PHYSICAL REVIEW B 85, 224507 (2012)

Dynamics of superconducting nanowires shunted with an external resistor
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We present a study of superconducting nanowires shunted with an external resistor, geared towards
understanding and controlling coherence and dissipation in nanowires. The dynamics is probed by measuring
the evolution of the V-1 characteristics and the distributions of switching and retrapping currents upon varying
the shunt resistor and temperature. Theoretical analysis of the experiments indicates that as the value of the shunt
resistance is decreased, the dynamics turns more coherent, presumably due to stabilization of phase-slip centers
in the wire, and furthermore the switching current approaches the Bardeen’s prediction for equilibrium depairing
current. By a detailed comparison between theory and experiment, we make headway into identifying regimes
in which the quasi-one-dimensional wire can effectively be described by a zero-dimensional circuit model
analogous to the resistively and capacitively shunted Josephson junction model of Stewart and McCumber. Aside
from its fundamental significance, our study has implications for a range of promising technological applications.
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I. INTRODUCTION

The dissipation of the dc supercurrent in thin super-
conducting wires is known to occur due to Little’s phase
slips.! Advances in fabricating ultranarrow superconducting
nanowires has greatly boosted the interest in studying phase
slippage in quasi-one-dimensional superconductors.” There
has been an intense activity to establish the existence of
quantum phase slips (QPS) related to macroscopic quantum
tunneling®!' (MQT) and to study quantum phase transitions
between possibly superconducting, metallic, and insulating
phases in nanowires.*'>"!7 A dissipation-controlled quan-
tum phase transition'®> has been predicted in junctions
of superconducting nanowires. Recently, the importance of
taking into account Joule heating caused by dissipative
phase-slip fluctuations has also been argued and demonstrated
both theoretically and experimentally.'®!!228 Furthermore,
quantum theory shows that the QPS rate as well as the
quantum phase transition can be controlled by an external
shunt.?* Dissipation plays an important role in dictating the
physics of nanowires. Conversely, superconducting nanowires
provide an ideal prototype for studying the interplay between
coherence, dissipation, and fluctuations. Aside from their
fundamental importance, superconducting nanowires are also
ideally suited for building superconducting nanocircuitry and
as devices with potentially important applications, such as
superconducting qubits and current standards.??*° Thus, even
from the technological point of view, it is extremely important
to fundamentally understand the mechanism and role of
dissipation in nanowires and to find a way of experimentally
controlling coherence and dissipation.

It is well established that the environmental dissipation
of Josephson junctions (JJ) can be controlled by externally
shunting the junction.’' This effect has been observed in the
voltage-current (V -1) characteristics, which are greatly altered
by the amount of dissipation. The statistics of the switching and
retrapping behavior in shunted JJs have been investigated in the
last three decades and continue to be actively studied.’” In
general, the retrapping current, which is inversely proportional
to the quality factor Q of the circuit, is more sensitive to
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the amount of damping/dissipation than the switching current.
The shunting is also known to control the rate of MQT of
the phase variable in superconductor-insulator-superconductor
(SIS) junctions.***7 The Stewart-McCumber model*** of
resistively and capacitively shunted Josephson junctions
(RCSJs) accurately describes much of the physics of shunted
153130 This model is quite useful since it allows the analysis
of various fundamental aspects of superconducting devices,
including chaotic behavior’! and high-frequency microwave
responses.’”> The analysis of superconducting computational
circuits also involves use of the RCSJ model.>

Shunting a superconducting nanowire with a normal re-
sistor should have a strong effect on the superconducting
character of the wire, and just as in the case of a JJ could
potentially provide a powerful way to control coherence and
dissipation. In spite of its clear importance and relevance, the
behavior of shunted nanowires has not been studied previously
both experimentally and theoretically. Here, we present a study
of shunted nanowires. It has been inarguably proven for the
case of unshunted nanowires that going beyond linear response
is essential to probe the dynamics of (quantum) phase-slip
fluctuations.'®!12-28 Furthermore, most applications would
require the wire to be driven out of equilibrium, making it
doubly important to understand how the dynamics of shunted
nanowires evolves upon shunting. In fact, there is a third
equally important motivation for such a study. As discussed
above, the RCSJ model has been successfully used for JJs
and has proven to be extremely important. However, a circuit-
element representation of a superconducting nanowire has not
been fully developed and through this work we want to fill this
gap by making some concrete advances in that direction.

The nanowires on which measurements were performed
in this work were located in a low-pressure, thermalized
helium gas and were fabricated using the molecular templating
method resulting in suspended nanowires.>* It had already
been demonstrated that these superconducting nanowires show
a large hysteresis in the V-1 characteristics for the unshunted
case and that this hysteresis stems from Joule heating and
the strong temperature dependence of the resistance of the
wire.!%26-28 Local Joule heating by phase-slip processes is
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especially important for a long free-standing nanowire because
the heat generated in the bulk of the wire is not removed easily
and has to flow away through the ends of the wire. Observation
of similar physics in a recent study of aluminium nanowires
fabricated using a different method'! points to the ubiquity
and importance of Joule heating effects and further underlines
how it can be turned into an effective probe for quantum phase
slips. However, the best-case scenario will be to be able to
have a control over the Joule heating. As will be shown in
this paper, heating can indeed be controlled by shunting the
superconducting nanowire with an external resistance.

The article is organized as follows. In Sec. II, we briefly
describe the sample fabrication and measurement technique.
The experimental results are presented in Sec. III. This is
followed by our theoretical analysis and discussion in Sec. IV
where we will argue that shunting qualitatively changes the
behavior of the nanowire and present the theoretical results
obtained by modeling the nanowire. Finally, we will end with
concluding remarks in Sec. V.

II. SAMPLE FABRICATION AND MEASUREMENT
TECHNIQUE

The nanowires presented in this study are fabricated using
molecular templating.>* Using electron-beam lithography and
a reactive ion etch, a 100-nm-wide trench is patterned in the
SiN layer of a Si-SiO,-SiN substrate. The trench is then
etched in a 49% solution of hydrofluoric acid to form an
undercut to prevent electrical leakage between the electrodes,
which are separated by the trench.’* Fluorinated single-walled
nanotubes, which are insulating, are dissolved in isopropanol
and then deposited onto the substrate containing the 100-nm-
wide trench in the SiN layer and then dried with nitrogen
gas. Randomly, some of the nanotubes cross the trench,
creating a scaffold for the nanowires to form as the metal
of choice is deposited on the substrate. The samples are then
dc sputtered with amorphous Mo7Gey4 in a high vacuum
(~10~" Torr base pressure) chamber, thus coating the substrate
and nanotubes with 12-18 nm of MoGe depending on the
sample. A scanning electron microscope (SEM) is then used
to image the trench until a MoGe coated nanotube (nanowire)
is found to be relatively straight, homogeneous, and coplanar
with the electrodes.”> An SEM image of one such nanowire is
shown in the inset of Fig. 2(a). Contact pads are formed using
photolithography and wet etching in a 3% solution of H,0O»,
which etches MoGe rapidly.

All of the samples studied in this paper are ~100 nm
long and are fabricated using MoGe. The thickness of each
nanowire is controlled by the deposition time in the sputtering
chamber and by the configuration of nanotubes used as a
scaffold. The actual width of each sample is measured from
the SEM image and found to be ~15, 12, 10, 15, 8, and 18 nm
for samples S1, S2, S3, S4, S5, and S6, respectively. Thicker
samples show a lower normal resistance R, higher critical
temperature Tt, higher critical current I, and slightly higher
retrapping current /.. For example, for samples S1, S2, and
S3, which have a decreasing thickness, the resistance R, in
the normal state and critical temperature 7. are S1 (R, =
1385 Q, T.=4.607K), S2 (R, = 1434 Q, T. =4.41K),
and S3 (R, = 1696 @, T, = 3.82 K). All samples visually
show a similar behavior in the R-T and V-I curves.

PHYSICAL REVIEW B 85, 224507 (2012)

O

R ©)

7

42 44 46
T(K)

FIG. 1. (Color online) (a) R-T data for sample S1 with various
shunt values. The first sharp drop in resistance at 5.8 K is due to
the film electrodes going superconducting. The second, gradual drop
in resistance at lower temperature is the superconducting transition
of the nanowire, which is much broader due to TAPS. (b) Sample
schematic. The wire is shown as a short vertical line and is shunted
by a commercial resistor (Rs). The sample is measured by current
biasing the sample and extracting the resistance via a four-probe
measurement. (c) Comparison of R-T curves from (a) for the case
of no shunt (circles) and a 25 €2 shunt (squares) with the theoretical
expression of the total sample resistance given by Eq. (3.3) (solid
lines). The known parameters used in each fit are wire length, L =
105 nm, normal-state resistance R, = 1385 2, and shunt resistance
Rs = o0 and Rg = 25 Q, respectively. The fitting parameters used
for the fits are 7. = 4.607 K for the unshunted case and 7, = 4.595
K for the 25 ©2 shunted case, and £(0) = 7.57 nm for both cases,
where £(0) is the dirty limit coherence length at zero temperature.

The shunt has been added by attaching a commercial metal
film resistor (ranging from 5 to 200 2) parallel to the sample
using silver paste [Fig. 1(b)]. The distance from the nanowire
to the shunt is 1-2 cm for all samples, and the shunt resistance
is measured as a function of temperature down to cryogenic
temperatures and found to be constant. Measurements are
performed in a *“He or 3He cryostat equipped with base
temperature silver paste and copper powder filters and room
temperature 7 filters. Transport measurements are carried out
by current biasing the sample through a large resistor (~1 M)
and measuring the voltage with a battery-operated Stanford
SR 560 preamp, using the typical film-inclusive four-probe
technique as in Fig. 1(b).* Resistance versus temperature
(R-T) curves are measured by applying a small sinusoidal
current (~10-100nA) at a frequency of ~12 Hz and measuring
the voltage and then doing a linear fit to the resulting
voltage-current data to obtain the resistance. The temperature
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is measured using a calibrated Cernox thermometer from
LakeShore. V-I curves are measured by applying a large
sinusoidal current in the range of a few nA, at a frequency
of a few Hz, and measuring the voltage simultaneously.
The switching (retrapping) current has been measured by
sweeping the current as in the V-1 measurement, and recording
the current at which the voltage jump (drop) out of the
superconducting (resistive) state has been the greatest.

III. EXPERIMENTAL RESULTS

In this section, we present a series of experimental results.
We begin by presenting the temperature dependence of the
linear resistance of shunted nanowires and use that as a
benchmark for characterizing different samples. Next, we
go one step further and present the measurements of the
nonlinear V-1 characteristics of the current-biased nanowires
at a temperature of 1.8 K, focusing on the evolution of
hysteresis upon shunting. In the next section, the experimental
data of switching and retrapping distributions for different
values of shunt are presented. Such an analysis provides deeper
insights into the dynamics of superconducting nanowires as
is evident from a previous study in the case of unshunted
wires.!%27-28 Although the focus of our work is on studying
the effect of shunting, in the last section we present the
temperature dependence of the V-I characteristics and the
switching distributions so as to provide a comparison with
the corresponding measurements for the unshunted case that
was studied in detail.'*-?728

A. Shunt dependence of R(T'): Characterization of the samples

A study of the linear-response resistance as a function
of temperature is useful for characterizing the samples
and establishing a starting point for further investigation.
Figure 1(a) shows the temperature dependence of the
nanowire’s resistance using a log-linear scale for various
values of the shuntresistance Rs. As the temperature is lowered
below 5.8 K, the film becomes superconducting while the wire
is still resistive because its critical temperature (7;) is lower
than that of the film. Below T, of the wire, as expected there
is a measurable resistance due to phase slips in the wire.

We understand the measured resistance versus temperature
(R-T) curves using the following arguments. Below T of the
nanowire, the total sample resistance is a parallel combination
of the Rs and the wire resistance Ryw. We model the wire
resistance with an empirical formula

1 1 1
= — 4+ —, 3.1
Rw(T) R | Ra(T) G-

where R, is the normal-state resistance of the nanowire to
account for the quasiparticle resistance channel and Rap
is the Arrhenius-Little (AL) resistance occurring due to
thermally activated phase slips (TAPS). The AL resistance
is estimated, following Little’s proposal, by assuming that
each phase slip creates a normal segment on the wire of a
size equal to the coherence length and for a time interval
roughly equal to the inverse attempt frequency.'> We note
that the Langer-Ambegaokar-McCumber-Halperin (LAMH)
theory>~° of TAPS is not valid except very near to T..>> So,
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we have to use the phenomenological AL expression

AF(T)
o)

RAL(T) = Ryexp (—

where

2

3 8
is the free-energy barrier for a phase slip in the zero-bias
regime.55 Here, H.(T) is the thermodynamic critical field,
&(T) is the temperature-dependent coherence length, A is
the cross-sectional area of the wire, and kg is the Boltzmann
constant. The equation for the free-energy barrier A F(T') can
be rewritten to include wire parameters more accessible via
the experiment as>’

R L T\*?
AF(T)=0.83kBTC<R—Q> (%> <1 _ T_c) . (3.2)

where L is the length of the nanowire, Rq(=h/4e* ~ 6450 Q)
is the quantum resistance, and £(0) is the dirty limit coherence
length at zero temperature. Thus, the temperature-dependent
total sample resistance is

Ro(T) — 1 11 AF(M\T) ! -
B )—{R—S+R—n[ “"P( kT )]} - G

The fits of the total sample resistance by Eq. (3.3) are presented
in Fig. 1(c) for the unshunted nanowire (Rs = 00), and the
case when the nanowire is shunted with 25 . All the fits are
done by using the values of R,, T, L, and Rs obtained from
the R-T curve and the SEM image and using 7, and £(0) as
fitting parameters. The value of the fitting parameters changes
very slightly as the shunt resistance is varied. For instance,
in the fitting presented in Fig. 1(c), the value of 7. decreased
by 12 mK for the shunted case compared to the unshunted
case, which can be accounted for by a slight sample change
during thermal cycling. The agreement between experimen-
tally measured resistance and the total resistance in Eq. (3.3),
as shown in Fig. 1(c), gives evidence that the temperature
dependence of the rate of phase slips does not depend on the
shunt at relatively high temperatures (7 > 4 K in this case)
and that the observed residual resistance of the wire just below
T. is due to TAPS in the high-temperature limit of ~4-5K.
Note also that the R-T curves of all the samples presented in
this paper are smooth and show no extra transitions, and the
SEM images confirm that the nanowires are homogeneous and
well connected to the electrodes. Thus, our nanowires are well
suited to systematically study the effect of shunting.

)AE(T)

B. Shunt dependence of V-1 characteristics

Let us start by considering the unshunted wire (Rs = 00).
As the bias current / is increased, thermal fluctuations cause
the nanowire to switch from a superconducting state into a
resistive state before the current reaches the critical (equilib-
rium) depairing current. The current at which the wire switches
out of the superconducting state is called the switching current
(Iyw). Once in the resistive state, as the current is decreased
below some critical value of current, the nanowire experiences
retrapping back into the superconducting state. The current at
which this happens is called the retrapping current (/;). For
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FIG. 2. (Color online) (a) Voltage vs total current for sample S1
at 1.8 K corresponding to various values of the shunt resistance Rs.
Dashed circles are kinks in the V-1 curve occurring for the case when
the nanowire is shunted with Rg = 25 2. Inset: SEM image of the
nanowire for sample S1. (b) Mean switching and retrapping currents
vs G4(=1/Rs) for three samples (S1 at 1.8 K, S2 at 1.5 K, and S3 at
1.6 K).

unshunted wires, switching is stochastic in nature, i.e., each
new current sweep gives a different value for the switching
current, but the retrapping process is nonstochastic. We devote
the next section for the discussion of switching and retrapping
distributions and their dependence on the shunt resistance.
Here, we focus on the mean values of the switching and
retrapping currents and show how they evolve upon shunting
the wire as shown in Fig. 2.

Figure 2(a) shows the V-I characteristics for different
values of shunt resistance. As the nanowire is shunted with
lower values of the shunt resistance, the mean switching
and retrapping currents are increased while the width of the
hysteresis is decreased. Additionally, the retrapping current
also becomes stochastic (as shown in Fig. 4). In Fig. 2(b), the
dependence of the mean switching and retrapping currents on
the shunt resistance are shown for different nanowire samples.
The mean switching current increases, at a lower rate than the
retrapping current, and saturates for small values of the shunt
resistance [Fig. 2(b)] with a decreasing (increasing) shunt
resistance Rs (conductance Gg). Similarly, the retrapping
current increases with decreasing the shunt resistance Rg until
I; finally reaches I, of the wire. Such behavior is observed
on all tested samples. As the switching and retrapping current
coincide, the hysteresis disappears. Nanowires with smaller 7
start showing this saturation behavior at higher shunt values.
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FIG. 3. (Color online) Switching distributions vs bias current for
sample S1 shunted with various Rg values at 1.8 K. All distributions
were measured with a sinusoidal current sweep with f = 8 Hz and
an amplitude of 6.1 i A. Inset: Shows the standard deviation oy, of
switching current distribution as a function of Gy(=1/Rs).

‘When the nanowire is shunted with a 25 2 resistor or less,
kinks in the voltage are also observed [they are marked by
dashed line circles in Fig. 2(a) for the case where sample S1
is shunted by 25 Q]. The kinks for the 10 € shunting case
are not shown, but occur at higher current. We relegate the
interpretation of these kinks to Sec. IV D.

C. Shunt dependence of switching and retrapping distributions

As mentioned in the previous subsection, the unshunted
nanowire undergoes stochastic switching as the bias current is
increased. We plot the switching distributions versus current
in Fig. 3 for different values of external shunt resistance to see
how it evolves upon shunting. Lowering the value of the shunt
resistance has the effect of narrowing the width, increasing
the height, and shifting the distribution to higher currents. As
can be seen from the plots, the full width of the distribution
at half maximum (FWHM) changed from 100 to 12 nA due
to shunting with a 25 Q resistor. The asymmetric shape in the
distribution for larger shunts changes to a more symmetric
shape with lower shunts.

The retrapping current also shows a dramatic change from
deterministic values to stochastic values when shunted with
75 Q or less. The bottom part of Fig. 4 is a typical retrapping
histogram for an unshunted wire.'” Here, the standard devia-
tion of the retrapping current is 1.51 nA, which is the noise
limit of our experimental setup. So, this small distribution of
retrapping current is just due to the instrumental noise, and
can be reduced by decreasing the instrumental noise and the
spacing in-between bias-current points. Thus, retrapping in
the unshunted nanowire always occurs at the same current,
i.e. the transition is deterministic. However, when the wire is
externally shunted, a retrapping distribution is observed, with
its width being much larger than the experimental setup noise
and independent of the bias-current discretization.

In the top of Fig. 4, the retrapping current distributions for
sample S1 are shown for the nanowire shunted with different
values of external resistances. The width of the distribution
is slightly sensitive to the value of shunt resistance, but the
mean value of the retrapping current changes considerably.

224507-4



DYNAMICS OF SUPERCONDUCTING NANOWIRES SHUNTED ...

o 5450
250
o 750 a & o
R
@ [}
= oo 00 ]
£ o © o
)
s ) e % o
El ° o 2 :
o o o o
] o o o o
o ? ° )
o ] o o [+] Q
J E - — b ¥
3.66p 3.69y 3.72p 4.14p 4.17p 4.20u 4.92p 4.95p
I (uA) I (uA) I (nA)
Unshunted =
- G=1.5nA
£ ;
| I 4
8
H =
= z
3 k
Q i
o [_, 3 o
\ \ N\ . B
878 880 882 884 886 888

I (nA)

FIG. 4. (Color online) Top: Retrapping distributions vs bias
current for sample S1 shunted with various Rs values. The mean
and standard deviations of the retrapping data are 3.683, 4.166,
and 4.925 uA and 7.304, 6.089, and 5.799 nA, respectively, for
Rg =175, 54.5, and 25 Q. Bottom: Typical retrapping histogram vs /
for the case where the nanowire is unshunted. The standard deviation
of the retrapping current of the unshunted wire matches with the
experimental current noise.

When shunted with 75 €2 for instance, the standard deviation of
the retrapping current increases above the experimental setup
noise to 7.3 nA (from 1.5 nA for the unshunted case under the
same conditions). Interestingly the widths of the retrapping
and switching current distributions for 25 2 shunt become
comparable. The retrapping distributions for the shunted
nanowire are asymmetric in contrast to the unshunted case
in which the distribution is symmetric, as can be seen in the
bottom of Fig. 4.

D. Temperature dependence: Shunted versus
unshunted nanowires

In this subsection, we discuss the temperature evolution
of the dynamics of shunted nanowires. In Fig. 5(a), the mean
value of the switching current is plotted at various temperatures
for sample S1 shunted with 5 2 and sample S4 shunted with
10 ©.InFig. 5(b), adistribution of switching currents is plotted
as a function of temperature for sample S5 when it is shunted
with a 30 2 resistor and compared with the unshunted case.
As the temperature is reduced, the switching current for all
samples increases and begins to show signs of saturation below
1 K. The behavior of the switching current as a function of
temperature in the distribution measurement in Fig. 5(b) is
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FIG. 5. (Color online) (a) Mean I, vs T for samples S1 and
S4 shunted with 5 and 10 €2, respectively. The solid lines are
fits to the Bardeen’s prediction [Eq. (3.4)] for the temperature
dependence of the depairing current /.. The fitting parameters used
are I,o =5.88and 5.53 uA and T, = 4.2 and 3.9 K for samples
S1 and S4, respectively. (b) Distribution of Iy, vs T for sample
S5 unshunted (red) and shunted with 30 € (black). Each curve
contains approximately 20 000 points. The corresponding fit to the
Bardeen prediction (green) is presented for the shunted wire. Here,
Io=1415pAand T, = 2.62 K.

similar to that of Fig. 5(a) except that in Fig. 5(b) the fluctuation
in the switching current is also displayed.

To check the proximity of the switching current to the
equilibrium depairing current, Bardeen’s prediction®® for the
temperature dependence of the equilibrium critical (depairing)
current is compared to the temperature dependence of the
measured switching current for nanowires shunted with small
resistances as shown in Fig. 5. The Bardeen equation, derived
from BCS theory, is given by

T\ 2732
IC(T) = CO[I - (i) ] s

where I is the critical current at zero temperature. Excellent
agreement is found with the experimental data over a wide
temperature interval, suggesting that the shunt has driven the
switching current close to the depairing current. In these
fits, the temperature is known, while the critical current
at zero temperature Iy and the critical temperature 7, are
used as fitting parameters. Close agreement is found between

3.4)
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FIG. 6. (Color online) The standard deviation oy, vs T for
the switching events of sample S6 shunted with 10 €2, where for
each point o was calculated using data sets of 10000 points.
The parameters of sample S6 are, 1.(0) = 8.39 uA, T, = 4.29 K,
R, = 1234 Q, and £(0) = 8.75 nm.

the theoretical prediction for the depairing current at zero
temperature: Ig = 92 uA(LT.)/R,£(0),°" which is derived
from BCS and Ginzburg-Landau theories, and the value of I
used in the Bardeen fit. Here, L and &£(0) are in nm, 7. in K,
and R, in Q. Using the fitting parameters from the Ry(7T) fit
of Eq. (3.3) presented in Fig. 1(c), I¢ has a theoretical value
of 5.48 nA, while Iy used in fitting to the Bardeen formula
in Fig. 5 has a value of 5.88 nA. Thus, excellent agreement
is found between the theoretical and experimental values for
Io. A value of 4.2 K for T, is used to fit the temperature
dependence of the switching current with the Bardeen formula,
while the Rp(T) fit using the AL model predicts the value of T
to be 4.717 K. This difference can be accounted for by sample
oxidation and thermal cycling between measurements.

Finally, in Fig. 6, we plot the measured temperature
dependence of the switching distribution width for the shunted
nanowires. We find that it shows a trend similar to that
previously observed for the unshunted wire.!® As for the
retrapping current, which is observed to be stochastic only in
the shunted nanowire, the standard deviation is never observed
to increase with decreasing temperature. However, at low
temperatures, MQT is expected to cause the standard deviation
of the retrapping current to be constant with temperature.> In
our experiments, we have seen evidence of this behavior and
will investigate this more fully in the future.

IV. THEORETICAL ANALYSIS AND DISCUSSION

In this section, we will develop a theoretical interpretation
and understanding of the experimental data presented in the
previous section. In doing so, we will start by giving a
brief account of the unshunted nanowires which have been
previously investigated in detail. Then, we will argue how
shunting the nanowires brings about qualitative changes in
the dynamics and develop a physical picture by gathering
experimental signatures and theoretical arguments. Next, we
will motivate the theoretical model for explicit calculations
and numerical simulations and use it to generate the V-1
characteristics and the distributions that will be compared with
experimental measurements.
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A. Unshunted nanowires

Recently, properties such as the V-1 characteristics and
the switching distributions of the unshunted nanowire have
been studied in detail to understand the behavior of quasi-one-
dimensional superconductors at low temperatures.'%!127:28 Tn
quasi-one-dimensional superconductors, the zero-resistance
superconducting state is destabilized by thermal and quantum
phase-slip fluctuations. These phase-slip fluctuations induce
resistance which causes Joule heating in the nanowire. If this
heat generated by phase-slip fluctuations in the bulk of the wire
is not overcome sufficiently rapidly, it can reduce the depairing
current to below the applied current, thus causing transition to
the highly resistive state. It has been found in experiments
with unshunted nanowires that while the distribution of
retrapping currents is very narrow and almost temperature
independent, the distribution of switching currents is relatively
broad and the mean as well as the width of the distribution
change with temperature of the leads. The distribution in
the switching currents reflects that the collective dynamics
of the superconducting condensate evolves stochastically in
time and undergoes phase-slip events at random instants. A
stochastic model for the time evolution of the temperature
in a nanowire has been developed to understand the above
experimental results.?”-?® The model predicts that although, in
general, switching from the superconducting to the resistive
normal state occurs due to several phase-slip events, it can even
be induced by a single phase slip at a particular temperature
and current range. The model also indicates nonmonotonic
temperature dependence of the width of the distribution of
switching currents. Thus, these experiments with switching
events as well as those with microwave radiation in unshunted
wires suggest that the resistive state is the normal state of the
wire maintained by Joule heating, i.e., the Joule heating normal
state (JHNS).!0-11:2660 For unshunted wires, the retrapping
process is nonstochastic since the retrapping occurs from the
thermalized Joule heating state.

B. Qualitative picture of shunt-induced crossover

How does the picture for the unshunted case discussed
above evolve as we shunt the wire with an external resistance?
With the inclusion of a shunt resistance, the applied bias
current is divided into two parts, and the part going through the
nanowire decreases as the shunt resistance becomes smaller.
A lower (higher) current through the wire causes a decrease
(increase) in Joule heating in the wire and hence a decrease
(increase) in local temperature. For the unshunted case that
corresponds to an infinite shunt resistance, the heating is
maximum and, as discussed in the previous section, one gets
a JHNS in the unshunted wire.

We will argue that upon decreasing the value of the shunt
resistance, the nature of the resistive state of the nanowire
changes from a JHNS to a phase-slip center (PSC) state. A PSC
is a process of periodic-in-time phase rotation occurring in a
certain region of the wire and is driven by the bias current. An
ideal PSC acts qualitatively like a weak-link JJ in series with
the rest of the wire, and the differential resistance associated
with it is determined by the quasiparticle diffusion length.®!
This resistance is much smaller than the normal resistance
of the wire. This is what we obtain when the nanowires are
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shunted with small resistance. The most explicit proof for
a PSC would of course be the observation of Shapiro steps
because they prove that there is a periodic phase rotation in the
system. However, we have compelling arguments and consis-
tency in our explanation that points to the existence of a PSC.

The deterministic retrapping current observed for the
unshunted nanowires becomes stochastic when an external
resistive shunt is added (at least within the experimental range
of shunt resistances). The deterministic retrapping current
reflects that the resistive state of the unshunted wires is
a thermalized JHNS. There is overheating and the wire is
normal. As [ is reduced, the temperature goes down. Relative
fluctuations of the temperature are small since it is determined
by a macroscopic number of normal electrons. In this case,
I; is fixed by the current at which the heating is not enough
to keep the system above 7. If the system must retrap at 1°,
then as can be seen in Fig. 4, the distribution is symmetric
and Gaussian, centered around IrO, and as wide as the noise
in the bias-current circuit and in the measurement circuit can
smear it. On the other hand, the stochastic retrapping current
indicates that the finite-voltage/resistive state of the shunted
wires is governed by a coherent dynamics of the phase of
superconducting order parameter. The dynamic state, called a
PSC, moves by inertia, which is the voltage on the electrodes.
But, a strong thermal (or quantum) fluctuation can re-trap
the system from the dynamic to the static state, and such a
change will be permanent. So, the retrapping can happen at
I > I°. The distribution is asymmetric (right skewed or right
tailed) since the system can never switch at I < I°. Here, the
fluctuation-free retrapping current I is the current value at
which the friction must stop the dynamic state in all cases
(this is the property of the model considered). Similarly, the
fluctuations in the low-resistance “superconducting” state as
discussed in the previous section for the unshunted case can
allow for premature switching at 0 < I < I, = I, but never
at I > I, since the system can not move through 79, without
a switch (the bias current / is assumed to grow linearly in
time). One again has an asymmetric distribution, this time left
skewed or left tailed. Overall, we can use the shape of the
distribution to gain insights into nature of the state from which
retrapping or switching happens.

In Fig. 7, a phase diagram for sample S1 is presented which
demonstrates the conditions necessary for the resistive state to
be either the JHNS or a coherent phase dynamics state such
as a PSC. The power P* = Iy V at switching and retrapping
is calculated by taking the product of the current through the
wire and voltage across the wire at which the system exhibits
switching and retrapping, respectively. Here, Iy = I — ng’
where I is the total current, which obeys Kirchhoff’s law
for current conservation (I = Iy + Iw, Where Iy is the
current through the shunt). The critical power P} is defined
as the minimum power the wire can sustain and still remain
in the JHNS and is calculated from the power that the
unshunted nanowire exhibits at retrapping. For sample S1,
P7 is calculated to be 0.533 nW from the unshunted curve in
Fig. 2(a). At switching, the unshunted wire experiences 31 nW
of heating, which puts it in the JHNS, where it remains until
the current is reduced below the retrapping current.

With an included shunt, the Joule heating power in
the wire at switching is reduced. For example, when
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FIG. 7. (Color online) Log-linear plot of average power dissi-
pated in the nanowire immediately after a switching event (crosses)
and just before retrapping (circles), plotted versus the shunting
conductance (=1/Rs). Above a critical power P}, the resistive state
of the nanowire is identified as the Joule heating normal state (JHNS),
while below P, the resistive state originates from a coherent phase
dynamics. The power is calculated by taking the voltage across the
wire times the current through the wire (P* = Iy V) at the retrapping
and switching currents in the resistive branch of the V-1 curve from
Fig. 2(a).

shunted with 75 €2, the Joule heating power at switching is
0.359 nW (compared to 31 nW for the unshunted wire), which
is lower than P}. Thus, the wire switches to the PSC, which
is a superconducting dynamic state (and not the normal state),
and as the current is reduced, it remains in it until retrapping
occurs. Because retrapping occurs from the phase-coherent
state, stochastic retrapping is expected for sample S1 when
shunted with (from the experimentally examined values) a
75 Q resistor or less. Some heating is also to be expected since
the power at retrapping is still comparable to PZ.

Guided by the qualitative picture developed above, in the
next subsection we will discuss a model that we will use for
simulating the dynamics of the nanowire. In Sec. IV D, we will
address the kinks seen in Fig. 2(a) and argue that they further
support the existence of a coherent-phase dynamic state or a
PSC for shunted nanowires.

C. Theoretical model for shunted nanowires

As argued in the previous section, shunting changes the
high-resistance state from JHNS to a state with coherent-phase
dynamics or PSC. When the value of the shunt resistance is
small, we expect that the dynamics of the nanowire can be
modeled by an effectively zero-dimensional circuit model as
is done in the case of a JJ given that the PSC behaves like a JJ
in series with the wire. For unshunted nanowires (i.e., infinite
shunt value), heating is important, and as discussed above the
dynamics of the nanowire is dictated by a model stemming
from a heat-diffusion equation. For very large shunt values,
some elements of this model might still be important. However,
the point of view we take is to simulate the dynamics of shunted
nanowires using a circuit-element representation and see how
well we can reproduce the experimentally observed behavior.
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As discussed in the Introduction, the RCSJ model of Stewart
and McCumber has been greatly successful in understanding
the physics of JJs. So, our goal is to adopt and extend this
model to reflect the experimental setup and measurements for
the nanowires considered in this paper. The model of Stewart
and McCumber was originally introduced for superconducting
JJs to study dc V-I curves displaying hysteresis for light
damping.*®*’ This model considered only the time-varying
phase difference ¢(¢) of the superconducting wave functions
in the weakly coupled superconductors and neglected any
spatial variations of the superconducting wave functions and
is essentially zero dimensional. We add an external shunt
resistance in parallel with the superconducting junction in the
RCSJ model to be able to study the behavior for different values
of external shunt resistance as has been studied experimentally.
We then simulate the extended RCSJ model with the Johnson-
Nyquist Gaussian white thermal noise coming from the
resistive parts of the circuit. We have not included external
noise in our simulation. Before presenting the details of the
model, we pause to provide some examples of analogies of the
observed nanowire behavior with the established behavior in
JJ to further motivate the use of a RSCJ kind of model for the
case of a shunted wire.

The hysteresis in underdamped JJs is due to the bistability
of the phase point in the tilted washboard potential which
depends nonlinearly on the bias current.’! Damping plays
an important role in dictating the dynamics of the JJ. The
experimentally observed saturation of I, at low shunt values
as presented in Sec. III can be interpreted to be an effect
of high damping (damping ~Q~' ~ Rg 'Y on the premature
switching process, and it indicates that the depairing current
is nearly reached for these low values of the shunt. Another
experimental observation we presented earlier is that below
some critical shunt value, the retrapping and switching current
become equal and the hysteresis vanishes. For instance, for
sample S1 at 1.8 K at a shunt value of 10 €2, the V-I curve
becomes nonhysteretic as in Fig. 2(a), and there is no abrupt
switch into the resistive state. This can be interpreted in
analogy to JJ as follows: At some critical value of the shunt, the
increased damping changes the system from an underdamped
junction (with hysteresis) to an overdamped junction (without
hysteresis). In JJs, this transition occurs when Q ~ 0.84.38
The third example of analogy with JJs is that the mean value
of the retrapping current changes considerably upon changing
the value of the shunt resistance. Indeed, it is well known for
JJs that retrapping is very sensitive to the value of damping and
the fluctuation-free retrapping current is inversely proportional
to the resistance associated with the JJ.

We give a brief summary of the physics of the RCSJ
model in the Appendix and focus on discussing the details
of our extended RCSJ model below. The displacement current
and “normal” losses (e.g., quasiparticle tunnel currents) in
the nanowire are included in the model by the shunting
capacitance C and resistance Ry, respectively. We also include
a Johnson-Nyquist—type Gaussian white-noise current source
I,, associated with the resistance Ry along with the drive
current source I.9%%3 Next, we extend the RCSJ model with
an external normal resistance Rg and corresponding Johnson-
Nyquist Gaussian white current noise I;,; for the present
experimental setup of a shunted nanowire (see Fig. 8). Then,
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FIG. 8. Circuit of the resistively capacitively shunted nanowire
with an external shunt resistance Rg and the Johnson-Nyquist current
noises I, 1.

the reduced equation of motion for the phase difference is
given by (check the Appendix for a derivation)
2

Q%ZT?: + (1 + I;-‘:)% +sing =i+ iy +in, (4.1)
where Q¢ = (ZelcoR\z,vC/ifl)l/2 is the quality factor, i = 1/1
is the normalized dc bias current, i, = I,/ I, in1 = In1/1co are
the normalized noise currents, and ¢ = (2el.oRw/h)t where
t is the physical time associated with the circuit in Fig. 8.
Here, I is the fluctuation-free critical current of the nanowire.
The time-averaged steady-state voltage across the wire V =
I.oRw(d¢/dt"), and the noise autocorrelations are

(n)) = 0. (im () =0,
4eky Tr
(in(t))in(t))) = %S(r; — 1), 4.2)
c0
... , dekpyTs R , ,
(it (£))im (1)) = %SR—ZM —1), @3

where (...) denotes averaging over the noise realizations
(noise ensemble). The temperature of the nanowire and the
shunt resistance are Tyw and Tg, respectively. It is possible
that the temperature of the wire is different from that of the
shunt resistance, so we keep here two different noises coming
from two different resistances. The relations in Eqs. (4.2)
and (4.3) are known as fluctuation-dissipation relations. The
temperatures Tw and 75 should be approximately equal for
low shunt values since the Joule heating is low in this case.
Now, if we assume that there is not significant MQT at the
temperature (1.8 K) where the distributions for the switching
current Iy, and the retrapping current /. are measured, then
the distributions are due to the thermal fluctuations arising
from the Johnson-Nyquist current noises associated with the
resistive parts of the circuit.

One can write Eq. (4.1) in a little different form as

d’¢ do . A

de[,z + I +sing =i+ iy +inn,
where Q = (ZeICOR%C/h)l/Z, t' = el.oRy/h)t,and 1/Rt =
1/Rw + 1/Rs are, respectively, the quality factor and the
resistance of the full circuit. But, the above form of Eq. (4.1)
is more useful in simulations.

4.4)

D. Shunt dependence of V -I characteristics

Now, we simulate Eq. (4.1) for Tw = Ts = Teiectrode tO
calculate the voltage-current characteristics of the shunted
nanowire in the presence of the current noises from the
normal resistances. In the experiment, one changes the bias
current with a finite current sweep rate, and measures the
corresponding voltages. In the simulation, instead we first
fix a bias current and then integrate the above equations of
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FIG. 9. (Color online) Voltage-current characteristics of the
nanowire with external shunt resistance and current noise. The quality
factor Oy = 7 and the temperatures are related by Ty = Ts = T ~
1.8 K and constant I,y = 5.55 uA. The resistance of the unshunted
nanowire R, = 1385 €2, and the resistance of the phase-slip center
(or shunted nanowire) Rpsc ~ 0.1R,,.

motion (with suitable initial conditions and current noises) for
a sufficiently long time (this time is the relaxation time or the
transient time), and next calculate the time-averaged voltage
by averaging d¢/dt’ over some time interval. For forward
current sweep, we choose the initial conditions ¢(z' = 0) = 0,
%(r’ = 0) = 0; and for the backward current sweep we use
¢’ =0)#£0, %(f’ = 0) # 0. The initial values of ¢(¢’) and
% (¢") for the backward current sweep can be any finite nonzero
values in the resistive state of the system as after long time
of transient dynamics the exact initial values of ¢(#') and
%(ﬂ) are irrelevant. We generate the Gaussian white noises
in and i, at each time step of the simulation satisfying the
noise properties in Egs. (4.2) and (4.3) following the method
described in Ref. 64.

The voltage-current characteristics are plotted in Fig. 9
for the shunted wires with different values of the normal
resistance of the wire and the shunt resistance. As can be
seen from Eqs. (4.1) and (A5), we really do not need explicit
values of the resistances in simulation, but we only need
the ratios of the two resistances and a quality factor. We
have checked that for the quality factor Qg =7 and at a
specific temperature 1.8 K, the transition from hysteretic to
nonhysteretic behavior occurs near the ratio Rw : Rs =4 : 1.
As discussed in the previous section, our present theory with
a coherent phase relationship suits us best to analyze the
nanowires shunted with low shunt resistance, i.e., in the PSC
regime. A comparison between Figs. 2(a) and 9 shows a
very good qualitative agreement between the experimental
V-I curves and those from simulations. We also have good
quantitative agreement between the experiment and simulation
for the V-1 curves of the shunted nanowires (PSC regime) with
small resistances. This is shown in Fig. 10 for the shunted
nanowire case where Rg = 10 Q2. We find the best agreement
between the experimental and simulated V-1 curves for the
low shunt resistances when the effective temperature (related
to the thermal noise) of the simulated nanowires is much
lower than the temperature of the superconducting electrodes
in the experiment. Therefore, the fluctuation in I, due to
thermal noise is expected to be small, as we find in the
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FIG. 10. (Color online) Comparison of the voltage-current char-
acteristics of the shunted nanowire with Rg = 10 2 from the
experiment and simulation. We find the best agreement from the
simulation of the shunted nanowire for a quality factor Oy = 7 and
temperature Ty = Ts = T ~ 0.13K, I,o = 5.15 nA, and aresistance
of phase-slip center (or shunted nanowire) Rpsc = 85 Q.

experiment. The reason for such an effective thermal noise
reduction is not completely clear. It might be due to the
inductance of the shunt resistance. The inductance can cut
off some of the higher-frequency thermal noise, thus reducing
the standard deviation of the noise current.% It also confirms
that Joule heating in the shunted nanowires for lower shunt
resistance is greatly reduced compared to the unshunted case.
The resistance of the shunted nanowires Rw, which enters in
the simulation through Egs. (4.1) and (4.3) is used as a fitting
parameter here. It is necessary to choose it to be much smaller
than the normal resistance of the nanowire R, to have the best
fitted of V-I curves. This is a strong indication that the shunt
resistance drives the nanowire to a phase-coherent PSC state,
in which the time-average supercurrent is not much smaller
than the total bias current. Thus, we introduce a new notation
for the wire resistance, namely, Rpsc. This quantity represents
the value of the wire resistance that we have to put in our model
in order to produce the best fits to the experimental V-1 curves.
We find that Rpsc < R,. For example, we find Rpsc = 85 Q2
from the simulation for Rs = 10 2 case. Here, we remind that
the normal resistance of the nanowire is R, = 1385 Q.

In the experimental V-1 curve of the shunted nanowire with
a shunt resistor 25 €2, there are kinks which we do not find in
the simulations. The kinks can be attributed to the effects of a
shunt inductance in series with the shunt resistor. These kinks
are not associated with resonance in the system because such a
resonance would not depend on temperature as these do. Such
inductive effects originate from the fact that the resistor used
for shunting has dimensions of a few centimeters and so has
a large inductance (~20 nH). Inductance connected in series
with a shunt resistor is known to cause similar kinks in the
V-I curves of shunted JJs due to a complicated dynamic of
the phase difference on the junction.®> Thus, the observation
of such kinks confirms that the resistive state in our shunted
wires is due to a phase-coherent PSC (Ref. 31) and not due
to Joule heating. Thus, we find another indication that by
resistively shunting the nanowire, it is possible to change the
nature of its resistive state from a phase-incoherent JHNS to a
phase-coherent PSC state.
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FIG. 11. (Color online) Simulated distribution P([,) of the
switching current Iy, for different Rs/Ryw values at temperature
Tw = Ts = 1.8 K, constant /.o = 5.55 nA. The quality factor Qo =

7. Inset: Shows the standard deviation oy, of switching current
distribution as a function of Rs/Rw.

E. Shunt dependence of switching and retrapping distributions

We first calculate the distributions P (/) of the switching
current (/) in the shunted nanowire for the same temperature
Tw = Ts = Tijectrode- We again simulate Eq. (4.1) as before by
changing the bias current with zero as initial values for ¢ and
%, but now we repeat the full procedure for many realizations
of the thermal noise. We count a switch from the metastable
to the running state when the nanowire spends more than half
the time in the running state over some sufficiently long time
period (75) of simulation. This gives us a distribution for Iy,
which is plotted in Fig. 11 for the shunted wire. We find a good
qualitative agreement between the simulation and experiment
for the switching distributions of the shunted nanowires as
shown in Figs. 3 and 11. In the inset of Fig. 11, we show the
standard deviation oy, of the simulated P (/) with Rs/Rw
and it matches with the trend of the standard deviation of
the measured P (/) from the experiment. Here, we mention
that oy, shows a nonmonotonic behavior with Rs/Rw in the
RCSJ model for higher values of Rg, for example, Rs > Ry
at a constant temperature. This nonmonotonic behavior of oy,
in the RCSJ model with Rs/Rw at a constant temperature is
similar to nonmonotonic behavior of oy, with temperature for
a constant Rg/Rw. It will be discussed in the last section.
However, experimental results show the value of oy, is greater
for the unshunted case (Rs = o0) than the shunted case. This
also indicates that the unshunted nanowire is not in a coherent
PSC state but is dominated by Joule heating, which increases
the effective temperature of the wire.

We next simulate the extended RCSJ model to understand
the measured distributions P(/;) of the retrapping current
for different shunt resistances. Here, we choose a fixed
temperature. The simulation method is similar to finding the
switching distributions, but now we start from a PSC state
with nonzero initial conditions for ¢(0) and %(0). We reduce
the bias current and count a retrapping event from the running
to metastable state when the nanowire spends less than half
of the time in the running state over time period of t;. The
simulated retrapping distributions are plotted in Fig. 12 for
different Rs/Rw values at a constant temperature. We find
from Fig. 4 that the standard deviation of the retrapping current
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FIG. 12. (Color online) Simulated distribution P(I;) of the
retrapping current /. for different Rs/Rw values at temperatures
Tw = Ts = 1.8 K, constant /.o = 5.55 pA. The quality factor Qy =

7. Inset: Shows the standard deviation o, of the retrapping current
distribution as a function of Rs/Rw.

distributions falls slightly (within the experimental noise limit)
with decreasing shunt resistance. The standard deviation of
the simulated retrapping current distribution also falls slightly
below Rgs/Rw ~ 0.4 for Q¢ =7, which is similar to the
experiment. But, we also find from the simulation of the RCSJ
model that the standard deviation of P(I;) decays slightly with
increasing shunt resistance above Rs/Rw ~ 0.4 for Q¢ =7,
butit never goes to zero at higher shunt resistances for the RCSJ
model with coherent dynamics. The standard deviation of the
measured retrapping current distribution for the unshunted
wire is almost zero within the noise limit; this is consistent with
the existence of JHNS in the unshunted nanowire and PSCs
in shunted wires. The widths of the simulated switching and
retrapping distributions are much greater than the experimental
results at the same temperature 7 = 1.8 K. This might be due
to the inductance of the shunt resistor, which can effectively
reduce the thermal noise in the system.

F. Temperature dependence: Shunted versus
unshunted nanowires

Finally, we simulate the extended RCSJ model with an ex-
ternal low shunt resistance to find the temperature dependence
of the standard deviation oy, of switching current. We use the
same scheme as previous sections to determine the switching
current in the simulation at different temperatures. We plot oy
versus T in Fig. 13 for Rg/Rw = 0.3 and Q¢ = 7. We find that
the temperature dependence of the simulated oy, due to the
thermal fluctuations is nonmonotonic just as in the experiment
(see Fig. 6) for the shunted nanowires. A nonmonotonic
temperature dependence of oy, due to the thermal fluctuations
has also been obtained previously for various JJs,**=% and
our theoretical analysis not only highlights its ubiquity, but
also provides a way of obtaining it in terms of a RCSJ
kind of modeling. We also find a nonmonotonic temperature
dependence of the standard deviation of retrapping current in
our simulation. In our numerical study, we only consider the
effect of thermal fluctuations in phase slips, thus one needs
to go beyond this study to include effects of macroscopic
quantum tunneling on the temperature dependence of oy, in
the fully quantum regime.
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FIG. 13. (Color online) The standard deviation oy, vs T for the
simulated switching events in the RCSJ model with Qy =7 and

In unshunted nanowires too it has been shown that the
standard deviation of the switching current distribution is
nonmonotonic as a function of temperature.?’->8 In the thermal
regime at higher temperatures 7 > 7*, multiple phase slips are
required before the wire switches to the normal state and the
standard deviation increases as the temperature is decreased.'’
At slightly lower temperatures 7 < T, a single thermal phase
slip causes the wire to switch to the normal state and the
standard deviation decreases with a decrease in temperature.
At low temperatures when QPS are present, depending on
how T* compares with the temperature of crossover from
TAPS to the QPS, one can get different behaviors. With an
applied external shunt, the increased dissipation is expected to
decrease the temperature at which the crossover from thermal
activation to MQT takes place.

V. CONCLUDING REMARKS

We have undertaken a detailed study of the effect of
external resistive shunts on the behavior of superconducting
nanowires. Shunting has a strong effect on the behavior of
the nanowire. We find that the statistics of the switching and
retrapping currents significantly depends on the value of the
shunt resistance. The temperature dependence of the mean
switching current in strongly shunted nanowires is consistent
with the Bardeen prediction for the temperature dependence of
the critical current;>® this indicates that the switching current
can be controllably driven very near to the depairing current
through external resistive shunting. The retrapping current,
on the other hand, increases and becomes more stochastic,
at least for moderate shunting. We demonstrate that the
shunting, even with a large resistance value, can be used
to control the phase-slip events in the wire. We suggest a
model based on the Stewart-McCumber RCSJ model, which
is generalized to include two resistive elements, corresponding
to the effective resistance of the wire (with a phase-slip
center), and the resistance of the shunt. The model provides a
semiquantitative description to the data. Moreover, it provides
insights into developing a circuit-element representation of a
superconducting nanowire.

Our work opens up many interesting avenues towards
developing a fundamental understanding and control of

PHYSICAL REVIEW B 85, 224507 (2012)

coherence and dissipation in nanowires as well as their relation
to possible quantum phase transitions. It will be important
to develop a model that incorporates heating as well as
coherent dynamics and studies the entire crossover in going
from unshunted nanowires (i.e., infinite shunt resistance in
parallel) where heating is most important to the case of very
low shunt resistance values where heating is least important.
It would be interesting and relevant also to explore the
low-temperature quantum regime in more detail and to study
the implications of our work for quantum computing and
other technological applications of nanowires. As an example,
nanowires have been used as photon counters,®® which are
important in radioastronomy. The switching events studied in
this paper represent so-called “dark counts” in the terminology
of the photon detection community. Understanding the physics
of dark counts is important for the purpose of improving
superconducting photon detectors. The fact that the standard
deviation of switching current becomes smaller with the
inclusion of a shunt resistor has relevance to photon detectors
since dark counts can be reduced by shunting.
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APPENDIX: RESISTIVELY AND CAPACITIVELY
SHUNTED JOSEPHSON JUNCTION (RCSJ) MODEL

Here, we briefly digress the main features of the RCSJ
model (see Fig. 14) introduced by Stewart and McCumber.*34°
We find the equation of motion for the time-varying phase
difference ¢(¢) of the superconducting wave functions of the
circuitin Fig. 14 by applying the well-known Josephson dc and
ac relations®’~% for the current phase (I — ¢) and the voltage
phase (V — ¢):

Iy = Iosing, (A1)
d¢ _ 2eV. (A2)
dt n’

|
ICI) Leo

FIG. 14. Stewart-McCumber resistively and capacitively shunted
Josephson junction (RCSJ) model with the Johnson-Nyquist thermal
current noise.

n

+ ¢
vV =—=C TRJ I
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where Iy is the fluctuation-free intrinsic critical current of
the junction. The equation of motion for ¢(¢) of the circuit in
Fig. 14 is given by

Ch d*¢ hd¢+l ing = I+ 1,

—— — sing = ,
2e dt? = 2eR; dt <0 "
along with the Gaussian white-noise properties for the
Johnson-Nyquist thermal current noise 1;:

(In(r)) =0

)

where Tj is the temperature of the JJ with capacitance C and
resistance R;. The resistance Ry measures dissipation in the JJ
in the finite-voltage regime, without affecting the lossless dc
zero-voltage regime, and C indicates the geometric shunting
capacitance between the two superconducting electrodes.’!
The equation (A3) of motion for the junction phase can be
rewritten in terms of dimensionless parameters as
d? d

Qédtf +d—fi+sin¢ =i+ ip,
where Q¢ = (ZelcoRJzC /h)l/2 is the quality factor of the
linearized equation of motion, i = I /1y, iy, = I,/1l, and
t' = RQelgRy/h)t is the normalized time. The term % is
damping as it breaks the time reversibility of the equation and
introduces dissipation. The strength of damping is proportional
to 1/Ry and is inversely related to the quality factor. In
this notation, the time-averaged steady-state voltage across
the junction V = IoRyj{d¢/dt’),. The noise correlation in

(A3)

(A4)
(In(1) h(2)) =

(AS5)
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the scaled time (iy(f))in(t;)) = (dekpTw/hl0)S(t] — t}). The
usual McCumber parameter . = Qg and Stewart parameter
woT = Qo with wy = +/2elo/AC and t = R;C. For the
circuit in Fig. 8, we replace Ry in Eq. (A3) by Ry where
1/Rt = 1/Rw + 1/Rs. Then, we derive either Eq. (4.1) or
(4.4) following the similar steps to get Eq. (AS) from (A3).

In the absence of thermal current noise 7, at zero temper-
ature (also neglecting quantum fluctuations), the zero-voltage
state or O state is stable at all bias levels less than the ideal
critical current (]i| < 1), and the voltage state or 1 state is stable
at all bias levels greater than a minimum value designated
by a fluctuation-free retrapping current i,y. The value of
irn(=I0/10) is determined entirely by the quality factor Qg
and decreases with increasing Q as a smaller tilt is sufficient to
support the running (finite-voltage) state when damping is less.
For Q¢ < 0.8382, the damping is sufficient that a running state
is not possible unless the potential decreases monotonically,
and in this case iy = 1. For Q¢ > 0.8382, a running state is
possible even when the potential has local minima.”® In this
case, ip < 1 and the V-I curve is hysteretic. In the limit of
large Q. iro = 4/7 Qo (Qo > 3).*%7°

The phase dynamics described in Eq. (AS5) can be vi-
sualized as the damped motion of a Brownian particle in
the tilted washboard potential U(¢) = —(i¢ + cos ¢). In the
underdamped regime Qg > 1, the zero-voltage state and the
resistive state correspond to the particle trapped by the energy
barrier AU and running downward along the tilted potential,
respectively. Escape from the potential (0 state to 1 state)
can occur even for i < 1 due to the thermal and the quantum
fluctuations.
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