coverages. As pointed out by Landau 7

first sound cannot propagate in a Fermi liquid at absolute zero.

FIG. 6. (Color online) The slope of the low-temperature heat
capacity for a thin 3He film on graphite as a function of polarization.
The slope decreases monotonically with increasing polarization, as
expected from the behaviors of the state-dependent effective masses.
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FIG. 7. (Color online) The speed of first sound for thin films
of 3He on graphite as a function of polarization shown for five
coverages: n = 0.0132, 0.0252, 0.0370, 0.0459, and 0.0543 Å−2.
Increasing magnitudes of first sound indicate that the system becomes
less compressible with increasing polarization at fixed density.

At any finite temperature, however, hydrodynamic response
will dominate in the limit of small frequencies.29 As is expected
the films become less compressible at fixed density with
increasing polarization. Indirect information concerning the
magnitude of c1 can be obtained from the small-q behavior of
the structure factor S(q), as discussed in AM.

The inverse spin susceptibility Eq. (3.13) as a function of
polarization for five 3He coverages on graphite is shown in
Fig. 8. The spin susceptibility is a monotonically decreasing
function of the polarization at fixed coverage. Because the two-
dimensional density of states Ñ0 is a constant the susceptibility
does not vanish in the complete polarization limit as it does

FIG. 8. (Color online) The inverse spin susceptibility for 3He
in two dimensions as a function of polarization at five densities
as indicated by the labels in the figure. The densities are in units
of Å−2. We note that as a special feature of two dimensions the
susceptibility does not vanish in the limit of complete polarization.
The zero polarization limits are from Ref. 4, as discussed in the
text.

in three dimensions. The density dependence is interesting. At
low polarization, the largest spin susceptibility is at the lowest
density. The susceptibilities seem to cross at a polarization
≈10%, and at large polarization, the largest spin susceptibility
is at the largest density.

2. Collective excitations

The allowed collective modes at absolute zero in fermion
systems correspond to oscillations of the Fermi seas and are
known as zero sound. In Sec. III we derived two expressions
for the zero-sound and spin-zero-sound speeds as a function
of polarization. In the left panel of Fig. 9 we have plotted
zero-sound speeds for both of the approximations at the
smallest and largest areal densities that we are considering.
In the figure we label the results of Eq. (3.17) “truncated
series” and label the results of Eq. (3.22) “AK”. Of course,
each approach is just a different method of solving a truncated
set of linear equations that result from Landau’s kinetic
equation. The AK approximation leads to lower zero-sound
speeds at every polarization. The differences in the zero-sound
eigenvalues between the two approaches is small, especially
at the lowest density. There is an interesting crossing of the
up-spin Fermi velocities at a polarization ≈10% that can
be attributed to the polarization dependence of the effective
masses. At finite polarization, the condition for stability of
the collective excitation is that the speed be greater than the
maximum Fermi velocity. In this system the maximum Fermi
velocity is vF↑. By inspection of the left panel of Fig. 9 it is
clear that zero sound will propagate at all polarizations for
both densities.

FIG. 9. (Color online) (Left) The zero-sound speed for 3He on
graphite at densities of n = 0.0132 and 0.0543 Å−2 as a function
of polarization. The solid lines are the AK results [Eq. (3.22)], the
dotted lines are the “truncated series” results [Eq. (3.17)], and the
dashed lines are the up-spin Fermi velocities, vF↑. These results imply
that zero sound is stable over the whole range of polarizations and
densities examined here. (Right) The zero-sound speed for 3He on
graphite at a density of n = 0.0132 Å−2 as a function of polarization.
The dotted line is the simple quadratic truncated series of Eq. (3.17),
the dashed line is the AK approximation [Eq. (3.22)] truncated after
� = 1, and the solid line is the AK approximation truncated after
� = 3.
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FIG. 10. (Color online) The zero-sound speeds as a function of
polarization for second-layer 3He on graphite. Each line is labeled by
the coverage in units of Å−2.

We have also addressed the question of convergence using
the AK approximation. The results shown in the left panel of
Fig. 9 were calculated after truncating the sets of coupled
equations after the � = 3 contribution. This results in an
8 × 8 determinant to be diagonalized. In the right panel of
Fig. 9 we examine the convergence by comparing the AK
zero-sound speeds after truncating at � = 1 and � = 3, and we
also show the truncated series results all at n = 0.0132 Å−2.
The differences in the zero-sound speeds between the � = 1
truncation and the � = 3 truncation are only a few percent.
Thus, we are confident that the results truncated after � = 3
are accurate. Then, in Fig. 10 we use the AK model including
� = 3 terms as discussed above to calculate the zero-sound
speeds for second layer 3He on graphite as predicted by our
model. Each line is labeled by the 3He coverage in units
of Å−2.

3. The zero-sound speeds

We have not shown any results for spin zero sound because
we do not find that this mode propagates. We do not find
any density or polarization at which the antisymmetric spin
mode speed has a magnitude greater than the spin-up Fermi
velocity. We note that this corrects an error in Ref. 14, where in
discussing the “truncated series” it was erroneously stated that
for stability the spin-zero-sound mode only needs to be greater
in magnitude than the Fermi velocity of the minority Fermi sea.
Any mode with speed less than the maximum Fermi velocity
will necessarily have a complex eigenvalue, as is clearly seen in
the AK approach. Further, when one admits Landau parameters
with � > 1 then the eigenvalue problem can, in principle, have
multiple propagating zero-sound modes.23 At every density
and polarization examined for this work we find one and
only one real, positive eigenvalue with magnitude greater
than the maximum Fermi velocity. The nature of the mode
is determined by examining the eigenfunctions.

Once we have obtained the angular moments of the Fermi
surface distortion we can then build back the distortion as it

FIG. 11. (Color online) The spin-up and spin-down Fermi surface
distortion uk σ (θ ) for 3He on graphite, at a density of n = 0.0132 Å−2,
in units of degrees Kelvin. The distortion function is shown at
three polarizations 0.0,0.5,1.0. In both Fermi seas the distortion
corresponds to an elongation of the distribution in the direction of
propagation of the excitation and a flattening out of the distribution
in the opposite direction. The majority-spin Fermi sea distortion
shows little polarization dependence, whereas the minority-spin
Fermi sea distortion evolves to a cosine distribution in the limit of
zero occupation as discussed in the text.

appears in momentum space:

uk σ (θ ) =
∞∑

�=0

α�u� σ T�(cos θ ), (4.1)

In Fig. 11 we show the Fermi surface distortions for the up
and down-spin Fermi seas at three polarizations: 0.0,0.5,1.0.
There is little polarization dependence in the up-spin Fermi
sea distortion. The excitation state changes the Fermi sea shape
from a circle to conoidal with a large increase in the occupation
of states in the direction of propagation and a flattening of the
distribution in the opposite direction.

The form of the minority-spin surface distortion in the limit
of complete polarization is interesting. The magnitude of the
distortion in the forward direction for the spin-down Fermi
sea decreases dramatically with increasing polarization. The
distortion reaches a limiting cosine form as the polarization
becomes complete. We examine Eq. (3.22) for uk σ (θ ) in
the lim kF↓ → 0. From Bedell’s argument,15 in the limit
of complete polarization we have f

↑↓
� = f

↓↓
� = 0 for � � 1.

Thus, in the complete polarization limit we only need examine
�

↓
m 0. By definition, in the complete polarization limit we

also have s↓ � 1 and thus from Eq. (3.25), z0 ≈ 1/(2s↓).
Substituting back into Eq. (3.24), we find that �↓

10 is the leading
term to O(s−1

↓ ) [note, �
↓
00 = O(s−2

↓ )]. Reconstructing the
surface deformation we find from Eq. (4.1) limkF↓→0ukF↓(θ ) ≈
2u1cos(θ ). The cosine dependence is what is expected in a
regime dominated by p-wave scattering.

V. 3He IN THIN SUPERFLUID 4He FILMS

The study of 3He adsorbed in thin 4He films was initiated by
Gasparini and co-workers in the 1980s.30 The substrate used
by this group was Nuclepore, a polycarbonate material used
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as filters in the life sciences. This group studied the energetics
of the 3He surface state using heat capacities as the probe.
In Ref. 30 they reported evidence that the 3He component
may be condensing into a two-dimensional Fermi liquid as
the temperature is lowered at fixed 3He coverage. In the 1990s
much of the work on 3He-4He thin mixture films was continued
by Hallock and co-workers.31 In particular, in Refs. 28, 32,
and 33 they determined experimental values of the Landau
parameters F a

0 and F s
1 for various coverages of 3He and various

4He film thicknesses.
The experimental results that we used for this analysis were

taken from Fig. 6 in Ref. 28. To be specific, this figure shows
values for the Landau parameters F a

0 and F s
0 as a function of

3He areal density for two 4He film thicknesses: 3.14 layers and
4.33 layers. We took those values, substituted them back into
the expressions used by Akimoto, Cummings, and Hallock
for the effective mass and spin susceptibility, and then we
determined g0 and g1 from that data. The results of our
analysis are shown in Fig. 1 by the disk-shaped (3.14 layers)
and solid-square (4.33 layers) data points. The magnitudes
of g0 and k2

Fg1 for the 3.14-layer 4He film are greater than
those for the 4.33-layer film over the range of 3He coverages
that we examined. The graphite substrate effective interaction
parameters are very similar to those of the thin-film mixture
with perhaps a slight difference in slope. This similarity is
reasonable since there are not large differences in the effective
masses or spin susceptibilities for the two cases.

In Figs. 12 and 13 we show the � = 0,1 components of the
Landau parameters for the 3.14-layer system. The functional
forms of these Landau parameters are very similar to those in
Figs. 2 and 3, as one would expect. The data for the mixture
film extends over a smaller range of 3He density than the
graphite substrate data. For the mixture film the density range
is roughly 0.01–0.03 Å−2, whereas for the graphite the density
range is 0.01–0.05 Å−2. The difference is due to the onset of

FIG. 12. (Color online) The Landau parameters F̃
↑↑
0 ,F̃

↑↓
0 ,

and F̃
↓↓
0 for a thin 3He film in a 3.14-layer 4He film at five

coverages as a function of polarization. In each figure the lowest
curve corresponds to the lowest coverage, and the curves progress
in order up to the highest curve at the highest coverage. The five
coverages are n = 0.0128, 0.0161, 0.0193, 0.0241, and 0.0289 Å−2.

FIG. 13. (Color online) The Landau parameters F̃
↑↑
1 ,F̃

↑↓
1 ,

and F̃
↓↓
1 for a thin 3He film in a 3.14-layer 4He film at five

coverages as a function of polarization. In each figure the lowest
curve corresponds to the lowest coverage, and the curves progress
in order up to the highest curve at the highest coverage. The five
coverages are n = 0.0128, 0.0161, 0.0193, 0.0241, and 0.0289 Å−2.

occupation of the first excited state in the mixture film at a
density of ∼0.39 Å−2.34

Figures 14 and 15 show the Landau parameters for the
4.33-layer film. As noted above, the effective interaction
parameters for the 4.33-layer film are fairly uniformly spaced
above the parameters for the 3.14-layer film (see Fig. 1). The
Landau parameters are thus very similar in the two films but the
4.33-layer parameters are smaller in magnitude as a function
of polarization.

In Fig. 16 we compare the state-dependent effective masses
for the 3He in the two 4He thin films. The 3.14-layer results
are in the top two panels, and the 4.33-layer results are in the
bottom two panels. The data points on the zero-polarization

FIG. 14. (Color online) The Landau parameters F̃
↑↑
0 ,F̃

↑↓
0 ,

and F̃
↓↓
0 for a thin 3He film in a 4.33-layer 4He film at six coverages as

a function of polarization. In each figure the lowest curve corresponds
to the lowest coverage, and the curves progress in order up to
the highest curve at the highest coverage. The six coverages are
n = 0.0153, 0.0187, 0.0215, 0.0248, 0.0280, and 0.0311 Å−2.
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FIG. 15. (Color online) The Landau parameters F̃
↑↑
1 ,F̃

↑↓
1 ,

and F̃
↓↓
1 for a thin 3He film in a 4.33-layer 4He film at six coverages as

a function of polarization. In each figure the lowest curve corresponds
to the lowest coverage, and the curves progress in order up to
the highest curve at the highest coverage. The six coverages are
n = 0.0153, 0.0187, 0.0215, 0.0248, 0.0280, and 0.0311 Å−2.

ordinates in all the panels are the fits from experiment
as described above. From experiment, the effective masses
dramatically increase in magnitude with increasing areal
density. The qualitative differences between these results and
those on graphite Fig. 5 are due to the smaller maximum
density for the film data as discussed above. Also note that
for the mixture film the effective mass is measured relative
to the hydrodynamic mass mH and not the bare mass m.
The hydrodynamic mass as a function of 4He film thickness
was determined in Ref. 35. For theoretical discussions of the
hydrodynamic mass see Ref. 36. These systems also show the
same tendency for m∗

↑/mH < 1 in the large polarization limit

FIG. 16. (Color online) The spin-up and spin-down effective
masses m∗

σ /mH for a thin 3He film in mixture films of 3.14 4He
layers (top) and 4.33 layers (bottom) as a function of polarization.
Note that the specific 3He coverages for the two film thicknesses are
not identical. In the limit of large polarization we find m∗

↑/m < 1 as
was also the case for the graphite substrate.

FIG. 17. (Color online) The inverse spin susceptibility χ−1 and
the first sound speed c1 for 3He on a 3.14-layer 4He film (top) and a
4.33-layer 4He film (bottom). The five 3He coverages for the 3.14-
layer 4He film and the six 3He coverages for the 4.33-layer film are
labeled in the first sound panels, and all are in units of Å−2. The spin
susceptibilities show the same small polarization crossing as the 3He
on graphite data (see Fig. 8). The first sound data (inverse square root
of the compressibility) for the two films are very similar, with the
thicker film showing a slightly larger stiffness.

as on the graphite substrate. The source of this behavior is the
tendency for F̃

↑↑
1 to become large and negative with increasing

polarization.
First sound speeds (essentially the inverse of the square root

of the compressibility) and the inverse spin susceptibilities for
the two 4He film substrates are shown in Fig. 17, right panels
and left panels, respectively. The inverse susceptibilities have
the same tendency to cross at low polarization as seen in
the graphite substrate data (Fig. 8). At low polarization, the
smallest areal density film has the smallest spin susceptibility.
At high polarization the largest areal density film has the
smallest spin susceptibility. For both films, the crossing seems
to be close to a single point at approximately 30% polarization.
In any case, the effect is not large, and the spin susceptibility
is to first order not sensitive to 3He coverage. The polarization
and 3He coverage dependence of the compressibility in terms
of the first sound speed is similar to that shown previously
in Fig. 7. The incompressibility increases monotonically with
both increasing 3He coverage (positive compressibility for film
stability) and also with increasing polarization.

The polarization and 3He coverage dependence of the
zero-sound speeds for the two 4He film substrates are shown
in Fig. 18. The zero-sound speeds for the 4.33-layer film are
slightly larger than those for the 3.14-layer film for a given
polarization and 3He coverage. We believe that this difference
is largely an effective mass effect. Essentially, the thinner film
with the larger effective mass has a smaller Fermi velocity.
We note that the zero-sound speeds are slightly larger than
their respective first sound speeds shown in Fig. 17. This
relationship c0 > c1 at a given density and polarization is the
same as on the graphite substrate (see Figs. 10 and 7) and also
in bulk 3He.29 In spite of the fact that these results are quite
reasonable, we do need to emphasize that the differences in
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FIG. 18. (Color online) Zero-sound speeds for 3He in 3.14 layers
of 4He (left) and 4.33 layers of 4He (right). The five 3He coverages for
the 3.14-layer 4He film and the six 3He coverages for the 4.33-layer
4He film are all in units of Å−2.

our calculated c0’s and c1’s are very small in some cases, and
we doubt that our theory can allow us to conclude definitively
that c0 > c1 for all polarizations and substrates in the density
ranges that we investigated.

VI. CONCLUSION

In this paper, we have used Fermi liquid theory to study
the thermodynamic properties of thin, arbitrarily polarized
3He films. Exact, analytic expressions for the Landau pa-
rameters were obtained from a recent14 perturbation theoretic
calculation of the ground-state energy of a two-dimensional
many-fermion system to quadratic order in the s-wave and
p-wave effective interaction parameters. The values of these
parameters are obtained by fitting existing effective mass
and spin susceptibility measurements in systems of second-
layer 3He on graphite, and also 3He-4He thin mixture films.
An important advantage of fitting the underlying interaction
parameters directly instead of the state-dependent Landau
parameters is the ability to compute the angular components
of the Landau parameters to all orders. The basic assumption
that we make is that the low-density energy expression is a
reasonable model at the moderate submonolayer coverages of
interest. The main results of this paper are the fitted, effective
s-wave and p-wave T-matrix components as functions of
density, as shown in Fig. 1. We note in support of our basic
assumption that the parameters show only modest dependence
on density. Knowledge of the effective interaction parameters
allows us to calculate the state-dependent Landau parameters
and therefore the thermodynamic response and collective
excitations in our systems. The allowed values of the Landau
parameters are constrained by the issue of thermodynamic
stability. In Sec. III C of this paper we derive the conditions
that the Landau parameters must obey in order to ensure
thermodynamic stability for an arbitrarily polarized Fermi
liquid film.

For the mixture films there is an added complication due to
the existence of a preferred frame of reference created by the
superfluid rest frame. This is especially important for the bulk

mixture.23 It is not clear whether this is also important for this
system where the 3He is positioned on the outer edge of the
4He film.37 For the bulk system, BBP theory38 that assumes a
translationally invariant effective interaction is quite successful
at describing the system. For the thin film mixtures we need to
essentially follow BBP and to assume that it is reasonable to
treat the effective interaction as local. Then the 4He superfluid
substrate is just the source of an enhanced effective mass for the
3He in the zero concentration limit. The dominant excitations
in these systems are, of course, the modified ripplons of the
superfluid background.39

The thermodynamic quantities discussed in Sec. III A
depend on the � = 0,1 angular components of the Landau
parameters. In the following table we collect the values of
the parameters in the important zero polarization limit. The
Landau parameters F a

0 and F s
1 are determined by fitting the

spin susceptibility and the effective mass, respectively. The
values shown for F s

0 and F a
1 are predictions of this model.

These Landau parameters, like all others in this paper, are
normalized by a single spin-state density of states. If one
wishes to compare our fitted values of F a

0 and F s
1 in Table I

with those in the literature, then one simply needs to multiply
these by a factor of two. There is a slight complication. In
Refs. 4, 10, 32, and 37 there appears a superfluous factor of
one-half as the coefficient of the F s

1 Landau parameter in the
expression for the effective mass. By inspection of Eq. (3.5),
it is clear that when using a two spin-state density of states to
normalize the Landau parameters the coefficient of F s

1 should
be one. This conclusion is in agreement with previous results
of ERZ.12 Thus, to compare our results with those in these
and similar references, one must multiply the F s

1 entries in our
Table I by a factor of four.

Figures 9 and 18 show that zero sound is a stable collective
excitation for the entire polarization range at every density
that we examined for both substrates. There is an important
difference between zero sound on graphite and that in the
mixture films that is due to the higher areal densities that

TABLE I. The � = 0,1 symmetric and antisymmetric Landau
parameters for 3He in two dimensions. Note that these are defined
with the single spin state density of states F

a,s
� = (m∗/m)F̃ a,s

� .

Substrate Density (Å−2) F s
0 F a

0 F s
1 F a

1

Graphite 0.013 1.28 − 0.25 0.15 − 0.16
Graphite 0.025 2.66 − 0.31 0.36 − 0.28
Graphite 0.037 5.37 − 0.36 0.82 − 0.48
Graphite 0.046 8.35 − 0.36 1.3 − 0.67
Graphite 0.054 11.8 − 0.40 1.9 − 0.91
3.14 4He 0.013 1.90 − 0.057 0.16 − 0.13
3.14 4He 0.016 2.43 − 0.041 0.24 − 0.16
3.14 4He 0.019 2.84 − 0.035 0.30 − 0.19
3.14 4He 0.024 3.10 − 0.060 0.35 − 0.21
3.14 4He 0.029 3.26 − 0.085 0.39 − 0.23
4.33 4He 0.015 1.54 − 0.082 0.11 − 0.12
4.33 4He 0.019 1.88 − 0.082 0.16 − 0.14
4.33 4He 0.022 2.02 − 0.090 0.19 − 0.15
4.33 4He 0.025 2.09 − 0.105 0.20 − 0.16
4.33 4He 0.028 2.23 − 0.110 0.23 − 0.17
4.33 4He 0.031 2.37 − 0.119 0.25 − 0.19
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are possible on graphite. The values of F s
1 in Table I for

graphite at the highest densities become so large (due to
the increase in the effective mass) that the cross term in
Eq. (3.19) becomes appreciable. Thus, at these higher densities
the “simplest approximation” of ignoring contributions to the
zero-sound expressions from Landau parameters with � � 1
becomes highly inaccurate. This effect is largest at small
polarizations and is mitigated somewhat at large polarizations.
At zero polarization the stability of the zero-sound mode is due
to the fairly large value of F s

0 . Likewise, the instability of the
spin-zero-sound mode is due to the small and negative value
of Fa

0 . We note that the increase in the speed of the zero-sound
mode as a function of polarization in the small polarization
region is in agreement with the results of Ref. 40. Our results
indicate that zero sound will propagate at all polarizations and
that spin-zero-sound will not propagate in any of these thin film
systems. In Fig. 11 we show explicitly the angular distortion
of the Fermi surface in the presence of a zero-sound excitation.

3He films are formed on a substrate and therefore their
collective motion is determined by the relative size of the
film thickness compared to the viscous penetration depth δ.41

The viscous penetration depth is defined by δ = √
2η/ωρ,

where η is the first viscosity, ρ is the mass density, and
ω is the frequency. For typical experiments δ tends to be
many times larger than the film thickness. Thus, the hydro-
dynamic normal fluid velocity is “clamped” at the substrate,
and long-wavelength collective excitations do not propagate.
Nevertheless even without a large Q the excitations are present,
and can be probed. In a recent neutron scattering experiment,
Godfrin et al.42 were able to measure the phase velocity of zero
sound at a single 3He film thickness, energy, and wave vector.
Their substrate was graphite, the 3He areal density was n =
0.049 Å−2, the wave vector was q = 5.5 nm−1, and the energy
transfer was ω = 0.68 ± 0.05 meV. This yields a zero-sound
speed of c0 ≈ 190 ± 14 m/s. Our predicted results as shown
in Fig. 10 in Sec. IV are in satisfactory agreement. We find a
calculated zero-sound speed for this system of c0 = 181 m/s.

The strong drops in the effective mass as a function of
polarization at higher coverages on the graphite substrate are
apparent from Fig. 5. This seems to be the most dramatic

polarization-dependent behavior predicted from this model.
For the mixture film system the predicted decreases in
the effective mass are less pronounced, as can be seen in
Fig. 16, since the maximum 3He coverage is much smaller
here than on graphite. Our model also predicts that in the
limit of large polarization m∗

↑/m < 1 because of the large

negative values taken on by F̃
↑↑
1 . For each of the substrates

this model predicts that at a given density the polarization
dependence of the inverse spin susceptibilities cross over at
around 10% polarization with the smallest density having
the largest susceptibility at high polarizations. This predicted
behavior might be an important clue as to how to achieve
maximum polarization in the 3He film system. We note that,
unlike in three dimensions, the spin susceptibility decreases
monotonically with increasing polarization but does not vanish
at full polarization. In all of the systems, the compressibility
decreases as a function of polarization at fixed density.

These results are all predictions. Testing these predictions
will be difficult since polarizing the 3He system means
ordering a nuclear moment. However, for the ultracold gases
nonzero polarization is not a critical issue. There has been
considerable recent progress in preparing ultracold Fermi
gas systems in quasi-two-dimensional configurations.43 These
systems can be controlled in a weakly bound lateral trap and
a strongly bound transverse trap. In the limit that the Fermi
energy of the trapped atoms is small relative to the lateral
trap single-particle energy spacing, we expect that the theory
presented here is applicable. Further, even if there is imposed
a lateral periodic potential then as long as the density is small
enough so that only one Bloch band is occupied, the theory
presented here should be applicable. At this time there do
not appear to have been any measurements of thermodynamic
quantities or collective excitations.

The question of attenuation of zero sound and first sound
as a function of polarization in thin Fermi liquid films will
be addressed in a future publication. In addition, we are
still examining the interesting question of whether there is a
Mermin’s theorem44 in a Fermi liquid with a finite polarization.
The numerically obtained solutions of Eq. (3.22) always have
one real root with magnitude greater than 1.
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