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We report on a comprehensive experimental and theoretical study of the quasi-one-dimensional quantum
magnet CuNCN. Based on magnetization measurements above room temperature, as well as muon spin rotation
and electron spin resonance measurements, we unequivocally establish the localized Cu+2-based magnetism and
the magnetic transition around 70 K, both controversially discussed in the previous literature. Thermodynamic
data conform to the uniform-spin-chain model with a nearest-neighbor intrachain coupling of about 2300 K, in
remarkable agreement with the microscopic magnetic model based on density functional theory band-structure
calculations. Using exact diagonalization and the coupled-cluster method we derive a collinear antiferromagnetic
order with a strongly reduced ordered moment of about 0.4 μB , indicating strong quantum fluctuations inherent
to this quasi-one-dimensional spin system. We reanalyze the available neutron-scattering data, and conclude that
they are not sufficient to resolve or disprove the magnetic order in CuNCN. By contrast, spectroscopic techniques
indeed show signatures of long-range magnetic order below 70 K, yet with a rather broad distribution of internal
field probed by implanted muons. We contemplate the possible structural origin of this effect and emphasize the
strong anisotropic reflection broadening observed with synchrotron powder x-ray diffraction on stoichiometric
samples of CuNCN, as well as possible deviations from the ideal CuNCN stoichiometry.
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I. INTRODUCTION

While the majority of magnetic systems develop long-range
order (LRO) of spins at low temperatures, the lack of LRO
down to zero temperature is a less common scenario that
implies strong quantum fluctuations and peculiar phenomena
related to a specific type of spin lattice and/or exchange
couplings. Low dimensionality and frustration, two main
prerequisites of quantum fluctuations, impede LRO in a
quantum spin system by reducing the magnetic ordering
temperature, the ordered magnetic moment, and other features
of the ordered state.1,2 Although not necessarily preventing
an ordered arrangement of spins at 0 K, quantum fluctuations
render the LRO barely visible for experimental techniques that
give response proportional to the size of magnetic moments
(neutron scattering), transition entropy (specific heat), or other
quantities related to the LRO state. For example, Sr2CuO3, a
paradigmatic quasi-one-dimensional spin- 1

2 magnet, features
the nearest-neighbor exchange coupling of J � 2600 K,3 yet
undergoing LRO at as low as 5.4 K (TN/J � 0.002) with
the ordered moment of 0.06 μB , compared to 1 μB in a
classical spin- 1

2 system.4 The LRO in Sr2CuO3 can only be
observed with single-crystal neutron scattering4 or spectro-
scopic methods, such as muon spin rotation (μSR)4,5 and
nuclear magnetic resonance (NMR),6 while powder neutron
diffraction essentially fails to detect the LRO because of the
vanishingly small ordered moment.3

The presence of a low-temperature LRO in some other
low-dimensional spin systems remains a matter of contention.
It is often declared that the lack of any visible anomalies
in thermodynamic properties7 as well as the lack of the
magnetic neutron scattering in a powder experiment8 are good

evidence for the absence of LRO. However, μSR does find
the magnetic transitions in many low-dimensional systems
previously considered magnetically short-range ordered in the
experimentally accessible temperature range.7,9,10 A reliable
study of the LRO in a low-dimensional spin system requires
a comprehensive experimental investigation combined with a
sound microscopic analysis that provides details of the LRO,
such as the magnetic structure and the anticipated ordered
moment. The microscopic input is essential for interpreting
the experimental data, because the lack of the expected
signal (e.g., in a powder neutron diffraction experiment)
may either indicate the zero ordered moment (the absence
of LRO), or simply show that the LRO state is beyond
the sensitivity threshold of the method. In the following we
apply a combined experimental and theoretical approach to
explore the ground state of CuNCN, a quasi-one-dimensional
spin- 1

2 quantum magnet controversially discussed in the recent
literature.

CuNCN is a semiconducting compound containing spin- 1
2

Cu+2 cations and anionic carbodiimide [NCN]2− groups.
The layered crystal structure of CuNCN is formed by
characteristic CuN4 plaquettes that share edges and form
chains along the a direction. The nearly linear NCN groups
connect the structural chains along c (Fig. 1).11 An early
experimental study by Liu et al.12 reported the lack of
LRO, as concluded from thermodynamic measurements and
neutron powder diffraction. The disordered ground state was
understood as a “highly correlated antiferromagnetic state at
room temperature” caused by the frustrated triangular spin
lattice formed by the couplings J1 and Jb.12 Later, the same
group performed a polarized neutron scattering experiment13

that did not show any signatures of LRO, either. However,
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FIG. 1. (Color online) Top panels: crystal structure of CuNCN,
open circles denote Cu atoms centering CuN4 plaquettes (shaded).
Bottom panels: microscopic magnetic model proposed in Ref. 15;
open and filled circles at the sites of the spin lattice show up and
down spins in the columnar AFM ground state (see Sec. IV A).

this observation was now interpreted as a nonmagnetic state
of Cu+2. In a subsequent theoretical study, Tchougréeff
and Dronskowski14 recalled the scenario of the magnetic
Cu+2 cations, and developed a mean-field theory for the
resonating-valence-bond (RVB) ground state of an anisotropic
J1 − Jb triangular spin lattice (see the bottom left panel of
Fig. 1).

In a preceding study,15 we proposed an independent
and essentially different microscopic picture,15 based on
conventional density functional theory (DFT) band-structure
calculations that are well known as a highly efficient tool
for unraveling complex spin lattices in quantum magnets.16

The leading antiferromagnetic (AFM) exchange J � 2500 K
was found along the c direction via the NCN groups (Fig. 1).
A weaker FM coupling J1 � −500 K connects the resulting
spin chains along a, whereas a couple of marginal AFM
couplings induce a weak frustration that should not preclude
the LRO in CuNCN. In this paper we provide experimental
and further theoretical support for this microscopic scenario.
Our data clearly indicate the presence of localized magnetic
moments on the Cu+2 atoms, and suggest the formation
of static magnetic fields below 70 K. To understand the
latter observation, we investigate the ground state of the
proposed magnetic model, evaluate the Néel temperature,
and explain why the anticipated magnetic order has likely
been overlooked in the previous studies. Note that recently
Zorko et al.17 presented another experimental work on CuNCN
and proposed an “inhomogeneous magnetic ground state”
possibly related to the strong frustration on the triangular spin
lattice. Although most of their experimental results match our
findings, the interpretation is notably different. We discuss
these differences in Sec. V of the present paper and in a separate
Comment.18

The outline of our paper is as follows. We start with method-
ological aspects in Sec. II, and proceed to the experimental
results in Sec. III. In Sec. IV we present a theoretical study
of the microscopic magnetic model proposed in Ref. 15, and

reanalyze the neutron-scattering data from Refs. 12 and 13.
We complete our work with a discussion and summary in
Sec. V.

II. METHODS

Polycrystalline samples of CuNCN were prepared by a two-
step procedure described in Ref. 11. We used CuCl2 · 2H2O
and H2NCN as starting materials and Na2SO3 as a reducing
agent. H2NCN was stored in a fridge to avoid polymerization.
CuNCN was obtained in the form of black powder. Repeated
attempts of crystal growth were so far unsuccessful. Although
laboratory powder x-ray diffraction (XRD, see below) showed
similar patterns for all samples, further studies (chemical
analysis, synchrotron XRD, magnetization measurements) re-
vealed deviations in the chemical composition, microstructure,
and magnetic behavior.

Powder samples of CuNCN were characterized with labo-
ratory XRD (Huber G670 Guinier camera, CuKα1 radiation,
Ge monochromator, ImagePlate detector, 2θ = 3◦–100◦ an-
gle range) and conventional analytical techniques.19 High-
resolution XRD patterns for selected samples were measured
at room temperature at the ID31 beamline of European
Synchrotron Radiation Facility in Grenoble (wavelength λ =
0.4 Å, eight scintillation detectors preceded by Si (111)
analyzer crystals, 2θ = 1◦–40◦ angle range). Samples were
loaded into thin-walled borosilicate glass capillaries and spun
during the data collection. JANA2006 program20 was used for
the Rietveld refinement.

Magnetic susceptibility was measured with a Quantum
Design MPMS SQUID magnetometer in the temperature
range 2–650 K in applied fields up to 7 T. Heat capacity
was studied by a relaxation technique (Quantum Design
PPMS) in the temperature range 2–100 K in zero magnetic
field.

The electron spin resonance (ESR) measurements were
performed with a standard continuous-wave spectrometer at
X-band frequencies (ν ≈ 9.5 GHz) by using a cylindrical
resonator in TE012 mode. The ESR spectra were analyzed
by fitting them with Lorentzian lines. From these fits, the
linewidth �B (half-width at half-maximum), the resonance
field Bres (providing the ESR g factor), and the inten-
sity (given by the area ∝A�B2 under the ESR absorp-
tion, where A is the amplitude of the Lorentzian) were
determined.

Zero- and longitudinal-field (ZF&LF) μSR experiments
were performed at the πM3 beam line at the Paul Scherrer
Institute on the GPS spectrometer (Villigen, Switzerland).
Forward, backward, up, and down positron detectors were
used for monitoring the asymmetry signal A(t). The ZF
measurements were performed in the transverse mode with
muon spin perpendicular to its momentum, while the LF
measurements were done in the LF mode with the muon spin
parallel to its momentum. The ZF spectra were obtained in the
temperature range of 5–200 K, while the LF measurements
were done in a series of fields ranging from 1 to 640 mT at
100 K and at 30 mT in the temperature range of 5 to 250 K.
Typical counting statistics were ∼5 × 106 positron events per
each particular data point.
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The ground state of the proposed microscopic magnetic
model was studied by coupled-cluster and Lanczos diag-
onalization calculations using the program packages “The
crystallographic CCM” (by Farnell and Schulenburg) and
Schulenburg’s spinpack, respectively. To evaluate the Néel
temperature, we simplified our spin model (see Sec. IV A)
and performed quantum Monte Carlo simulations using the
loop algorithm21 of the ALPS package.22 Neutron-scattering
patterns for possible magnetic structures of CuNCN were
calculated with FULLPROF.23

III. EXPERIMENTAL RESULTS

A. Magnetic properties

Liu et al.12 reported magnetic susceptibility (χ ) measure-
ments for CuNCN up to 320 K. They observed a nearly
temperature-independent susceptibility above 100 K, whereas
at lower temperatures the data showed a bend around 70 K fol-
lowed by a Curie-like paramagnetic upturn. Additionally, the
increase in the magnetic field induced a systematic reduction
in χ , thereby indicating a minor ferromagnetic contribution
of unknown origin. We extended the measurements by Liu
et al.12 in two aspects. First, we collected the data above
320 K since there is strong evidence for large couplings on
the order of 2000 K,15 so that an evaluation of exchange
parameters would require the high-temperature data. Second,
we performed the measurements for several samples to sort
out external contributions and to better understand the role of
impurities. We start with the high-temperature data, while the
sample dependence will be discussed in Sec. III B.

Figure 2 presents the susceptibility data collected up to
650 K, which is close to the decomposition temperature
of CuNCN.24 To check for the stability of the sample in
this temperature range, we performed the magnetization
measurements both on heating and on cooling. Both data sets
perfectly matched, thus confirming the intrinsic nature of the
observed signal. Above 250 K, the magnetic susceptibility
of CuNCN increases. This contradicts the itinerant scenario,
which would require an essentially temperature-independent
Pauli paramagnetism, and challenges the conclusion of Ref. 13
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FIG. 2. (Color online) Magnetic susceptibility of CuNCN mea-
sured up to 650 K in the applied field of 7 T (filled circles) and the fit
with Eq. (1) (solid line) along with individual contributions described
in the text (short- and long-dashed lines).

on the nonmagnetic nature of Cu+2 cations in CuNCN.
The increase in χ is a clear signature of localized spins
that are subject to strong AFM couplings inducing a low-
dimensional and/or frustrated behavior. Quantum fluctuations
in low-dimensional/frustrated magnets typically lead to a
broad susceptibility maximum. In our case, the maximum
lies above the accessible temperature range24 (Fig. 2), and
the measurement can only probe the susceptibility below the
maximum. Our measurements are, therefore, high-temperature
on the usual experimental scale, but cover a relatively narrow
temperature range on the scale of the leading exchange
coupling J � 2500 K (T/J � 0.3).

Although the data in the narrow temperature range can
hardly be used to establish details of the magnetic model, it
is still possible to fit the experimental susceptibility using a
given model, and evaluate the leading exchange parameter.
Since DFT calculations15 consistently find the leading AFM
coupling J � 2500 K along the c direction, we use the
model of a uniform Heisenberg spin- 1

2 chain supplemented
by a temperature-independent contribution χ0 for core dia-
magnetism/van Vleck paramagnetism as well as a Curie
contribution Cimp/T for the low-temperature upturn related
to the noninteracting impurity spins:

χ = χ0 + Cimp

T
+ NAg2μ2

B

J
χchain(T/J ). (1)

Here g is the g factor, NA is Avogadro’s number, μB is Bohr
magneton, and χchain(T/J ) is the susceptibility of a uniform
Heisenberg chain, as given in Ref. 25. Our fit yields χ0 =
7.3 × 10−6 emu/mol, g = 2.2, Cimp = 0.0021 emu K/mol,
and J = 2310 K. The fitted g value is in good agreement
with the ESR estimate g � 2.1 (see Sec. III D),26 whereas
our experimental estimate of J almost perfectly matches
the computational prediction J � 2500 K of Ref. 15. This
result provides a strong experimental support for the proposed
microscopic magnetic model.

An important consequence of our model is the low-
temperature LRO driven by interchain couplings (see also
Sec. IV).15 The bend of the susceptibility curve around 70 K
(Fig. 4, upper panel) is a possible signature of such ordering.
However, the intrinsic nature of the susceptibility anomaly has
been questioned by Liu et al.,12 because any visible effect
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FIG. 3. (Color online) Specific heat of CuNCN measured in zero
magnetic field.
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FIG. 4. (Color online) Magnetic susceptibility for two samples
of CuNCN with different chemical composition (Table I), different
microstructure (Fig. 5), and different concentration of paramag-
netic impurities (see text for details). The dashed line in the
upper panel denotes the minimum susceptibility and underscores
the weak increase in χ above 300 K (compare to the high-
temperature data in Fig. 2). The circle marks the bend of the curve
around 70 K.

in the specific heat (Cp) is lacking. Figure 3 shows that the
heat capacity of CuNCN is indeed smooth up to 100 K, but
this observation does not evidence against the LRO. In Sec. I
we mentioned that the ordering transitions in quantum magnets
may be invisible for thermodynamic measurements because of
the diminutively small entropy released at the low transition
temperatures TN/J � 0.03 (see also Sec. IV A). This is the
case for CuNCN, where local probes give clear indications for
the formation of static magnetic fields below 70–80 K (see
Secs. III C and III D).

B. Sample characterization

Prior to discussing the μSR and ESR results, we will
comment on the problem of possible impurities in the
polycrystalline samples of CuNCN. The comparative study
of several samples demonstrated that the magnitude of the
low-temperature Curie-like impurity contribution is strongly
sample-dependent. For a further study, we selected samples 1
and 2 showing the least pronounced and most pronounced
low-temperature upturns, respectively (Fig. 4). Fitting the
low-temperature susceptibility with the Curie law, we roughly
estimate the amount of an effective spin- 1

2 impurity as 0.1%
for sample 1 and 1.3% for sample 2. It is worth noting that
the bend around 70 K, which is sometimes thought to be of
impurity origin,12,13 is in fact more pronounced in sample 1
with the significantly lower impurity contribution. In sample
2, the anomaly is masked by the stronger impurity signal.

According to powder XRD, both samples 1 and 2 are
single phase, although amorphous impurities may not be
visible in this experiment. Therefore, we also checked the bulk
composition using chemical analysis. Representative results
are reported in Table I. Sample 1 is close to the nominal
composition, whereas sample 2 considerably deviates from

TABLE I. Chemical composition (in wt.%) of the CuNCN samples.

Cu N C H O

Sample 1 60.8 27.1 11.6 0.1 0.0
Sample 2 59.4 24.5 11.1 0.4 4.7
Nominal 61.4 27.0 11.6 0.0 0.0

the anticipated CuNCN composition and contains appreciable
amounts of oxygen and hydrogen. Although the deviations
in the composition of sample 2 could be ascribed to an
amorphous oxygen- and hydrogen-containing impurity phase,
which would be invisible for XRD, this possibility looks
unlikely considering the μSR and ESR results reported below.
Both local techniques show clearly that in samples 1 and 2
the bulk of the sample (i.e., the crystalline phase measured
by XRD) is different, thus reflecting the variable chemical
composition of the “CuNCN” phase.

Regarding diffraction experiments, the difference between
samples 1 and 2 becomes visible in the high-resolution
synchrotron XRD data. In sample 1, we observed a dramatic
anisotropy of the reflection halfwidth. The reflections hkl

with both k and l nonzero are systematically broadened, as
seen, for example, from a comparison of the two neighboring
reflections, 004 and 112 at 2θ � 9.7◦, or 021 and 110 at lower
2θ . Reflections of sample 2 look more isotropic in terms of the
halfwidth, yet their shape is somewhat unusual (see the right
panel of Fig. 5).

The differences in the diffraction data can be quantified
using the full-profile Rietveld refinement.27 We used the sim-
ple Lorentzian profile function supplied with the anisotropic
reflection broadening according to Stephens.28 Attempts to
refine Gaussian components of the profile functions were
unsuccessful. While the Lorentzian coefficients LX and LY are
nearly the same in both samples, the anisotropic broadening
measured by tensor components Shkl is notably different
(Table II).29 In sample 1, three nonzero Shkl components are
5–10 times larger than in sample 2. Therefore, the effects
of anisotropic reflection broadening are much stronger in the
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FIG. 5. (Color online) Synchrotron XRD patterns for two samples
of CuNCN with different chemical composition. In the left panel, the
pattern of sample 1 is offset for + 5000 for clarity. Sample 1 shows
a pronounced anisotropy of reflection halfwidth (note the 004 and
112 reflections in the left panel), whereas the reflections of sample 2
demonstrate more isotropic angular dependence of the halfwidth and
peculiar reflection shape (right panel).
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TABLE II. Summary of Rietveld refinements of the synchrotron XRD data: lattice parameters a, b, and c (in Å); Lorentzian coefficients
LX and LY (in 10−2 deg) of the isotropic reflection width; strain tensor parameters Shkl (in 10−2 deg2 Å−4) describing the anisotropic reflection
broadening; and refinement residuals RI/Rp . Definitions of the profile parameters are according to the JANA2006 program.20 Error bars are
based on the Rietveld refinements.

a b c LX LY S022 S040 S220 RI/Rp

Sample 1 2.99458(4) 6.1883(1) 9.4120(2) 0.15(2) 29.1(4) 1.50(2) 0.73(2) 0.60(4) 0.046/0.102
Sample 2 2.99163(6) 6.1906(1) 9.4238(3) 0.75(3) 34.7(6) 0.30(1) 0.036(8) 0.06(1) 0.061/0.121

nearly stoichiometric sample 1 than in the off-stoichiometric
sample 2.

Remarkably, the deviations in the stoichiometry and the
amount of magnetic impurities do not correlate with the
reflection broadening. Therefore, the reflection broadening is
unrelated to the chemical inhomogeneity. Its origin should be
disclosed in future studies involving the electron microscopy
and an elaborate modeling of the microstructure.

Lattice parameters of samples 1 and 2 are slightly different
(see Table II). Additionally, sample 2 shows notably higher
refinement residuals. This effect could be ascribed to the
somewhat irregular peak shape (see, e.g., the right panel of
Fig. 5) and the sizable amounts of hydrogen and oxygen atoms.
However, we did not succeed in locating the positions of these
impurity atoms in the crystal structure.

At this point we also comment on the sample characteriza-
tion reported in previous studies of CuNCN.11,12,17 In sample
1, the chemical composition as well as the magnitude of
the Curie-like susceptibility upturn are compatible with the
data of Refs. 11,12, and 17, thereby indicating similar sample
quality. Our sample 2 may be thought to be of lower quality,
although the deviations in its chemical composition reveal an
unexpected example of chemical inhomogeneity in CuNCN.
Additionally, our data put forward the previously overlooked
problem of reflection broadening, which might be indicative of
defects (e.g., stacking faults) and have crucial importance for
understanding the magnetism. Although the authors of Refs. 11
and 17 describe their samples of CuNCN as having “excellent
crystallinity” evidenced by noticeable high-angle Bragg peaks
in laboratory x-ray data obtained with CuKα1 radiation, this
test is not sensitive to the anisotropic broadening observed in
our study. Similar to Ref. 11, the synchrotron data for samples
1 and 2 show a number of sharp reflections up to q � 7.5 Å−1

(2θ � 133◦ for CuKα1 radiation), but this neither precludes the
dramatic broadening of the low-angle reflections with nonzero
k and l nor excludes the peculiar reflection shape observed in
sample 2.

The variable crystallinity of CuNCN is unrelated to the
particle size, which would lead to a uniform broadening of all
Bragg peaks, but rather concerns highly anisotropic particle
shape and/or specific microstructural effects resolvable in
a high-resolution XRD experiment only. For example, the
powder XRD data reported in Refs. 11 and 17 show the 004
and 112 reflections at 2θ � 9.7◦ as a single peak, and do
not allow us to observe the difference in the halfwidths of
these reflections. Therefore, a further characterization with
high-resolution XRD is desirable. We believe that genuine
“powder samples of CuNCN with excellent crystallinity”
remain a challenging topic, and the problem of microstructural

effects requires further careful consideration that lies beyond
the scope of the present study.

C. μSR spectroscopy

Thermodynamic measurements suggest a change in the
magnetic state of CuNCN below 70 K. To address the nature
of this transition we performed μSR experiments. Although
both samples 1 and 2 were measured, we mostly focus on the
stoichiometric sample 1 and comment on sample 2 later in
this section. Figure 6 shows ZF μSR time spectra of sample 1
measured at 5, 65, 90, and 180 K. At 5 K, a strongly depolarized
μSR signal is evident, suggesting a magnetically ordered
state of the sample. With increasing temperature, the muon
depolarization gradually vanishes, and a low relaxation rate at
180 K identifies a complete transition to the paramagnetic state.

The time dependence of the ZF μSR time spectra is well
described with the following equation:30

A(t) = A1

[
2

3
exp(−λTt) cos(γμBintt) + 1

3
exp(−λLt)

]

+A2 exp(−λ2t). (2)

The first term is the signal of the magnetically ordered poly-
crystalline sample, with 2/3 oscillating and 1/3 nonoscillating
components, while the second term describes the paramagnetic
fraction of the sample. Initial asymmetries A1 and A2 are
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FIG. 6. (Color online) ZF μSR time spectra of sample 1 measured
at 5, 65, 90, and 180 K. The solid lines are fits to the data with Eq. (2).

224431-5



ALEXANDER A. TSIRLIN et al. PHYSICAL REVIEW B 85, 224431 (2012)

2.0

3.0

4.0

5.0

1.0

0.0
20 40 60 80 100 1200

Internal field, (mT)Bint

F
T

am
pl

it
ud

e
(a

rb
. u

ni
ts

)

ZF SR

70 K

50 K

35 K

20 K

5 K

FIG. 7. (Color online) Fourier transform (FT) of the oscillating
(2/3) fraction of the μSR time spectra measured at 5, 20, 35, 50,
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field distribution is evident at 5 K and gradually vanishes above
50 K. For better visualization, the FT spectra below 70 K are shifted
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proportional to the volume fractions of the magnetically
ordered and paramagnetic phases, respectively, and add up
to the temperature-independent total asymmetry A1 + A2 =
0.21. The transverse relaxation rate λT is proportional to
the dispersion of the internal magnetic field Bint. λL is the
longitudinal relaxation rate of muon polarization, whereas
γμ = 2π · 135.53 MHz/T is the muon gyromagnetic ratio.
The parameter λ2 describes the muon relaxation rate in the
paramagnetic fraction of the sample. It is related to static and
dynamic local fields.31

While most parameters of Eq. (2) can be determined
independently, the relaxation rates λL and λ2 are low and
intrinsically correlated. Owing to the finite time window
of μSR measurements (10 μs), only the linear part of the
exponential relaxation rate can be recorded for λi < 0.1 μs−1.
Therefore, exp(−λLt) and exp(−λ2t) are reduced to simple
linear terms that are fitted with a single relaxation rate λ̃,
which is a cumulative parameter combining the effects of λ2

and λL.
In contrast to the recent study by Zorko et al.,17 we clearly

identify a nonzero internal field at 5 K in sample 1. Figure 7
shows the Fourier transform (FT) for the oscillating fraction
(2/3) of the μSR-time spectrum [i.e., the paramagnetic
fraction and the nonoscillating (1/3) fraction of the signal were
subtracted from the full μSR time spectrum]. The nonzero
internal field is a typical footprint of the antiferromagnetically
ordered state. We note, however, the broad distribution of
internal fields that may be related to several factors, including
different local fields sensed by a muon, a distribution of
inequivalent muon stop sites in the crystal structure, and/or

a structural inhomogeneity. This problem is further discussed
in Sec. V.

Figure 8 shows the ZF μSR results for Bint, λT, λ̃, and
A1 evaluated using Eq. (2). At 5 K, 100% volume fraction of
the sample is in the AF ordered state [see A1(T ) in the left
panel of Fig. 8]. With increasing the temperature above 25 K,
the magnetic volume fraction gradually decreases to 50% at
about 62 K and to �25% at 70 K. At higher temperatures,
A1 decreases linearly and eventually vanishes at 180 K. In
the paramagnetic state (above 180 K), a weak muon spin
depolarization with λ̃ = λ2 = 0.05 μs−1 is visible. Because
this relaxation is strongly suppressed in the LF experiments
(see below), it has a quasistatic character and originates from
nuclear and/or paramagnetic impurity dipolar fields, which are
nearly temperature-independent.

Below 180 K, a fraction of the sample orders magnetically.
In the vicinity of the magnetic transition, the longitudinal
relaxation rate λL may increase substantially because of the
critical slowing down of paramagnetic spin fluctuations.32,33

This effect is reflected in the temperature dependence of λ̃

that combines λL with the nearly temperature-independent λ2.
Indeed, we find an anomaly in the temperature dependence of
λ̃ below 65 K. This anomaly confirms the formation of the
magnetically ordered state below 65–70 K. A similar effect
is observed in the relaxation rate 
 extracted from the LF
experiment (see Fig. 9).

The internal magnetic field Bint probed at the muon site(s)
decreases with temperature from 30 mT at 5 K to 0 at
�70 K. Above 70 K, spins are in a highly disordered state,
as seen from the temperature dependence of the transverse
relaxation rate λT that measures the inhomogeneity of the
internal field probed by a muon (right panel of Fig. 8). A
marginal fraction of the magnetically ordered phase (nonzero
A1) is also seen in the temperature range between 70 and
180 K. Presently we cannot elucidate the nature of this ordered
phase. Plausible explanations would be the formation of a
muon-induced magnetic phase in small regions of the sample
or the structure inhomogeneity. The zero internal field as well
as the well-defined ESR absorption above 70 K (Sec. III D)
corroborate the lack of the macroscopic LRO above 70 K.

To distinguish between static and dynamic contributions to
the relaxation, we performed the LF μSR experiment (also
referred as a decoupling experiment) at 100 K, where the
dominant fraction of the sample is in the paramagnetic state.
The μSR time spectra were analyzed with the equation

A(t) = A′ exp(−
t). (3)

The fit was performed for the times above 0.5 μs to exclude
the influence of the fast relaxing component of the μSR time
spectrum (see Fig. 6). The longitudinal-field dependence of

 at 100 K (i.e., in the predominantly paramagnetic state) is
shown in the inset of Fig. 9. The μSR signal is decoupled
at about 0.5 mT suggesting the dominant static character of
muon depolarization in the paramagnetic state. Therefore, to
study the weak dynamic muon relaxation we performed a
temperature scan in the applied longitudinal field BL = 30 mT,
where static internal fields of the paramagnetic phase of the
sample are completely decoupled. The data were fitted with
the same Eq. (3), because the dynamic relaxation of the
paramagnetic phase is close to zero. This way, the parameter
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 shown in Fig. 9 reflects the dynamic relaxation in the
magnetically ordered phase. The maximum relaxation rate is
about 0.02 μs−1, which is close to the instrument resolution
limit, thus resulting in a substantial error. The temperature
dependence of 
 has a peak at about 50 K. A similar
dependence is expected for λL in ZF μSR (compare to the
temperature dependence of λ̃ in the right panel of Fig. 8).

We also measured the ZF μSR spectrum for the off-
stoichiometric sample 2 at 5 K (Fig. 10). In contrast to sample
1, sample 2 retains a weak paramagnetic component down
to low temperatures, and shows a more shallow dip in A(t).
The latter feature indicates a broader distribution of internal
fields, as confirmed by the Fourier transforms shown in the
insets of Fig. 10. In sample 1, the distribution of Bint has a
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FIG. 9. Temperature dependence of the dynamic relaxation rate

 as obtained with Eq. (3) in the field of BL = 30 mT. The inset
shows the decoupling LF experiment at 100 K. The solid and dashed
lines are guides to the eye.

well-resolved maximum around 30 mT, whereas in sample 2
internal fields between 0 and 20 mT are observed with nearly
equal probabilities. The different μSR spectra confirm that
the primary differences between the samples are unrelated to
the possible contamination with an amorphous paramagnetic
impurity, but rather reflect the differences in the crystalline
CuNCN phase.

D. ESR

While μSR directly probes the amount of the magneti-
cally ordered phase, this experiment involves the interaction
between the crystalline material and implanted muons. There-
fore, extrinsic phenomena driven by muons and, particularly,
the local magnetic order induced by muons cannot be excluded.
To check for the intrinsic nature of the observed magnetic
transition, we performed the ESR measurements.
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FIG. 10. (Color online) ZF μSR spectra of samples 1 and 2
measured at 5 K and the respective Fourier transforms showing
internal fields Bint.
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Δ

FIG. 11. (Color online) X-band ESR results of CuNCN (sample 1, left panels and sample 2, right panels). The ESR signals (field derivative
of absorbed microwave power) were fitted with a Lorentzian shape (dashed lines) using two lines (sample 1) and three lines (sample 2), as
further explained in the text. The lower panels display the corresponding parameters linewidth (�B), g factor (determined by the resonance
field), and intensity (integrated microwave absorption).

The ESR spectra of the two samples of CuNCN (Fig. 11)
show clear differences. One similar feature is the narrow
line with the temperature-independent linewidth of 20 mT
at a field of 327 mT [g = 2.04(2)]. These parameters are
typically expected for the resonance of noninteracting Cu+2

spins (paramagnetic impurity). The left panel of Fig. 11 shows
the ESR spectrum of sample 1 which consists, beside the
narrow line, of one broad Lorentzian line denoted by the
dashed curve in the experimental spectrum. The parameters of
this broad line display a temperature dependence characteristic
to the presence of the low-temperature magnetic order. The
pronounced increase (decrease) in the linewidth (g factor)
indicates the slowing down of spin fluctuations and the onset
of internal magnetic fields in agreement with the μSR obser-
vations. Upon cooling, the line intensity is slowly decreasing
and eventually drops down to zero below 70 K. Therefore, the
intrinsic magnetic susceptibility of CuNCN vanishes at low
temperatures, as typical for the LRO state. Another possible
interpretation is the presence of a spin gap that leads to the
decrease in the magnetic susceptibility at low temperatures
and, consequently, to the vanishing ESR line. Overall, the
temperature evolution of the two lines in the ESR spectrum
is consistent with the magnetic susceptibility of sample 1
(Fig. 4, upper panel). Based on the observation of two different
lines, we are able to separate the experimental susceptibility
into the Curie-like paramagnetic contribution and the intrinsic
contribution of CuNCN that vanishes below 70 K.

The ESR spectra of sample 2 could be fitted by three
Lorentzians as shown by the solid lines in the upper right
panel of Fig. 11. Line 3 is the aforementioned narrow
temperature-independent line. This line is superimposed by
a strong and broad line 2 dominating the spectra in the whole
investigated temperature range. In agreement with the larger
susceptibility of sample 2 (Fig. 4), this line causes an order
of magnitude larger ESR intensity for sample 2 compared
to sample 1. Despite similar linewidths, line 2 in sample 2
is rather different from the broad line in sample 1. While
the latter disappears below 70 K, the former is observed
down to 5 K, with marginal changes in the linewidth and g

value. Interestingly, the ESR spectrum of sample 2 features
an additional contribution (line 1) that does vanish below
70 K, yet showing a smaller linewidth and smaller resonance
field (higher g factor) than the intrinsic signal (broad line) in
sample 1. Therefore, the temperature of 70 K is also character-
istic for sample 2, although the magnetic transition (or the spin
gap) takes place in a part of the sample only. This compares
well to the incomplete and rather inhomogeneous magnetic
ordering observed with μSR (Fig. 10 and Sec. III C).

Presently we are unable to decide whether lines 1 and 2
indicate different magnetic phases of sample 2, or evidence
some peculiar magnetism within the single off-stoichiometric
CuNCN phase. However, both ESR and μSR prove that
sample 2 cannot be simply considered as the crystalline
CuNCN phase mixed with an amorphous impurity. The
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deviations in the chemical composition and/or microstructure
have strong influence on the magnetism of CuNCN.

IV. THEORETICAL ANALYSIS

The ESR and μSR results give strong evidence for
the emergence of static magnetic fields in CuNCN below
70 K. This onset temperature matches the weak susceptibility
anomaly. However, the specific heat and neutron-scattering
data12,13 do not show any signatures of the LRO down to
2 K. In the following we will apply a variety of numerical
techniques to investigate the ground state and thermodynamic
properties of CuNCN. Subsequently, we use the results of
this analysis to address the sensitivity of different methods
to the anticipated long-range magnetic order, and suggest a
consistent interpretation for the available experimental data.

A. Ground state

According to Ref. 15 the microscopic magnetic model
of CuNCN entails AFM spin chains along the c direction.
The chains are coupled by the nearest-neighbor ferromagnetic
(FM) interaction J1 � −500 K and the next-nearest-neighbor
AFM interaction J2 � 100 K along a. Additionally, the
diagonal coupling Jac � J2 connects the chains in the ac

plane, whereas a very weak AFM coupling Jb � 5 K links
the neighboring layers in a frustrated manner (see the bottom
panels of Fig. 1). The spin lattice is quasi-one-dimensional, yet
showing a strong anisotropy of the interchain couplings along
the a and b directions. Since Jb is at least an order of magnitude
smaller than the couplings along a, we start with analyzing the
two-dimensional (2D) spin lattice in the ac plane.

The couplings J , J1, and Jac favor the columnar AFM order
featuring parallel spins along a and antiparallel spins along
c (Fig. 1). However, the columnar order is frustrated by J2

that prefers antiparallel arrangement of next-nearest-neighbor
spins along a. To find the classical ground state of this magnetic
model, we write down the energy as a function of kx and kz,
the components of an arbitrary propagation vector k = (kx,kz)
in the ac plane. The energy per the unit cell of the spin lattice
is

E = 1
2 [J cos kz + J1 cos kx + J2 cos(2kx)

+ 2Jac cos kx cos kz)]. (4)

The energy minimum is at k = (0,π ) for J2/(−J1 +
2Jac) < 1

4 (columnar AFM phase) and at k = [arccos[(−J1 +
2Jac)/4J2],π ] for J2/(−J1 + 2Jac) > 1

4 (spiral phase). Com-
paring this result to the better studied model of coupled frus-
trated spin chains (FM J1, AFM J2, AFM J , and Jac = 0),34

we note a similar competition between columnar (collinear)
and spiral phases that are separated by a quantum critical point
at J2/J1 = − 1

4 . The diagonal coupling Jac shifts the quantum
critical point to J2/(−J1 + 2Jac) = 1

4 without changing the
nature of the competing phases. Note that the frustration is
only present along the a direction, hence the leading coupling
J along c does not influence the stability of the collinear and
spiral phases.

The spin lattice of CuNCN with J2/(−J1 + 2Jac) � 0.14
clearly favors the columnar AFM phase. While the classical
model suggests the ordered moment of 1 μB independent of

individual exchange couplings, quantum effects have to be
taken into account for a spin- 1

2 system. To ensure the reliable
treatment of such effects, we use the coupled-cluster method
(CCM). An efficient application of CCM to low-dimensional
spin systems has been illustrated in Refs. 34–42. Here we give
only an outline of the main relevant features of the CCM.

The core of the CCM method is the choice of a normalized
reference state |�〉 together with a complete set of (mutually
commuting) multiconfigurational creation operators {C+

L } and
the corresponding set of their Hermitian adjoints {CL}. In our
case, the reference state |�〉 is the columnar AFM phase of
the classical spin model (parallel spins along a, antiparallel
spins along c). Then we perform a rotation of the local
axis of the spins such that all spins in the reference state
are directed along the negative z axis, that is, in the rotated
coordinate frame the reference state reads |�〉=|↓〉|↓〉|↓〉 . . . .
The corresponding multispin creation operators then can be
written as C+

I = s+
α , s+

α s+
β , s+

α s+
β s+

γ , . . ., where the indices
α,β,γ, . . . label arbitrary lattice sites.

The ket and bra ground states are given by

|〉 = eS |�〉, S =
∑
I 
=0

SIC
+
I ;

(5)
〈̃| = 〈�|S̃e−S, S̃ = 1 +

∑
I 
=0

S̃ICI .

Using 〈�|C+
I = 0 = CI |�〉 ∀I 
= 0, C+

0 ≡ 1, the com-
mutation rules [C+

L ,C+
K ] = 0 = [CL,CK ], the orthonor-

mality condition 〈�|CIC
+
J |�〉 = δIJ , and completeness∑

I C+
I |�〉〈�|CI = 1 = |�〉〈�| + ∑

I 
=0 C+
I |�〉〈�|CI , we

get a set of nonlinear and linear equations for the correlation
coefficients SI and S̃I , respectively. The order parameter
(sublattice magnetization or ordered moment, m) is given by

m = − 1

N

N∑
i,n

〈̃|sz
i,n|〉, (6)

where sz
i,n is the spin operator expressed in the rotated

coordinate system, and (i,n) denotes the position of the
lattice site. The CCM provides results for infinite lattices.
The only approximation of the CCM is the truncation of the
expansion for the correlation operators S and S̃. We use the
well-established LSUBn scheme that includes all multispin
correlations on the lattice with n or fewer neighboring sites.
To account for all multispin correlations, the CCM estimates
obtained on different levels of the LSUBn approximations
(mn) are then extrapolated to the n → ∞ limit (m∞) using
the extrapolation schemes mn = m∞ + a/n + b/n2 (scheme
1) and mn = m∞ + a/n1/2 + b/n3/2 (scheme 2). The former
scheme is typically used for quantum spin systems with the
AFM long-range order,35–38 whereas the latter scheme has
been successfully applied to systems near a quantum critical
point, where the magnetic order parameter m is small.39,41,42

Figure 12 shows the extrapolated ordered moment m =
m∞ for J1/J = −0.2 and variable J2 = Jac. We find that the
frustrating coupling J2 has no appreciable effect on the ordered
moment m in the relevant parameter range. Depending on the
extrapolation scheme used, we find m = 0.34–0.46 μB , where
the largest value is obtained for scheme 1 at J2 = Jac = 0 and
the lowest value is found for scheme 2 at J2 = Jac = 0.5J1.
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FIG. 12. (Color online) CCM LSUBn results as well as extrapo-
lated (n → ∞) data for the ordered moment m at J1/J = −0.2. The
couplings J2 = Jac are given in units of J = 1. The two extrapolation
schemes are explained in the text. The shaded bar denotes the likely
range for the ordered magnetic moment in CuNCN.

These values are well below the classical value of 1 μB and also
significantly lower than the ordered moment of ∼0.6 μB on the
spin- 1

2 square lattice (see, for example, Refs. 36, 38, and 43).
This small value of the order parameter can be attributed to
the dominating exchange coupling J along the c direction that
leads to a quasi-one-dimensional system of weakly coupled
antiferromagnetic spin- 1

2 Heisenberg chains. Simple models of
such weakly coupled chains are well studied (e.g., in Refs. 40,
44–47). These works show that even an infinitesimally small
(nonfrustrated) interchain coupling leads to the magnetic long-
range order at zero temperature. Although our model does not
correspond directly to these simple models considered in the
previous literature, a similar conclusion is also valid for our
model, in particular since our numerical simulations indicate
that the effect of the frustrating coupling J2 is very weak.

To get additional insight into the magnetic ordering
and the role of the frustrated coupling J2, we present
spin-spin correlation functions 〈s0sR〉 for various lattice
vectors R (Fig. 13). In addition to the CCM data, we
also show the results of Lanczos exact diagonalization
(ED) for a 8 × 4 finite lattice with periodic boundary
conditions.48 Obviously the spin-spin correlations support
the anticipated columnar AFM ground state with a large
negative correlation for nearest neighbors along c and a
sizable positive correlation for nearest neighbors along a.
Most correlations are insensitive to J2 and Jac, although the
correlation on the J1 bond is slightly enhanced as J2 and Jac

increase. This signifies a slight enhancement in the coupling
along the a direction, yet this effect is countered by the
increasing frustration. Overall, the weak changes in the spin-
spin correlations are consistent with the nearly constant value
of the ordered moment, as evaluated by CCM (Fig. 12). Note
that the weaker correlations along the a direction compared to
the stronger one along c support the picture of weakly coupled
spin chains leading to a small ordered moment. Although
the ED and CCM results for spin-spin correlations show
very similar qualitative behavior, the quantitative differences
are obvious. These differences can be attributed to strong
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FIG. 13. (Color online) CCM-LSUB8 and ED results for the spin-
spin correlations 〈s0sR〉 along the c (top panel) and a (bottom panel)
directions at J1/J = −0.2. The couplings J2 = Jac are given in units
of J = 1. The ED results for R = (0,4) are not available because of
the limited size of the finite lattice.

finite-size effects in the ED data since in the c direction we
have a spin ring of four sites only.

Using the CCM and exact diagonalization results, we
conclude that the spin lattice of CuNCN develops the columnar
AFM order in the ac plane. This order corresponds to the
propagation vector k = (0,ky,π ) with respect to the unit cell
of the spin lattice (Fig. 1, bottom right panel) or k = (0,ky,0)
with respect to the unit cell of the atomic structure. Now we
comment on the possible interlayer ordering along the b direc-
tion. According to the left panels of Fig. 1, the weak interlayer
coupling Jb forms isosceles triangles and therefore frustrates
the interlayer order on the classical level. This classical
degeneracy is lifted by quantum fluctuations favoring collinear
ground states via the order-from-disorder mechanism.49 We
thus expect the collinear order in CuNCN, although the period-
icity along b cannot be determined unambiguously. Note that
a similar case of weak and frustrated interlayer couplings has
been reported for the Heisenberg model on the body-centered
tetragonal lattice.50 An elaborate spin-wave study of Ref. 50
suggests two collinear states with the doubled and quadrupled
periodicity along the interlayer direction. Such states are
strongly favored over any noncollinear configurations, yet the
preference for the state with the quadrupled periodicity appears
in high orders of spin-wave theory only. Therefore, we expect
the doubled or quadrupled periodicity along the b direction in
CuNCN, that is, propagation vectors are k = 0 or k = (0,π,0)
with respect to the crystallographic unit cell of CuNCN.

B. Thermodynamic properties

CCM is a handy tool for studying frustrated spin systems,
but its applications are restricted to ground-state properties. To
investigate the finite-temperature behavior of our microscopic
model, we have to apply ED that puts severe restrictions on
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b /J = 0.002. The shaded bar shows
the estimated TN/J � 0.12.

the accessible lattice size (note, for example, the pronounced
finite-size effects for the spin-spin correlations in Fig. 13).
However, the ground-state properties are weakly dependent
on J2 and Jac. Therefore, we can safely simplify our model
by removing the coupling J2 and eliminating the frustration.
This simplification enables us to apply quantum Monte
Carlo (QMC) techniques that readily treat large systems,
thus effectively overcoming finite-size effects. Since the 2D
model in the ac plane maintains the long-range order at
zero temperature only, we also introduce a realistic interlayer
coupling J eff

b /J = 0.002 that should stabilize the LRO above
0 K.

The spin lattice of CuNCN is spatially anisotropic, with
the leading coupling along c, the five times weaker coupling
along a, and a diminutively small coupling along b. Following
Refs. 46, 51, and 52 we adjust the aspect ratio of finite lattices
to account for different correlation lengths along a, b, and c.
Specifically, we used L/4 × L/16 × L lattices with L � 160
(up to 64 000 sites). The Néel temperature TN is determined
from the standard scaling procedure for the Binder ratio
B = 〈m4

s 〉/〈m2
s 〉2, where ms is the staggered magnetization.

Since B(T ) is independent of the lattice size at T = TN ,53

the Néel temperature is precisely determined as the crossing
point of the B(T ) curves calculated for different L. Figure 14
shows the scaling procedure and the resulting TN/J � 0.12.
Using the experimental estimate of J � 2300 K, we arrive
at TN � 275 K, which is much larger than the experimental
value of 70 K, because the nonfrustrated interlayer coupling
Jb is considered. In CuNCN the frustrated couplings Jb will
impede the LRO, thus reducing TN and bringing it closer to
the experimental value.

It is instructive to compare the above numerical result to
previous theoretical studies of coupled spin chains.54 Despite
the abundance of spatially anisotropic interchain couplings
in model quasi-1D compounds,55–57 theoretical works rather
focus on the case of isotropic interchain couplings (same
coupling along a and b),46,58,59 because systems with large
spatial anisotropy are quite difficult to model. To facilitate
the comparison, we set the diagonal coupling Jac to zero and
consider a simplistic model of uniform chains coupled with
J1/J = −0.2 and J eff

b /J = 0.002 along a and b, respectively.
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FIG. 15. (Color online) Magnetic specific heat of spin chains with
a uniform interchain coupling J⊥/J of 0.05, 0.1, 0.15, and 0.2. The
decrease in J⊥/J shifts the transition anomaly to lower temperatures
and dramatically reduces its magnitude.

The resulting TN/J is 0.09 compared to 0.12 in the model
including Jac, and shows the non-negligible role of Jac in
enhancing the interchain coupling within the ac plane. We now
compare this estimate to the results of Ref. 58 for isotropic
interchain couplings J⊥. Using the averaged coupling of
J eff

⊥ = (|J1| + Jb)/2 � 0.1J , one finds a much larger TN/J �
0.169.58 This discrepancy is often bypassed by assuming an
empirical threefold or fourfold reduction in TN due to the
spatial anisotropy of the interchain couplings.60,61 Our numer-
ical results suggest that this empirical recipe underestimates
TN/J � 0.09, which is only twice reduced compared to the
estimate from the averaged interchain coupling J eff

⊥ .
To explore the transition anomaly at TN , we evaluated

the magnetic specific heat for coupled spin chains. We first
consider the isotropic interchain coupling J⊥ (Fig. 15).62

At J⊥/J = 0.2 the pronounced transition anomaly is su-
perimposed on the broad specific heat maximum. At lower
J⊥/J , the TN is reduced, thereby shifting the anomaly below
the maximum and shrinking its size. This trend follows
recent experimental7 and theoretical51 findings for quasi-two-
dimensional spin systems, where the transition anomaly is
dramatically reduced and eventually becomes invisible at
sufficiently weak interlayer couplings.

In CuNCN the very weak coupling along the b direction
enhances quantum fluctuations and reduces TN compared
to the scenario of the averaged interchain coupling J eff

⊥ =
(|J1| + Jb)/2 � 0.1J . This leads to a further decrease in the
transition anomaly. Figure 16 shows the simulated specific heat
for the relevant exchange parameters of CuNCN, as derived
from the DFT calculations.15 We were unable to discern any
signatures of the transition anomaly at TN/J � 0.12, because
the magnetic entropy available at the Néel temperature is
exceedingly low. We illustrate this effect in the inset of Fig. 16,
where the magnetic entropy Smag(T ) = ∫ T

0
Cmag

T
dT is shown.

The Smag(TN ) � 0.13 J mol−1 K−1 is less than 3 % of the total
magnetic entropy R ln 2 � 5.75 J mol−1 K−1. Considering
the inevitable effect of exchange anisotropy (broadening of
the transition anomaly) and the large lattice contribution
of about 20 J mol−1 K−1, which is 150 times larger than
Smag(TN ) (Fig. 3), we conclude that the specific heat anomaly
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at the magnetic transition in CuNCN cannot be observed
experimentally, especially in experiments on polycrystalline
samples.

Altogether our QMC simulations are restricted to the
simplified, nonfrustrated spin lattice and may not be sufficient
for the quantitative description of CuNCN. Nevertheless, we
are able to demonstrate that the expected Néel temperature is
quite low, and the magnetic specific heat does not show any
signatures of the magnetic transition. In CuNCN, the frustrated
arrangement of the interlayer couplings Jb will further impede
the magnetic order, thus reducing TN and leaving no room
for the experimental observation of the magnetic transition in
heat-capacity data.

C. Neutron scattering

The intensity of the neutron scattering from a magnetic
structure is proportional to the square of the magnetic structure
factor, which is, in turn, proportional to the ordered magnetic
moment. Therefore, for low magnetic moments the intensity
of magnetic reflections in a neutron diffraction experiment
decreases dramatically. Previous studies12,13 put forward the
lack of the magnetic scattering as one of the arguments against
the LRO in CuNCN. To find out whether or not the anticipated
LRO could be observed in these experiments,12,13 we simulated
neutron diffraction patterns of CuNCN. The input parameters
are the propagation vector and the ordering pattern, the ordered
moment and its direction, as well as the scale factor for the
atomic structure. The latter is necessary to scale the magnetic
reflections with respect to the nuclear peaks. The ordering
pattern in the ac plane and the ordered moment are provided
by our theoretical study in Sec. IV A. Since the direction of the
magnetic moment is presently unknown, different possibilities
were explored. We used the propagation vectors k = 0 and
k = (0,π,0), as explained in Sec. IV A.

Simulated patterns for two possible propagation vectors
and three representative directions of the magnetic moment
are shown in Fig. 17. The maximum intensity of the magnetic
scattering is about 1.2% (hereinafter, we measure intensities
as fractions of the largest nuclear peak) for the magnetic
reflection at q = 0.6–0.8 Å−1 (001 + k). At higher q values,

the magnetic intensities are notably lower because of the
rapidly decreasing magnetic form factor of Cu+2. However,
even the strong magnetic reflection at low q may be hard
to observe. For example, Fig. 1 of Ref. 12 presents the
low-temperature neutron-diffraction data for CuNCN. In these
data, the low-angle 002 nuclear reflection with a sizable
intensity of 2.3% is fully masked by the background. This
implies that the data are by far insufficient to observe the
magnetic scattering in CuNCN for any of the ordering patterns.

The polarized-scattering data of Ref. 13 have an additional
advantage of detecting the magnetic reflections in a separate
channel, thereby probing the possible magnetic contributions
to nuclear peaks and reducing the background. An inevitable
drawback is the reduction in the total neutron flux because
of the polarization filter. Therefore, the observation of the
magnetic scattering from a spin- 1

2 magnet with the low
magnetic moment of about 0.4 μB is at best challenging, at
least with the instrument used in Ref. 13.63

In the polarized neutron-scattering experiment, no magnetic
peaks were observed up to qmax � 2.1 Å−1.64 Even assuming
that the experiment of Ref. 13 were sufficiently sensitive to
detect any magnetic scattering below qmax, we find at least
one ordering pattern (k = 0, m along c) yielding magnetic
reflections above qmax only. In this pattern, the lack of the
intense reflection at q � 0.65 Å (001 nuclear peak) is due to
symmetry restrictions, because the magnetic moment along
c forbids the magnetic contribution to 00l. Therefore, the
polarized-scattering experiment reported in Ref. 13 is not an ul-
timate test for the presence or absence of LRO in CuNCN, and
further polarized-scattering experiments extending towards
higher q values are required.

Another delicate problem of neutron experiments on
CuNCN is the structural and chemical homogeneity of large
powder samples. For example, in Ref. 13 a foreign peak at q =
0.57 Å−1 was observed in the nuclear channel, thus indicating
a potential problem with the phase purity and/or stoichiometry
of this sample. Our μSR data show that deviations from the
ideal CuNCN stoichiometry render the magnetic state inho-
mogeneous (Fig. 10). Therefore, off-stoichiometric samples
may not undergo the magnetic ordering and, consequently,
would not show any visible magnetic scattering in the neutron-
diffraction experiment. Microstructural effects evidenced by
the anisotropic reflection broadening can also be detrimental
for the magnetic reflections, because these reflections will
be broadened similar to the nuclear peaks. Overall, neutron
diffraction measurements for CuNCN remain challenging, and
require more sensitive instruments accessing larger angle range
or, preferably, the use of single crystals.

V. DISCUSSION

We have shown that CuNCN is a low-dimensional magnet
featuring strong quantum fluctuations and an intricate mag-
netic transition around 70 K. In the following, we propose
a plausible microscopic scenario for the magnetism of this
compound, and start with analyzing the magnetic state of
Cu+2. Previous computational studies controversially reported
a magnetic15 as well as a nonmagnetic13 state for copper.
This issue is now resolved by the ESR experiment showing
a characteristic absorption line that signals the presence
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FIG. 17. (Color online) Simulated magnetic scattering from CuNCN for the possible propagation vectors k = 0 (left panel) and k = (0, 1
2 ,0)

(right panel) and different directions of the magnetic moment. The shaded area denotes the q range probed in the polarized-scattering experiment
of Ref. 13. The intensity of the largest nuclear reflection is scaled to 1 arb. unit. Note that the magnetic scattering is at least 100 times weaker
than the nuclear scattering.

of the localized magnetic moment (Fig. 11). The localized
behavior is further underpinned by the increase in the magnetic
susceptibility above room temperature (Fig. 2). Our fit to the
data suggests a very strong exchange coupling of about 2300 K.
These observations are in remarkable agreement with the
computational predictions of Ref. 15, and identify CuNCN as
a charge-transfer insulator that complements the broad family
of Cu+2-based insulating quantum magnets.

A puzzling feature of CuNCN is the magnetic transition
around 70 K. This transition was first evidenced by the bend
in the temperature dependence of the magnetic susceptibility,
but the lack of the corresponding specific heat anomaly as well
as the missing magnetic scattering in the neutron diffraction
data led the authors of Refs. 12 and 13 to conclude on the
extrinsic nature of the susceptibility feature. In Sec. IV we
have shown that neither specific heat nor neutron diffraction
measurements are sufficiently sensitive to the possible LRO in
CuNCN. Furthermore, our μSR data reveal the formation of
static magnetic field in the bulk of the stoichiometric CuNCN
sample (sample 1) below 70 K. The emergence of static fields
is accompanied by a vanishing absorption line in the ESR
spectrum, thus confirming the onset of the LRO.

Experimental techniques have different sensitivity to the
LRO magnetic state and may additionally involve perturba-
tions, such as interactions with implanted muons. Therefore,
it is important to examine all possible scenarios that could
explain the experimental data. The vanishing ESR absorption
is typical for both LRO and spin-gap states of a material.
While the gapped singlet state does not feature any static
fields, it is fragile toward interactions with muons that will
show sizable depolarization characteristic of a local spin-glass

state in the vicinity of the implanted muon. Such states are,
however, characterized by the monotonous decrease in the
muon polarization asymmetry A(t).65 Our data show the
dip in A(t) that signifies the nonzero internal field (Fig. 7)
and oscillations typical for the LRO state. The dynamic
relaxation rate 
 shows the anomaly at TN , which is also
consistent with the LRO scenario.32,33 All these observation
exclude the formation of the muon-driven spin glass in
CuNCN. The spin gap in CuNCN would further contradict
the microscopic analysis (Sec. IV and Ref. 15), because
the proposed spin lattice leaves no room for the spin gap
formation.

An opposite situation is known for gapless quantum
magnets, where muons disrupt exchange pathways and induce
a local magnetic order that results in well-defined oscillations
of A(t) and few sharp peaks in the Fourier-transformed
spectrum.66 This is again different from our observations
(Figs. 6 and 7). More importantly, the muon-induced magnetic
order has its own temperature scale that is usually different
from the intrinsic temperature scale of the system.66 In
CuNCN, the onset of static magnetic fields, as probed by
muons, is accompanied by the vanishing ESR absorption.
Therefore, the effect is clearly intrinsic. At this point we
mention the recent results by Zorko et al.,17 who also observed
the strong muon depolarization and the vanishing ESR line
below 70 K. Zorko et al.17 ambiguously attribute the μSR
signal to a spin-glass state induced by the implanted muon,
although their spectra show a similar dip in A(t) and likely
lead to the nonzero internal field as well as the diverging
relaxation rates λi . Unfortunately, the authors of Ref. 17 do
not consider the possibility of the LRO state, which is the most
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likely and microscopically justified scenario for the ground
state of CuNCN.

We have shown that the available experimental data on
CuNCN are consistently explained in the framework of the
microscopic scenario proposed in Ref. 15. The quasi-1D spin
lattice leads to strong quantum fluctuations that reduce the
Néel temperature and the ordered moment, thus impeding the
experimental observation of the columnar AFM LRO by heat-
capacity measurements and neutron scattering. The results of
the magnetic susceptibility, μSR, and ESR are compelling
evidence for the emergence of static magnetic fields below 70
K, in agreement with the developed microscopic scenario. The
onset of static magnetic fields is further corroborated by the
broadening of the 14N nuclear magnetic resonance (NMR) line
reported by Zorko et al.17

Despite this robust qualitative scenario, several aspects
of the low-temperature magnetic behavior require further
attention. First, the broad distribution of internal fields probed
by the implanted muons (Fig. 7) is rather unusual for the LRO
state that typically leads to one or few characteristic fields at
muon stop sites, well-defined oscillations, and narrow peaks
in the FT spectra. However, even a single muon stop site in a
simple high-symmetry crystal structure can reveal a handful of
internal fields,67 whereas a number of inequivalent stop sites
is likely to result in a broad distribution of internal fields. For
example, the μSR study of spin- 1

2 frustrated square lattices
in V+4 phosphates68 revealed a similarly broad distribution of
internal fields in Pb2VO(PO4)2 (the variance of the distribution
is about 10 mT, as compared to 20–25 mT in CuNCN), al-
though the LRO in this compound is independently confirmed
by polarized neutron scattering.69 The crystal structure of
CuNCN is quite simple, but its relation to the possible muon
stop sites is far from being obvious, because the negative
charge resides on rather delocalized molecular orbitals of
the NCN unit,15 in contrast to the localized oxygen orbitals in
oxides. A further microscopic analysis of the possible muon
stop sites is highly desirable to achieve better understanding
of the μSR response in CuNCN and other transition-metal
carbodiimides.

A closely related problem is the broad distribution of NMR
spin-lattice relaxation times reported in Ref. 17. This finding
is based on fitting the magnetization recovery with a stretched
exponent, and taken as an evidence for an inhomogeneous
magnetic ground state of CuNCN. Fitting the magnetization
recovery with a stretched exponent produces a cumulative
parameter β that should be equal to 1 for the single relaxation
time. The deviation from unity either describes a broad
distribution of relaxation times or the presence of several
distinct relaxation times in the system under investigation.70

For example, the strongly reduced β � 0.6 (compare to
β � 0.5 in CuNCN17) has been observed in the LRO state
of CaV2O4.71 However, the magnetic ordering in CaV2O4 is
in no way inhomogeneous, as shown by the comprehensive
neutron-scattering study.72 Therefore, the complex behavior
of the magnetization recovery in CuNCN could also be
understood as the presence of several distinct relaxation times
in the LRO state.

The last, and probably most severe problem is the smeared
magnetic transition in CuNCN. We identify TN � 70 K as
the onset temperature, although the complete magnetic order

in the bulk of the CuNCN sample is established below
20 K only (Fig. 8, see also Fig. 2 in Ref. 17). The broad
intermediate region between 20 and 70 K is somewhat unusual
for crystalline magnetic systems showing abrupt (and typically
second-order) transitions to the LRO state. The broadening
of the transition might be related to microstructural effects
evidenced by the highly anisotropic reflection broadening ob-
served in our synchrotron XRD experiment (Fig. 5), although
a better understanding of such effects as well as a study of
their temperature dependence would be necessary to elucidate
this point.

Altogether, we argue that the bulk of the experimental
observations on CuNCN can be reconciled within the quasi-1D
microscopic scenario proposed in Ref. 15. The Cu+2 sites hold
localized magnetic moments, and the temperature of 70 K is the
characteristic temperature related to the onset of the LRO state
with the strongly reduced magnetic moment of about 0.4 μB .
However, some of the previously reported experimental results
require further consideration. For example, more sensitive
neutron-scattering experiments would be essential to detect
or refute the LRO in CuNCN. Although the μSR and NMR
response might be characteristic of a partial inhomogeneity,
the origin of this effect could be purely magnetic (e.g., the
formation of a spin-glass state), purely structural, or both.
According to our high-resolution XRD data, the stoichiometric
samples of CuNCN demonstrate the strong and anisotropic
reflection broadening, a footprint of microstructural effects
that may affect the μSR and NMR signals. Another interesting
result is the variable chemical composition of CuNCN and
the accommodation of foreign elements, such as oxygen
and hydrogen, within the same crystal structure. Our study
of the nonstoichiometric sample 2 reveals the enhanced
inhomogeneity of the magnetic state probed with μSR and
at least a partial destruction of the LRO state. Therefore,
intentional deviations from the ideal stoichiometry may be
a feasible way to approach the fully inhomogeneous magnetic
ground state of CuNCN, similar to the one claimed in Ref. 17
for the stoichiometric compound.
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A. Kozhevnikov, A. Läuchli, S. R. Manmana, M. Matsumoto, I. P.
McCulloch, F. Michel, R. M. Noack, G. Pawłowski, L. Pollet, T.
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and J. Richter, Phys. Rev. B 78, 214415 (2008).

40R. Zinke, J. Schulenburg, and J. Richter, Eur. Phys. J. B 61, 147
(2008).

41R. F. Bishop, P. H. Y. Li, R. Darradi, and J. Richter, J. Phys.:
Condens. Matter 20, 255251 (2008).

42J. Richter, R. Darradi, J. Schulenburg, D. J. J. Farnell, and H. Rosner,
Phys. Rev. B 81, 174429 (2010).

43A. W. Sandvik, Phys. Rev. B 56, 11678 (1997).
44I. Affleck, M. P. Gelfand, and R. R. P. Singh, J. Phys. A 27, 7313

(1994).
45Z. Wang, Phys. Rev. Lett. 78, 126 (1997).
46A. W. Sandvik, Phys. Rev. Lett. 83, 3069 (1999).
47Y. J. Kim and R. J. Birgeneau, Phys. Rev. B 62, 6378 (2000).

224431-15

http://dx.doi.org/10.1103/PhysRevB.51.5994
http://dx.doi.org/10.1103/PhysRevLett.78.1787
http://dx.doi.org/10.1103/PhysRevB.48.12926
http://dx.doi.org/10.1103/PhysRevB.48.12926
http://dx.doi.org/10.1103/PhysRevLett.87.247202
http://dx.doi.org/10.1103/PhysRevLett.87.247202
http://dx.doi.org/10.1103/PhysRevB.75.094421
http://dx.doi.org/10.1103/PhysRevB.75.094421
http://dx.doi.org/10.1103/PhysRevB.77.092402
http://dx.doi.org/10.1103/PhysRevB.77.092402
http://dx.doi.org/10.1103/PhysRevB.73.020410
http://dx.doi.org/10.1103/PhysRevB.73.020410
http://dx.doi.org/10.1021/ic800649a
http://dx.doi.org/10.1021/ic800649a
http://dx.doi.org/10.1021/jp8007199
http://dx.doi.org/10.1021/jp907458f
http://dx.doi.org/10.1021/jp907458f
http://arXiv.org/abs/arXiv:1008.0182
http://arXiv.org/abs/arXiv:1111.7210
http://dx.doi.org/10.1103/PhysRevB.81.024424
http://dx.doi.org/10.1103/PhysRevB.81.024424
http://dx.doi.org/10.1103/PhysRevLett.83.1387
http://dx.doi.org/10.1103/PhysRevLett.88.186405
http://dx.doi.org/10.1103/PhysRevB.67.245110
http://dx.doi.org/10.1103/PhysRevB.82.014424
http://dx.doi.org/10.1103/PhysRevLett.107.047208
http://dx.doi.org/10.1103/PhysRevLett.107.047208
http://arXiv.org/abs/arXiv:1112.3894
http://dx.doi.org/10.1103/PhysRevLett.87.047203
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1016/0921-4526(93)90108-I
http://dx.doi.org/10.1103/PhysRevB.61.9558
http://dx.doi.org/10.1103/PhysRevB.61.9558
http://link.aps.org/supplemental/10.1103/PhysRevB.85.224431
http://link.aps.org/supplemental/10.1103/PhysRevB.85.224431
http://dx.doi.org/10.1107/S0021889898006001
http://dx.doi.org/10.1080/001075199181521
http://dx.doi.org/10.1088/0953-8984/19/45/456208
http://dx.doi.org/10.1103/PhysRevB.79.094425
http://dx.doi.org/10.1103/PhysRevB.79.094425
http://dx.doi.org/10.1023/A:1023220222019
http://dx.doi.org/10.1023/A:1023220222019
http://dx.doi.org/10.1088/0953-8984/12/30/317
http://dx.doi.org/10.1088/0953-8984/12/30/317
http://dx.doi.org/10.1103/PhysRevB.72.104425
http://dx.doi.org/10.1103/PhysRevB.72.104425
http://dx.doi.org/10.1142/S0217979207043658
http://dx.doi.org/10.1142/S0217979207043658
http://dx.doi.org/10.1103/PhysRevB.78.214415
http://dx.doi.org/10.1140/epjb/e2008-00055-7
http://dx.doi.org/10.1140/epjb/e2008-00055-7
http://dx.doi.org/10.1088/0953-8984/20/25/255251
http://dx.doi.org/10.1088/0953-8984/20/25/255251
http://dx.doi.org/10.1103/PhysRevB.81.174429
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1088/0305-4470/27/22/009
http://dx.doi.org/10.1088/0305-4470/27/22/009
http://dx.doi.org/10.1103/PhysRevLett.78.126
http://dx.doi.org/10.1103/PhysRevLett.83.3069
http://dx.doi.org/10.1103/PhysRevB.62.6378


ALEXANDER A. TSIRLIN et al. PHYSICAL REVIEW B 85, 224431 (2012)

48Here we take eight sites along a and four sites along c to account
for the long-range nature of J2.

49C. L. Henley, Phys. Rev. Lett. 62, 2056 (1989).
50T. Yildirim, A. B. Harris, and E. F. Shender, Phys. Rev. B 53, 6455

(1996).
51P. Sengupta, A. W. Sandvik, and R. R. P. Singh, Phys. Rev. B 68,

094423 (2003).
52A. A. Tsirlin and H. Rosner, Phys. Rev. B 83, 064415 (2011).
53K. Binder, Rep. Prog. Phys. 60, 487 (1997).
54While theoretical studies address the AFM case, the leading

interchain coupling in CuNCN is ferromagnetic. At this point we
do not distinguish between ferromagnetic and antiferromagnetic
interchain couplings. Our simulations show that for weak interchain
couplings the transition temperatures and the magnetic specific heat
marginally depend on the sign of J⊥.

55M. D. Johannes, J. Richter, S.-L. Drechsler, and H. Rosner, Phys.
Rev. B 74, 174435 (2006).

56O. Janson, W. Schnelle, M. Schmidt, Y. Prots, S.-L. Drechsler, S. K.
Filatov, and H. Rosner, New J. Phys. 11, 113034 (2009).

57O. Janson, A. A. Tsirlin, and H. Rosner, Phys. Rev. B 82, 184410
(2010).

58C. Yasuda, S. Todo, K. Hukushima, F. Alet, M. Keller, M. Troyer,
and H. Takayama, Phys. Rev. Lett. 94, 217201 (2005).

59H. J. Schulz, Phys. Rev. Lett. 77, 2790 (1996).
60H. Rosner, H. Eschrig, R. Hayn, S.-L. Drechsler, and J. Málek,
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65D. Andreica, N. Cavadini, H. U. Güdel, F. N. Gygax, K. Krämer,
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