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Effect of ferromagnetic proximity on critical behavior
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We have investigated the magnetic phase transition in amorphous Fe93Zr7(x Å)/Co95Zr5(1 Å) multilayers,
where x = 25, 50, and 75. The extremely thin CoZr layer induces magnetic order at temperatures well above the
inherent ordering temperature of Fe93Zr7. The changes in the critical exponent β, associated with the temperature
dependence of the magnetization, imply a crossover from two- to three-dimensional behavior as the FeZr thickness
is reduced, consistent with a substantial magnetic induction in the FeZr layers. In addition we determined the
exponents δ and γ , of the critical isotherm and the susceptibility, respectively, and their values confirm the
nonuniversal character of the phase transition. Scaling of the results yields an excellent data collapse and is found
to hold in the crossover regime where the universality hypothesis is not applicable.

DOI: 10.1103/PhysRevB.85.224425 PACS number(s): 64.60.F−, 75.30.Kz, 75.40.−s, 75.50.Kj

I. INTRODUCTION

The most intriguing features in the theory of critical
phenomena are the two cornerstones: universality and scaling.
Close to the critical point the order parameter is fluctuating
on all available length scales and those fluctuations smear out
the microscopic details of the interactions in the system. This
makes it possible to categorize a wide range of systems into a
simple scheme of universality classes where the only important
parameters are the symmetry of the order parameter and the
spatial dimensionality.1 In a ferromagnetic context, the order
parameter is the spontaneous magnetization and the critical
point is the Curie temperature. In the vicinity of the critical
temperature, the thermodynamic properties of a system can be
parametrized by power laws and each universality class has its
own set of exponents.

The scaling hypothesis is an even more powerful general-
ization of the critical behavior of continuous phase transitions.
In short, it states that simple relationships exist between
the exponents, e.g., the Widom equality, γ = β (δ − 1). In
addition, if the magnetization, field, and temperature are scaled
properly, all data close to the critical temperature collapse
on a single curve.2 The critical exponents are known to vary
with the magnetic interactions, anisotropy, and the extension
of the sample. A large number of studies have still verified
the validity of the scaling hypothesis3–8 in crossover regions,
where the spatial or spin dimensionality is in between two
universality classes.9–14

The two-dimensional (2D) XY class has a special signifi-
cance in the history of critical phenomena. As recognized by
Mermin and Wagner,15 there will be no long-range magnetic
order in a spatially infinite two-dimensional system, where the
spin degree of freedom is equal to, or higher than, two (2D XY

and 2D Heisenberg). The next step was taken by Kosterlitz
and Thouless (KT), providing a theoretical framework of a
topological order. A so-called KT phase transition, with a
characteristic behavior, emerges. This involves the forma-
tion of magnetic vortices and antivortices, although the net
magnetization is zero.16,17 Later, Bramwell and Holdsworth
justified the numerous experimental findings stating β ≈ 0.23
in thin magnetic films and explained that this is a signature
of a KT transition in finite-sized systems.18 The presence
of a nonzero net magnetization was rationalized in the finite

extension of any real sample, and the resulting magnetization
was concluded to scale as the logarithm of the sample size.
Crossover from a 2D XY to a 3D signature of the critical
exponent β has been observed, e.g., in the case of a δ layer
of Fe in Pd,9 where ferromagnetic proximity effects lead to an
induced magnetization in the palladium.

Here we will address the dimensionality aspects of the
magnetic ordering in multilayer structures containing mate-
rials with two distinct ordering temperatures (Tc1 � Tc2). The
basic idea behind the experiments is schematically illustrated
in Fig. 1. At the lowest temperatures the magnetization in
the sample can be regarded as independent of position (T1).
When Tc1 � T < Tc2, the magnetization will be depending
strongly on position, as illustrated for T2 and T3 in the figure.
If the distance between the layers with high Tc is large
enough, the regions are decoupled and the magnetization in
the vicinity of the ordering temperature would be expected
to behave like a single layer of that kind. This argument
depends critically on the relation between the width (W ) of
the magnetization and the distance (L) between the layers
with higher ordering temperature and bears many similarities
to the induction of magnetization in δ-doped Pd(Fe).9,19 We
will show that the dimensionality of the magnetic transition
depends on the distance L, and also address the validity of the
scaling hypothesis for the dimensionality crossover caused by
proximity effects in the vicinity of the ordering temperature.

II. EXPERIMENTAL DETAILS

Three different multilayer samples were grown using
magnetron sputtering with compound targets, following the
recipe described in Ref. 20. The thickness of the layers with the
lower ordering temperature, Fe93Zr7, was chosen to be 25, 50,
and 75 Å, respectively, in consecutive samples. The thickness
of the layers with the higher ordering temperature, Co95Zr5,
was chosen to be 1 Å in all samples, which is not sufficient to
form a complete layer and can be thought of as a Co coverage
close to one-half. Each Co layer therefore forms a δ layer in
the Fe93Zr7 matrix. The multilayers consist of ten repetitions
of FeZr/CoZr, ending with an extra FeZr layer for symmetry
reasons. Al70Zr30 layers were used as seed and capping layers.
The deposition rate of the sources was carefully calibrated
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FIG. 1. (Color online) Schematic illustration of the magnetic
profile in a structure with regions having two distinct ordering
temperatures. The grey regions represent the regions with higher
ordering temperature (CoZr), embedded in a material with a lower
ordering temperature (FeZr). At low temperatures (T = T1), the
magnetization is constant. At elevated temperatures, a periodic
magnetic profile emerges (T = T2 and T = T3). The width of the
magnetization profile is denoted by W .

using x-ray reflectivity. Directly after the calibration, the
samples were grown in a series and a low growth rate (CoZr:
0.23 Å/s; FeZr: 0.39 Å/s) together with fast shutters ensure a
good layer thickness control. The determined total thickness
was within 1–2% of the aimed values. The compositions were
determined using Rutherford backscattering spectrometry
(RBS). The samples are denoted after their FeZr and CoZr
layer thickness in Å: 25-1, 50-1, and 75-1.

The magnetization and susceptibility were measured uti-
lizing the magneto-optical Kerr effect (MOKE) in the setup
described in Ref. 21. Liquid nitrogen was used as coolant in
an optical cryostat giving a temperature range of 80 � T �
300 K and the temperature was raised with a rate of 0.2 K/min
during the measurement. A pair of Helmholtz coils generated
an alternating magnetic field with an amplitude close to 7 mT
and a frequency of 7 Hz. Hysteresis loops were continuously
recorded and averaged over a period of 30 sec, corresponding
to a 0.1 K interval which defines the temperature resolution
in the measurements. The ac susceptibility was measured at
215 Hz with a field amplitude of approximately 60 μT, which
represents a balance between an acceptable noise level and the
need for a low field to extract the critical exponents.

III. RESULTS AND ANALYSIS

The critical temperature (Tc) can be defined as the temper-
ature where the spontaneous magnetization disappears. Close
to, and at, this point, the magnetization is described by two
simple power laws:22

M(T ) ∝ (1 − T/Tc)β = (−t)β, (1)

M(H,Tc) ∝ H 1/δ, (2)

where M is the spontaneous magnetization, T is the tempera-
ture, t is the reduced temperature, and H is the magnetic field.

FIG. 2. (Color online) Magnetization versus temperature on a
double logarithmic scale. The solid lines represent linear fits to the
data and the vertical dashed lines show the limits of the fits.

The remanent magnetization was used as the experimental
equivalent of the theoretical spontaneous magnetization in
the analysis, which is the standard approach for studies of
this kind.23–25 The expression used for fitting the data is
(minimizing the value of χ2)

χ2 = 1

n − 2

itx∑

itmin

{log10Mi −
[
log10k + βlog10 (1 − Ti/Tc)

]}2,

(3)

where n is the number of data points included in the fit, tx
is the maximum reduced temperature (T/Tc − 1), tmin is the
minimum reduced temperature, and k is a constant.

tmin was fixed during the fit procedure, while tx and Tc

were varied in small steps. Since the temperature resolution
is limited to 0.1 K, the hysteresis loop measured at the
temperature closest to the fitted value of Tc was determined and
the fitting procedure was repeated, using this new temperature
as a fixed value. The experimental data and the fitting results
are illustrated in Fig. 2. As seen in the figure, the range of the
linearization depends strongly on the thickness of the FeZr lay-
ers. The reason for these changes becomes more apparent when
considering the changes in the exponent β, listed in Table I.
A clear trend can be observed: the value of β decreases with
increasing FeZr thickness. The obtained values are all in the
range defined by the expected exponents for 2D XY [β ≈ 0.23
(Ref. 18)] and 3D Heisenberg [β ≈ 0.37 (Ref. 26)] transitions.
Furthermore, the range of the linearization is found to increase
with decreasing β, which is consistent with differences in the
range of criticality for 2D and 3D systems.27 The data are also
presented on a linear scale in Fig. 3 (top).

TABLE I. Results of the analysis of the magnetization as a
function of temperature and applied field.

Sample Tc (K) β δ

25-1 270.8(1) 0.35(1) 6.10(31)
50-1 230.7(1) 0.31(1) 6.34(29)
75-1 229.8(1) 0.26(1) 8.54(13)
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χ

FIG. 3. (Color online) (top) Magnetization as a function of
reduced temperature (dots) together with the fits to Eq. (1) (lines).
(bottom) The susceptibility of the 25-1 sample (dots) together with
the fit to Eq. (5) (line). The two vertical dash-dotted lines indicate the
data points included in the fit.

The hysteresis loop at Tc represents the critical isotherm,
from which the exponent δ is calculated using linear fits of
Eq. (2) to the data on a double logarithmic scale. The results
are found in Table I and are illustrated in Fig. 4. None of
the determined values of δ resembles the expected values of
any dimensionality class [3D: δ ≈ 4.8;26,28 2D Ising: δ = 15
(Ref. 29)]. An inverted dependence on the FeZr thickness is
found in δ as compared to β, and the overall trends of the
two exponents are different: β decreases seemingly linearly,

FIG. 4. (Color online) Magnetization versus field on a double
logarithmic scale. The solid lines represent linear fits to the data.

TABLE II. The results of the analysis of the susceptibility and the
value of γ calculated using the Widom equality [Eq. (6)].

Sample Tc (K) γ γ = β(δ − 1)

25-1 271.1 1.74(2) 1.79(12)
50-1 230.2 1.71(2) 1.63(10)
75-1 228.9 2.02(1) 1.99(10)

while δ displays a significant jump when the thickness is
increased from 50 Å to 75 Å. A high value of δ corresponds
to a strong response to an applied field which is a signature
of more 2D-like critical behavior.30 δ was also calculated for
the two isotherms adjacent to the critical temperature and the
uncertainty was determined as the maximum difference, while
the uncertainty in β is that achieved in the linear fit.

To verify the robustness of the analysis, Tc was also
determined using the inflection point of the M(T ) curve,31,32

which was defined by the intersection of two linear fits in
the region of the minimum of ∂M/∂T . It has to be noted,
though, that the derivative of dense data will naturally be very
scattered, even if the noise level in the data is low, making it
necessary to smooth the data and use a subjective judgment of
the linear region used in the fitting process. The final results
are comparable to the findings above, with a difference smaller
than 0.3 K.

A dispute has revolved around the significance of the
exponents determined in different temperature ranges, in other
words, whether the computed exponents can be taken to be true
asymptotic or simply effective exponents. If the temperature
range is too large, the obtained β value will merely represent
an effective exponent, which has little to do with critical
exponents. The validity of the exponents discussed above was
therefore checked by calculating the effective β (βeff) over a
large temperature range using the relation

βeff = ∂ log10 M

∂ log10 t
. (4)

The values of the effective exponents were found to form
a well-defined plateau, confirming the suitability of the
temperature range used in the fit to determine the critical
exponent β.

Finally, we will address the magnetic susceptibility (χ )
which can be described by a power law:22

χ (T ) ∝ (T/Tc − 1)−γ = t−γ , (5)

from which the critical exponent γ was determined using a
scheme similar to the one described above [Eq. (3)]. A full
description of the routine used for the susceptibility analysis is
found in Ref. 33. The fits also gave a third determination of the
critical temperature. The Tc values computed using χ (T ) differ
by an amount smaller than 0.5% from the values calculated
using M(T ). The outcome of the fits is found in Table II
and the susceptibility of the 25-1 sample is plotted in Fig. 3
(bottom).

IV. DISCUSSION

The critical temperature of bulk Fe93Zr7 is about 150 K,34

which is about one-sixth of the ordering temperature of
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bulk Fe. This can be rationalized by large changes in the
effective magnetic interaction, as the magnetic moment is
only slightly affected by the formation of an amorphous alloy.
Following this line of argument, the changes in the interaction
between the Co moments upon amorphization must be small,
as the ordering temperature is only modestly affected (bulk
Tc > 950 K).35 Thus a qualitative basis for the postulated
magnetic profiles displayed in Fig. 1 emerges, in which the
magnetization in the Co-rich regions is stabilized by the
relatively larger effective interactions.

We will begin the discussion of the resulting properties by
addressing the magnetic profile in the samples, using Fig. 1 as
a starting point. Here, L is the thickness of the FeZr layers and
W is the width of the induced magnetization in these regions.
Three extreme cases can be identified in the vicinity of Tc:

(i) W > L, strong interaction,
(ii) W ≈ L, weak interaction,
(iii) W � L, no interaction,

between the Co-containing regions. Two of the samples (75-1
and 50-1) have the same Tc (230 K), while the third (25-1)
exhibits a significant Tc enhancement (270 K). This implies
stronger magnetic interactions in the 25-1 sample compared
to the other two, caused by an overlap of the induced
magnetization from two neighboring Co regions. The exten-
sion of the induced magnetization W can therefore be con-
cluded to be equal to or larger than the distance between the
CoZr layers in the 25-1 sample, i.e., about 25 Å. Furthermore,
we can determine an upper value of the extension of the
polarized region from the absence of changes in Tc in the 75-1
and 50-1 samples, and conclude that the correlated spin
range is 25 � W � 50 Å at Tc. The sample with the largest
distance between the CoZr layers is therefore expected to be
well described by an ensemble of decoupled layers and the
dimensionality of the transition is expected to be dominated
by the properties of a single isolated CoZr layer embedded
in FeZr. In addition, we know that at low temperatures (a
few K) the atomic moments are close to constant throughout
the sample (T1 in Fig. 1). At higher temperatures (T2 and T3) the
magnetization is high close to the Co regions and decays with
distance, which implies a pronounced temperature dependence
in the magnetic profile. Furthermore, since Tc of each sample
is around 100 K above the ordering temperature of FeZr,
these layers are in a paramagnetic state, with a polarization
profile similar to that of Fe δ layers in Pd.9,19

Before discussing the implications of the determined expo-
nents, we need to address the roles of extension and ordering
temperature in magnetic excitations. The critical behavior
of a magnetic layer with a given physical extension has
previously been described in terms of the possibility of exciting
modes perpendicular to the layers in the 2D-to-3D crossover
region.11,19 These excitations can be denoted as z-magnon
modes. If Tc is below a certain threshold temperature, T ∗, no
z-magnon modes can be excited and the system will display
a 2D critical behavior. Above another (higher) threshold
temperature, T ∗∗, all magnon modes can be excited, giving
rise to fluctuations in all directions, and the system displays
a 3D behavior. In between the two temperatures a crossover
critical behavior will be observed.

Comparing the critical behavior of the samples to the
three scenarios above makes it possible to account for the

experimental observations. The similarity in Tc, combined with
the difference in the set of exponents between the 50-1 and 75-1
samples, can only be explained if W ≈ 50 Å in the critical
region. When the temperature is decreased, the magnetization
profile of the 50-1 sample will become continuous (compare
T2 in Fig. 1) at temperatures at which the 75-1 sample has a
discontinuous magnetization profile (compare T3 in Fig. 1).
This means that the effective magnetic thickness, available for
magnetic excitations, is much larger, about 500 Å (W ≈ 50 Å,
ten repetitions), in the 50-1 sample than in the 75-1 sample,
where the CoZr layers are decoupled. A physical extension
of about 500 Å is bulk-like and expected to give a 3D
behavior. However, the magnetization is modulated throughout
the sample and this affects the magnon dispersion and thereby
the obtained exponents.

The 25-1 sample has a substantially higher Tc than the
other two samples, which is a direct sign of larger interaction
between the Co-containing layers in the material and this
implies conditions resembling scenario (i), which is illustrated
in Fig. 1 by curve T2. We can also conclude that Tc < T ∗∗,
since the critical exponents do not have a full 3D character.
Although the magnetization can be considered continuous in
this case, we expect it to be strongly dependent on the distance
from the Co-rich regions, which would in turn give rise to
a magnetic dispersion that depends on the angle from the
in-plane direction. Thus the modulation of the magnetization
can be taken as the primary cause for the influence on the
critical exponents. It has to be noted though, that the values
of critical exponents are strongly dependent on the range of
the magnetic interactions14 and this can assumedly also cause
the nonuniversal behavior. However, none of the observed
sets of exponents are captured within this framework using
three spatial dimensions. An independent investigation of the
inferred spatial dependence of the magnetization would be
valuable to establish the direct connection to the proximity
effects discussed here.

We will now discuss the validity of the scaling hypothesis,
as well as its consequences for the understanding of the
transition of proximity-induced magnetization. The scaling
hypothesis implies a well defined relation between the crit-
ical exponents describing the temperature dependence. The
relevant relation between the exponents discussed here is the
Widom equality:1

γ = β (δ − 1) , (6)

which makes it possible to verify the validity of the exponents
and the scaling. The values of γ calculated using Eq. (6) are
listed in Table II and plotted together with the other results of
the analysis in Fig. 5. The only exponent values resembling
those of a well defined universality class are those of γ for
samples 25-1 and 50-1. This must be considered a coincidence,
since the other exponents differ significantly from their 2D
Ising values, while Eq. (6) is clearly fulfilled.

Scaling also means that if M(t,H ) and H are scaled
properly, all data will collapse on two branches: one for
temperatures above Tc and another for temperatures below. The
scaled magnetization is defined as m´ ≡ M/|t |β and the scaled
field as h´ ≡ H/|t |β+γ .22 Two different scaling plots have been
used to present the data to assure that the result is independent
of type: one is a plot of ln(m´) versus ln(h´), Fig. 6, and the
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γ = β(δ−1)
γ

γ
δ

χ

β

FIG. 5. (Color online) (a)–(c) The critical exponents β, δ, and
γ versus FeZr thickness. γ was determined by fits of Eq. (5) to the
susceptibility (black solid squares) and by the Widom equality, Eq. (6)
(red open circles). (d) The critical temperature determined by fits of
Eq. (1) to the magnetization (black solid squares), fits of Eq. (5) to
the susceptibility (red open circles) and by the inflection point of the
magnetization (orange crosses).

other a plot of (m´)2 versus h´/m´, Fig. 7.36 The former plot
emphasizes low fields, while the latter emphasizes high fields.7

The field range in both cases is 0.1 � μ0H � 6.5 mT. Both
methods show an excellent data collapse.

The exponents used to characterize the critical behavior
cover three temperature regions, β : T < Tc; δ : T = Tc;
γ : T > Tc. The consistency of the scaling implies that

FIG. 6. Scaling plots: scaled magnetization ln(m´) as a function
of scaled field ln(h´). The temperature ranges are (top to bottom)
266.7 � T � 274.9 K (|t | � 0.015) for 25-1; 226.6 � T � 235.5 K
(|t | � 0.02) for 50-1; 225.2 � T � 234.4 K (|t | � 0.02) for 75-1.

FIG. 7. Scaling plots: (m´)2 versus h´/m´. The temperature
ranges are (top to bottom): 0.001 � |t | � 0.015 for 25-1; 0.001 �
|t | � 0.02 for 50-1 and 75-1.

the extension of the induced magnetization is constant in
the vicinity of the critical temperature; otherwise the data
would not collapse on a single scaling function. Finally, we
confirm the validity of the scaling hypothesis for induced
magnetization, regardless of the presence or absence of an
interaction between the higher-Tc layers.

V. CONCLUSIONS

The critical behavior of the induced magnetization obtained
in amorphous FeZr(x Å)/CoZr(1 Å) multilayers, where x =
25, 50 and 75, has been investigated. The extremely thin
Co layers are found to induce magnetic ordering in the FeZr
layers, well above the inherent ordering temperature of these.
Analysis of the magnetization as a function of applied field
and temperature yields the critical exponents β, δ, and, via the
Widom equality, γ . The value of the latter is confirmed by
analysis of the magnetic susceptibility. The critical exponents
reveal a crossover from a 3D-like to a more 2D-like behavior
as the FeZr thickness is increased from 25 to 75 Å. The
crossover is explained in terms of magnon modes available
for excitations in the z direction (out of plane), combined with
the relation between the width of the induced magnetization
and the distance between the CoZr layers. Scaling plots show
an excellent collapse of the data, even though the critical
exponents do not correspond to any universality class. The
results serve as a corroboration of the power and wide validity
of the scaling hypothesis and a reminder of the gray shades in
the black and white world of universality classes.
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