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Effects of spin-wave excitations in half-metallic materials
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Finite-temperature magnetic properties of half-metallic materials are investigated on the basis of the
first-principles Korringa-Kohn-Rostoker Green’s function method. Influences of spin-wave excitations on the
electronic structure are examined in the framework of the coherent potential approximation. The calculations
show that the half-metallicity is easily destroyed due to an appearence of low-energy electron excited states in the
minority-spin band gap at finite temperature. On the other hand, calculated dc conductivity shows that the 100%
spin-polarized conduction occurring in half-metallic materials hardly deteriorates even in such a temperature.
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I. INTRODUCTION

Half-metallic materials, which are metallic in one spin
direction while insulating in the other spin direction, have
attracted much attention not only due to their unique property
but also due to their possible applications in spintronics.1 For
instance, the magnetoresistance ratio of giant magnetoresis-
tance (GMR) and tunneling magnetoresistance (TMR) devices
using half-metallic materials is supposed to remarkably in-
crease because of their 100% spin-polarized Fermi surfaces.
Such applications, however, have not yet appeared until now.

One obstacle that prevents practical applications of the
half-metallic materials is temperature effects: First, many
half-metals have a rather low magnetic transition temperature,
such as 180 K for (Ga, Mn)As half-metallic diluted magnetic
semiconductors.2 This problem, however, has been largely
eased since the appearance of a family of Co2YZ-type Heusler
alloys, which include half-metals with a high magnetic transi-
tion temperature.3 Some of these half-metallic ferromagnets,
in fact, show a Curie temperature TC much higher than room
temperature (RT), for example, 1100 K of Co2FeSi (Ref. 4).

Yet another temperature effect is the following. Several
experimental groups have succeeded in fabricating magnetic
tunneling junctions (MTJs) consisting of the above Heusler
alloys.5–9 In their works, Sakuraba et al. showed that an
MTJ consisting of Co2MnSi as a bottom electrode, Al-O as a
tunneling barrier, and Co0.75Fe0.25 as a top electrode exhibits
159% TMR ratio and 89% spin polarization at 2 K.7 However,
the TMR ratio of the MTJ rapidly decreased to 70% at RT. In
addition, Wang et al. observed only 12% spin polarization of
Co2MnSi films at RT.8 Similarly, Yamamoto et al. found that
a high TMR ratio of 192% at 4.2 K for a Co2MnSi/MgO/CoFe
MTJ decreased considerably to 90% at RT.9

Although the decrease in the TMR ratios at RT has often
been attributed to an effect of disorder,10 Chioncel et al.
proposed an idea of appearance of non-quasiparticle (NQP)
states such as magnons in the insulator gap.11,12 It would
destroy the half-metallicity at a finite temperature and hence
might reduce the TMR ratio. In their study, the dynamical
spin fluctuations at finite temperature were investigated in a
many-body approach, that is, dynamical mean-field theory
(DMFT) combined with the local density approximation
(LDA) of the density functional theory (DFT). Their results
for Co2MnSi showed that tail parts of the NQP states at

200 K and 400 K crossed the Fermi energy and contributed
to the depolarization of the Fermi surfaces. Thoene et al.
also calculated magnon dispersion relations of half-metallic
Heusler alloys using an approach based on the Korringa-Kohn-
Rostoker (KKR) Green’s function method combined with the
Heisenberg model.13 However, they mentioned little about
the half-metallicity that may deteriorated due to the magnon
excitations.

In this paper, we investigate the effects of spin-wave
(magnon) excitations in half-metals using an approach dif-
ferent from that of the above authors. A basic quantity in
which we are interested is the retarded Green’s function at
temperature T defined by

iG = Tr[exp(−βH ){ϕ(r,t),ϕ†(r ′,t ′)}θ (t − t ′)], (1)

where β = 1/T , ϕ is the electron annihilation operator, and
θ is the step function. Neglecting the time fluctuations (static
approximation), we may approximate the expression as

iG � Z−1
∫

D[V (r)] exp{−β�[V (r),β]}G̊[V (r)]. (2)

Here, G̊[V (r)] is the noninteracting retarded Green’s function
in an external field V (r), �[V (r)] is the free energy for the
corresponding system, and

∫
D[V (r)] stands for the functional

integral with respect to V (r). Z is the partition function defined
by

Z =
∫

D[V (r)] exp{−β�[V (r),β]}. (3)

Further approximation is needed to perform the functional
integrals appearing in Eqs. (2) and (3). Since the functional
integral is nothing but a configurational average of a quantity
with respect to the external potential V (r), a simple and yet
feasible approximation is the coherent potential approximation
(CPA) that takes the configurational average within the single-
site approximation. The probability of finding a particular
potential is now given by Z−1 exp(−β�). This quantity �

is determined if G is known. Therefore, these procedures form
a self-consistent loop with respect to the concentration of a
particular V . Also, the continuous variations of the potential V
have to be taken. In the present study we employ the following
scheme: We take only the potential that gives a local minimum
of � for each direction of the local magnetic moment; that
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is, we employ a saddle-point approximation. Furthermore,
the probability of finding the local potential is obtained
from an independent procedure: First, the magnetic exchange
coupling constants Jij are calculated in the framework of
the KKR Green’s function method. This procedure maps the
LDA Kohn-Sham Hamiltonian to a Heisenberg model. Then,
using a cluster approximation, the temperature dependence of
magnetization of the system is obtained. This enables us to
estimate the average number of flipped spins (wrong spins) at
a finite temperature. We then identify the probability of finding
flipped and nonflipped spins as exp(−β�).

This procedure is equivalent to the procedure in which spins
are regarded as randomly distributed static local moments
and the electronic structure is calculated by use of the CPA
in the framework of the KKR Green’s function method.
The conductivity is calculated similarly using the KKR-CPA
combined with Kubo-Greenwood formula.

In the present study, not only Heusler alloys but also
half-metallic antiferromagnets (HM-AF),14,15 which have a
high magnetic transition temperature and also form a stable
chemical ordered state, are examined with applications to
spintronic devices in mind.

II. THEORY

A. Mano cluster approximation

A simple systematic cluster approximation which is suit-
able for both concentrated and diluted magnetic alloys was
proposed by Mano in 197716 and was applied to half-metals
by Ogura et al.17 We briefly review the formulation in the
following.

Consider a Heisenberg model whose effective Hamiltonian
is given by

H = −2
∑
(i,j )

Jij ei · ej . (4)

Here, ei denotes the unit vector in the direction of the local
magnetic moment of site i; Jij is the magnetic exchange
parameter. The normalized magnetization of the system is
given by

M = Tr

[(
N∑

i=1

ez
i

)
ρ

]
, (5)

where ρ is the density matrix given by

ρ = e−βH

Tr e−βH
, (6)

where β = 1/kBT and N is the total number of magnetic ions
in the system. We define the order parameter m = 〈ez

i 〉, where
〈ez

i 〉 is the average normalized magnetization M/N .
We employ a one-site approximation where m is approxi-

mated by

m = Tr
[
ez

1ρ1
]
, (7)

where ρ1 is the density matrix for the site 1. We give the density
matrix in which the fluctuation of the effective field is taken
into account. In Eq. (4), we replace those spin operators except
e1 with stochastic variables such that ex

i = e
y

i = 0 and ez
i = σi .

The valuable σi is assumed to take the value +1 or −1. In the

following, for simplicity, we take only the nearest-neighbor
interactions into account and suppose Jij = J for all nearest-
neighbor couplings. The one-site effective Hamiltonian is thus
obtained as

H1,σ = −2J
∑

i

ez
1σi = −h1,σ ez

1 (8)

and the density matrix is given by

ρ1,σ = e−βH1,σ

Tr e−βH1,σ
. (9)

Equation (7) is calculated by taking the average of Tr[ez
1ρ1,σ ]

over all the possible configurations of {σi}, which is a set of
σi’s at the nearest neighbors of the site 1:

m = 〈
Tr

[
ez

1ρ1,σ

]〉
σ
. (10)

The average 〈· · · 〉σ is calculated when the probability distri-
bution function P ({σi}) is given. Here we approximate σi to
be independent of one another and the average of each 〈σi〉σ
to be equal to m. Then P ({σi}) is expressed as a product of
single distribution functions P (σi), which is written as

P (σi) = δ(σi − 1)
1 + m

2
+ δ(σi + 1)

1 − m

2
. (11)

We assume the classical spin description for ez
1. In this case,

Tr
[
ez

1ρ1,σ

] =
∫ 1
−1 xeβh1,σ xdx∫ 1
−1 eβh1,σ xdx

= L(βh1,σ ), (12)

where L(x) is the Langevin function, L(x) = coth x − 1/x.
When there are n sites located around the site 1, and k among
them have σi = −1 and the rest σi = +1, h1,σ = 2J (n − 2k).
The probabilities of finding such a spin configuration are given
by binomial distributions:

Dn
k =

(
n

k

)(
1 + m

2

)n−k (
1 − m

2

)k

. (13)

Thus, we obtain the self-consistent equation for m:

m =
n∑

k=0

Dn
k L(2βJ (n − 2k)). (14)

From Eq. (14), the temperature dependence of the magnetiza-
tion of the system is calculated.

In the KKR Green’s function method, following the
prescription of Liechtenstein et al.,18 Jij is obtained as

Jij = 1

4π

∫ EF

−∞
dE �Tr[
iτ

ij

↑ 
jτ
ji

↓ ], (15)

where 
i denotes the difference in the inverse single-site
scattering matrices (t-matrices) for spin-up and spin-down
states. τ is the scattering path operator.

B. Kubo-Greenwood formula

To discuss the effect of spin-wave excitations in GMR/TMR
devices, the conductivity of the system is calculated by
using the Kubo-Greenwood formula combined with the KKR
Green’s function method. For the details of the calculations, we
refer to Ref. 19. The same method was also used to study the
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transport properties of half-metallic systems.20,21 The general
expression for the conductivity is summarized as follows.

The diagonal parts of conductivity tensor along the z

direction is obtained by

σzz(ε) = πh̄

V

〈∑
α,α′

〈α|jz|α′〉〈α′|jz|α〉δ(ε − εα)δ(ε − εα′)

〉
,

(16)

where jz is the current operator,

jz = −ih̄
e

m

←→
∂

∂z
, (17)

and V is the volume of the system. The quantum states
|α〉’s represent the eigenstates of a particular configuration
of the random system. The large bracket indicates that an
average over configurations is to be taken. Equation (16) can
be rewritten in terms of Green’s function as

σzz(ε) = 1
4 lim

η→0
[σ̃zz(ε + iη,ε + iη) + c.c.

− σ̃zz(ε + iη,ε − iη) − c.c.], (18)

where

σ̃zz(z,z
′) = − h̄

πV
Tr〈jzG(z)jzG(z′)〉. (19)

For disordered systems, the configuration average can be taken
approximately in the framework of CPA.

A small but finite imaginary part iη (here we take η = 10−6)
is added to the Fermi energy in using the Kubo-Greenwood
formula. For this reason, even in an ordered structure where no
scattering due to disorder arises, the conductivity for metallic
bands remains finite. dc conductivity is given by σzz(EF),
where EF is the Fermi energy.

III. RESULTS AND DISCUSSIONS

A. The disappearance of band gap by spin-wave excitations

In Fig. 1, the order parameter m, which is the ratio of the
magnetic moment at temperature T to that at 0 K of Mn in
Co2MnSi Heusler alloys, is shown as a function of reduced
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FIG. 1. The dependence on temperature of magnetic moment of
Mn in Co2MnSi half-metallic Heusler alloys.
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FIG. 2. (Color online) Density of states of Co2MnSi Heusler
alloys with some percentages of wrong-spin Mn.

temperature T/TC. Here, the calculated magnetic transition
temperature TC is 1080 K, which is comparable with the
experimental value of 985 K.22 It can be seen in Fig. 1 that the
magnetic moment of Mn is 90% of that at T = 0 (hereafter
M0) at 0.30TC, while it is 80% of M0 at 0.52TC. Our M-T
curve is very similar to that given by Sasioglu et al. in the
classical limit.23

To take the existence of these spin-wave excitations into
account, we take the following model system. Let us consider
the system at 0.30TC. The total magnetic moment of Mn
in this system is 90% of M0. It corresponds to a system in
which 5% of Mn atoms have a wrong direction of the local
magnetic moment (say, down) against other Mn atoms with the
correct direction (up) of the moment. Therefore, this system
might be simulated by introducing 5% Mn with spin-down
magnetic moment randomly in an otherwise spin-up magnetic
moment. This configuration can be treated easily in the
framework of CPA by considering a random alloy system
whose composition is expressed as Co2(Mn↑

0.95Mn↓
0.05)Si.

The concentration of spin-flipped atoms in the sample is
decided from the magnetization at finite temperature and hence
depends on the temperature of the system.

In Fig. 2, the total densities of states (DOS) of spin-existed
states with 2%, 5%, and 10% wrong-spin Mn (i.e., Mn
atoms with a wrong direction of the local magnetic moment),
corresponding to the system at 140 K, 324 K, and 540 K,
respectively, are shown. It is clearly seen that existence of
even a small percentage of wrong-spin Mn is enough to
destroy the half-metallicity. The band gap disappears due to
the formation of d state of wrong-spin Mn at the Fermi energy
in the spin-down bands. Accordingly, the magnitude of the
DOS at the Fermi energy in the spin-down band increases
with increasing the concentration of wrong-spin Mn.

Our results in Fig. 2 calculated by LDA combined with CPA
show a good correspondence with Fig. 1 of Ref. 12 calculated
by LDA + DMFT. We may also say that the effect of spin-
wave excitations studied here seems much stronger than the
spin-orbit coupling effect.

A similar approach is applied to NiAs-type (FeCr)Se2,
which were predicted to be HM-AF by the present authors.14,15
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FIG. 3. The dependence on temperature of magnetic moments of
Cr and Fe in half-metallic antiferromagnets NiAs-type (FeCr)Se2.

In Fig. 3, the order parameters of magnetic moments of Cr
and Fe are shown as a function of reduced temperature. In
this system, the magnetic coupling between Cr and Fe is
antiferromagnetic. We assume the magnetic moment of Cr
to be positive and that of Fe to be negative. The calculated TN

is 895 K.
To examine the electronic structure of spin excited states,

we introduce the atoms with wrong spin at Fe and Cr
sites. The composition of such system is now expressed
as (Fe↓

1−xFe↑
x )(Cr↑1−xCr↓x )Se2. Figure 4 displays the DOS of

systems for x = 2%, 5%, and 10%. As can be seen in the figure,
though such half-metals have large band gap near Fermi level
in the spin-down band at 0 K, the band gap is diminished by
the d states of spin-flipped atoms at finite temperature, such
as the case of Heusler alloys. The magnitude of the DOS at
the Fermi energy in the spin-down band also increases with
increasing the concentration of spin-flipped atoms.
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FIG. 4. (Color online) DOS of (Fe↓
1−xFe↑

x )(Cr↑1−xCr↓x )Se2 with
x = 2%, 5%, 10%.

B. Effects of the spin-wave excitations
on the transport properties

In the previous section, we saw that the half-metallicity
was destroyed by spin-wave excitations. In this section, spin-
decomposed dc conductivity of the system is calculated using
the Kubo-Greenwood formula combined with KKR-CPA.
By comparing the ratio of the conductivity of the spin-up
channel to that of the spin-down channel, the effects of
spin-wave excitations on transport properties of half-metals are
examined.

Here, it might be worth noticing that there is no direct
relationship between the conductivity and the density of states
at the Fermi energy, particularly in the case of systems
containing transition-metal elements. When the Fermi surfaces
have d components, it is not generally true that a high density
of state corresponds to a high conductivity, which might
be expected in the case that the Fermi surfaces are mostly
composed of s and p components. On the contrary, the high
density of states often leads to a very low conductivity in these
cases. It is because the high density of d states means a low
electron velocity due to its large effective mass. Moreover,
d states are strongly affected by existing disorder because
of a d resonance scattering. Under such circumstances, the
conductivity is strongly suppressed.

It is naturally supposed that most of the states which appear
due to the spin-wave excitations at the Fermi energy in the
spin-down band is contributed by the d states of transition
metal atoms with wrong spin. Therefore, it is expected that the
conductivity in the spin-down channel cannot be high. Figure 5
shows the conductivity for each spin band of Co2MnSi with 2%
spin-flipped sites as a function of energies relative to the Fermi
energy. It is recognized that the conductivity of the spin-down
bands at Fermi energy, which has a value of 0.346 k�−1 cm−1,
is much smaller than 66 k�−1 cm−1 of the spin-up
bands.

In Fig. 6 we show the conductivity in the spin-up
and -down channels of Co2MnSi at various percentages of
wrong-spin Mn ranging from 1% to 25%. As seen in this
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FIG. 5. Conductivity of Co2MnSi with 2% spin-flipped atoms as
a function of fictitious Fermi energy.
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FIG. 6. Conductivity of up- and down-spin channels of Co2MnSi
with various percentages of wrong-spin states. The inset is an enlarged
figure for the spin-down band.

figure, the conductivity of the spin-up band is much larger
than that of the spin-down band, the latter being almost
invisible. The inset is an enlarged figure of the conductivity
for the spin-down band. The conductivity of the spin-up band
decreases and the conductivity of the spin-down band increases
with increasing concentration of spin-flipped atoms. Thus,
the ratio of conductivity between spin-up and -down bands
decreases with increasing the concentration of wrong-spin Mn.
However, the ratio remains huge even at 25% spin-flipped Mn
atoms. It is noticeable that the temperature corresponds to 25%
spin-flipped Mn atoms is around 850 K or 0.85TC.

The calculated conductivity is comparable with that seen
in experiments. In the present model, 1%, 2%, and 5%
spin-flip Mn atoms correspond to around 80 K, 140 K, and
324 K, respectively. The resistivity at these temperatures is
about 8 μ�cm, 15 μ�cm, 26 μ�cm in the calculation and
around 8 μ�cm, 11 μ�cm, 21 μ�cm in experiments,24

respectively. Since the present calculation gives residual
resistivity, calculated values should be a little smaller than
experimental ones. Although the calculated values are larger
than experiments, these are comparable and the present model
seems to provide good estimation.

The same observation is also obtained for HM-AF
(FeCr)Se2. Figure 7 shows the conductivity of the spin-up
and -down channels of (FeCr)Se2 up to 25% of wrong-spin
sites. The conductivity of the spin-up band is very large and
the ratio of the conductivity of the spin-up band to that of
the spin-down band is also very large, even in a system
with a rather high percentage of wrong-spin states. As a
consequence, the spin-wave excitations at finite temperature
seem not to much affect the transport properties of these
half-metals.
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FIG. 7. Conductivity of up- and down-spin channels of NiAs-type
(FeCr)Se2 with various percentages of wrong-spin states. The inset
is an enlarged figure for the spin-down band.

IV. SUMMARY

The effect of spin-wave excitations in half-metals at finite
temperature was investigated using the first-principles KKR-
CPA method on an assumption that these excitations can be
described by randomly distributed local-moment reversals.
The number of reversed local moments at a given temper-
ature was determined by the Mano cluster approximation
applied to a Heisenberg-type Hamiltonian obtained through
Liechtenstein’s prescription. These procedures were exploited
for HM ferromagnetic Co2MnSi and HM antiferromagnetic
(FeCr)Se2. The results indicated that the spin-wave excitations
easily destroyed the half-metallicity even at a rather low
temperature ∼0.1TC (TN). This effect is much stronger than
the other effects such as spin-orbit coupling, which also is a
reason for the destruction of the half-metallicity. Nevertheless,
the spin polarization in the conductivity, which was calculated
by the Kubo-Greenwood formula combined with KKR-CPA
method, was little affected by the spin-wave excitations in
these half-metallic materials. This is due to the fact that the
states that are produced by the local-moment reversal form
a rather localized impurity band that is similar to a band
composed of virtual bound states. These states cause a strong
d scattering and hence contribute little to electron conduction.
The large magnetoresistance effect, therefore, should be quite
robust if half-metals are used in GMR/TMR devices.

ACKNOWLEDGMENTS

This work was supported by the Next Generation Super
Computing Project, Nanoscience Program, MEXT, Japan, and
by MEXT KAKENHI No. 17064008.

*h.nguyen@fz-juelich.de
1I. Zutic, J. Fabian, and D. Sarma, Rev. Mod. Phys. 76, 323
(2004).

2H. Ohno, Science 281, 591 (1998).

3C. Felser and B. Hillebrands, J. Phys. D: Appl. Phys. 42, 080301
(2009).

4S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Ksenofontov,
C. Felser, and H. J. Lin, Appl. Phys. Lett. 88, 032503 (2006).

224437-5

http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1126/science.281.5379.951
http://dx.doi.org/10.1088/0022-3727/42/8/080301
http://dx.doi.org/10.1088/0022-3727/42/8/080301
http://dx.doi.org/10.1063/1.2166205


N. H. LONG, M. OGURA, AND H. AKAI PHYSICAL REVIEW B 85, 224437 (2012)

5M. Yamato, T. Marukame, T. Ishikawa, K. Matsuda, T. Uemura,
and M. Arita, J. Phys. D: Appl. Phys. 39, 824 (2006).

6Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma,
T. Miyazaki, and H. Kubota, Appl. Phys. Lett. 88, 192508 (2006).

7Y. Sakuraba, T. Miyakoshi, M. Oogane, Y. Ando, A. Sakuma, and
T. Miyazaki, Appl. Phys. Lett. 89, 052508 (2006).

8W. H. Wang, M. Przybylski, W. Kuch, L. I. Chelaru, J. Wang, Y. F.
Lu, J. Barthel, H. L. Meyerheim, and J. Kirschner, Phys. Rev. B 71,
144416 (2005).

9T. Ishikawa, T. Marukame, H. Kijima, K. I. Matsuda, T. Uemura,
M. Arita, and M. Yamamoto, Appl. Phys. Lett. 89, 192505
(2006).

10V. Jung, G. H. Fecher, B. Balke, V. Ksenofontov, and C. Felser,
J. Phys. D: Appl. Phys. 42, 084007 (2009).

11L. Chioncel, M. I. Katsnelson, G. A. de Wijs, R. A. de Groot, and
A. I. Lichtenstein, Phys. Rev. B 71, 085111 (2005).

12L. Chioncel, Y. Sakuraba, E. Arrigoni, M. I. Katsnelson, M. Oogane,
Y. Ando, T. Miyazaki, E. Burzo, and A. I. Lichtenstein, Phys. Rev.
Lett. 100, 086402 (2008).

13J. Thoene, S. Chadov, G. H. Fecher, C. Felser, and J. Kübler,
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