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Using the coupled-cluster method for high orders of approximation and Lanczos exact diagonalization we study
the ground-state phase diagram of a quantum spin- 1

2 J1-J2 model on the square lattice with plaquette structure. We
consider antiferromagnetic (J1 > 0) as well as ferromagnetic (J1 < 0) nearest-neighbor interactions together with
frustrating antiferromagnetic next-nearest-neighbor interaction J2 > 0. The strength of interplaquette interaction
λ varies between λ = 1 (which corresponds to the uniform J1-J2 model) and λ = 0 (which corresponds to isolated
frustrated 4-spin plaquettes). While on the classical level (s → ∞) both versions of models (i.e., with ferro- and
antiferromagnetic J1) exhibit the same ground-state behavior, the ground-state phase diagram differs basically
for the quantum case s = 1/2. For the antiferromagnetic case (J1 > 0) Néel antiferromagnetic long-range order
at small J2/J1 and λ � 0.47 as well as collinear striped antiferromagnetic long-range order at large J2/J1

and λ � 0.30 appear which correspond to their classical counterparts. Both semiclassical magnetic phases are
separated by a nonmagnetic quantum paramagnetic phase. The parameter region, where this nonmagnetic phase
exists, increases with decreasing λ. For the ferromagnetic case (J1 < 0) we have the trivial ferromagnetic ground
state at small J2/|J1|. By increasing J2 this classical phase gives way for a semiclassical plaquette phase, where
the plaquette block spins of length s = 2 are antiferromagnetically long-range ordered. Further increasing of
J2 then yields collinear striped antiferromagnetic long-range order for λ � 0.38, but a nonmagnetic quantum
paramagnetic phase λ � 0.38.

DOI: 10.1103/PhysRevB.85.224424 PACS number(s): 75.10.Jm, 75.10.Kt, 75.50.Ee

I. INTRODUCTION

The spin- 1
2 quantum Heisenberg antiferromagnet with

nearest-neighbor (NN), J1 > 0, and next-nearest-neighbor
(NNN), J2 � 0, bonds on the square lattice has attracted much
interest (see, e.g., Refs. 1–26) as a canonical model to study
the interplay between frustration and quantum fluctuations.
In particular, the quantum phase transitions inherent in this
model as well as the nature of its quantum paramagnetic phase
in the region 0.4 � J2/J1 � 0.6 is a matter of intensive debate.
The Néel antiferromagnetic (NAF) long-range order (LRO) at
small J2/J1 and the collinear striped antiferromagnetic (CAF)
LRO at large J2/J1 correspond to their classical counterparts;
however, the sublattice magnetization is reduced by quantum
fluctuations.

Motivated by recent investigations on quasi-two-
dimensional frustrated magnetic materials with ferromag-
netic (FM) NN bonds, for example, Pb2VO(PO4)2,27–31

SrZnVO(PO4)2,30,32–34 and BaCdVO(PO4)2,29,32,35 the FM
J1-J2 model (J1 < 0,J2 � 0) has recently been studied.14,36–46

Although on the classical level the ground-state (GS) phase
diagrams of both variants of the J1-J2 model are quite similar,
the GS properties of the quantum model with J1 < 0 are
basically different from those for J1 > 0. Currently, the GS
properties of the FM model around J2/|J1| = 0.5 are under
controversial debate. On the one hand, in Refs. 37 and 45
arguments for a nematic phase separating the classical FM
and the semiclassical CAF phases are given; on the other hand,
in Refs. 44 and 46 an intermediate quantum paramagnetic GS
phase is not found (or it exists in a very small parameter region
around J2 ∼ 0.4|J1| only). Hence, a direct first-order transition
between the FM GS and the GS with CAF LRO at J2 ∼ 0.4|J1|
could take place.44,46

Quantum phase transitions can also occur by competition
between antiferromagnetic (AFM) NN bonds of different
strength, that is, without frustration. One example is the local
singlet formation in dimerized Heisenberg models (see, e.g.,
Ref. 47 and references therein). As a certain extension to
dimerized models the square-lattice Heisenberg model with
a plaquette structure has been considered,9,48–53 where local
quadrumer singlet formation can destroy NAF LRO.

However, for the description of real materials a modifi-
cation of the J1-J2 model might be necessary. For example,
for PbZnVO(PO4)2 a spatially anisotropic model has been
derived,54 whereas for (CuCl)LaNb2O7

55 a J1-J2 model with
additional plaquette structure was proposed in Ref. 49. This
plaquette model, however, has been questioned recently by
Rosner and co-workers.56

In this paper we consider the J1-J2 model on the square
lattice with plaquette structure (see Fig. 1) merging this way the
two mechanisms to destroy magnetic LRO, namely frustration
and local singlet formation. Moreover, the model we consider
corresponds to that proposed in Ref. 49 for (CuCl)LaNb2O7.
The Hamiltonian of our model is given by

H =
1∑

a=0

(
δ0a + δ1aλ

)
⎛
⎝J1

∑
〈ij〉a

sisj + J2

∑
〈〈ij〉〉a

sisj

⎞
⎠ , (1)

where the sum is taken over the nearest (〈· · ·〉) and next-
nearest (〈〈· · ·〉〉) neighbors, and δab is the Kronecker symbol.
We consider FM and AFM NN bonds J1 = ±1 and AFM
(i.e., frustrating) NNN bonds J2 � 0. The intra- (a = 0) and
interplaquette (a = 1) interactions differ by the factor λ.
The case λ = 1 corresponds to the standard uniform J1-J2

model on the square lattice, whereas the limit λ = 0 describes
unconnected 4-spin J1-J2 plaquettes. For the parameter λ
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FIG. 1. (Color online) The two-dimensional spin- 1
2 J1-J2 finite

square lattice of N = 32 sites (periodic boundary conditions) with
plaquette structure [see Eq. (1)]. Solid lines, NN bonds J1 (thick) and
λJ1 (thin); dashed lines, NNN bonds J2 (thick) and λJ2 (thin).

we consider the interval λ ∈ [0,1], this way interpolating
between a system of isolated plaquettes and the uniform J1-J2

model.
The model (1) has been studied previously by series

expansion9 for AFM J1 > 0, and by bond-operator mean-field
theory as well as a second-order perturbation theory in λ

(Ref. 49) for (FM) J1 < 0. Bearing in mind the intensive work
on the standard J1-J2 model (see Refs. 1–26 and references
therein), it seems to be desirable to discuss the much less
studied plaquette J1-J2 model by methods alternative to those
used in Refs. 9 and 49, thereby confirming or questioning the
findings of those papers.

In this paper we consider both the AFM (J1 > 0) and the
FM (J1 < 0) version of the model (1), and we derive the
GS quantum phase diagram for both versions of the model.
We use the Lanczos exact diagonalization (see Sec. III A)
and the coupled cluster method (CCM) (see Sec. III B) to
analyze the GS of the model. Both methods are powerful
general many-body methods and, particularly, the combination
of both can lead to a consistent description of various aspects of
quantum spin systems. We note that another important method
for quantum spin systems, the quantum Monte Carlo (QMC)
method, cannot be used for the considered frustrated model
since it suffers from the minus-sign problem.

II. CLASSICAL GROUND-STATE PHASES

It is well known that the GS for the classical case
(s → ∞) of the uniform J1-J2 model (i.e., λ = 1) has three
phases: the NAF phase for J2 < J1/2 and J1 > 0, the FM
phase for J2 < −J1/2 and J1 < 0, and a phase consisting of
two interpenetrating Néel-ordered square lattices. The angle
between the directions of the two interpenetrating Néel states is
arbitrary in the classical limit, whereas, due to the order-from-

disorder effect, collinear states are favored by fluctuations;
that is, the CAF is realized. By contrast to the uniform
model, two additional plaquette phases appear for λ < 1 (see
Fig. 2), namely the plaquette antiferromagnetic (PAF) phase
separating the NAF from the CAF phase for J1 > 0 and the
plaquette ferromagnetic (PFM) between the FM and the CAF
phases for J1 < 0. These plaquette phases have some relation
to the CAF phase: They also can be understood as a system of
two interpenetrating Néel-ordered square lattices, where again
the angle between the directions of the two interpenetrating
Néel states is arbitrary in the classical limit. However, as an
elementary unit (a “lattice site”) of the two interpenetrating
square lattices does not act a single spin (site), but rather
a 4-spin-(4-site-)plaquette carrying strong bonds. Again, due
to the order-from-disorder effect collinear states are favored
by fluctuations; that is, the collinear PAF or PFM phases are
realized, respectively. A graphical illustration of these classical
phases is given in Fig. 2. The energy of the classical plaquette
phases reads EPAF,PFM = −[± 1

4J1 − 1
8J2] − 1

8λJ2, where the
upper (lower) sign corresponds to PAF (PFM). Obviously, the
interplaquette interaction is due to λJ2 only. The transition
line between the CAF and the PAF (PFM) phases is given by
J2 = J1/(1 + λ) [J2 = −J1/(1 + λ)], the transition between
the NAF and the PAF phases as well as the FM and the
PFM phases are horizontal lines J2 = J1/2 and J2 = −J1/2,
respectively. Besides the trivial degeneracies, the CAF, the
PAF, and the PFM states are twofold degenerate, since the
stripes of parallel spins (CAF) or parallel plaquettes (PAF,
PFM) can be arranged along either the horizontal or the vertical
direction.

III. METHODS

A. Exact diagonalization of finite lattices

The Lanczos exact diagonalization method was success-
fully used to discuss the GS phases of the uniform s =
1/2J1-J2 model (i.e., λ = 1) using finite lattices of N = 16,
20, 32, 36, and 40 sites.2–5,21,44 However, the new classical
phases, PAF and PFM, appearing due to the plaquette structure
do not fit to the periodic boundary conditions of the finite
lattices of N = 20, 36, and 40 sites, and, therefore, we do
not have the possibility to perform a finite-size extrapolation
used previously for the uniform model.3,21,44 Using Jörg
Schulenburg’s SPINPACK57 we have calculated the GS focusing
on the finite lattice of N = 32 sites shown in Fig. 1 for a large
set of λ and J2 values fixing J1 either to +1 or to −1.

To analyze the GS magnetic ordering we have calculated
the spin-spin correlation function 〈s0si〉 as well as a general
finite-size order parameter,58,59

m2 = 1

(N − 4)2

N−4∑
i,j /∈P

|〈sisj 〉|, (2)

that adds the total strength of the spin-spin correlation
functions. Bearing in mind the strong intraplaquette correlation
functions for λ < 1 we have excluded these correlations in
the sum, this way increasing the weight of distant correlation
functions.
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FIG. 2. (Left) The classical phase diagram of the two-dimensional J1-J2 square-lattice Heisenberg model with plaquette structure, see
Eq. (1). For the AFM model (J1 = +1) the GS phases CAF, NAF, and PAF exist. For the FM model (J1 = −1) the CAF GS phase also exists,
but the NAF and the PAF phases are replaced by the FM and the PFM phases, respectively. (Right) Illustration of the classical phases (CAF,
collinear striped antiferromagnetic order; PAF, plaquette antiferromagnetic order; NAF, Néel antiferromagnetic order; FM, ferromagnetic order;
PFM, plaquette ferromagnetic order).

B. Coupled-cluster method

We first mention that the CCM yields results directly in the
thermodynamic limit N → ∞. The CCM has been previously
reviewed in several articles (e.g., for the AFM8,15–17 and for
the FM J1-J2 model,44,60 as well as for dimerized models61–64)
and will not be repeated here in detail. For more general
information on the methodology of the CCM, see, for example,
Refs. 65–68.

The CCM is a quantum many-body method and is defined
by a reference (or model) state |�〉 and a complete set of
mutually commuting many-body creation operators C+

I . For
our model we choose the classical GSs (see Fig. 2) as reference
states. It is convenient to perform an appropriate rotation of
the local axis of the spins such that in the rotated coordinate
frame the reference state is a tensor product of spin-down
states |�〉 = |↓〉|↓〉|↓〉 . . .. The creation operators are then the
multispin creation operators C+

I = s+
i , s+

i s+
j , s+

i s+
j s+

k , . . .,
where the indices i,j,k, . . . denote arbitrary lattice sites.

The CCM parametrizations of the ket and bra GSs are given
by [with C−

I = (C+
I )+]

|�〉 = eS |�〉, S =
∑
I 	=0

SIC
+
I ;

(3)
〈�̃| = 〈�|S̃e−S, S̃ = 1 +

∑
I 	=0

S̃IC
−
I .

Using 〈�|C+
I = 0 = CI |�〉 ∀ I 	= 0, C+

0 ≡ 1, the
orthonormality condition 〈�|CIC

+
J |�〉 = δIJ , and the

completeness relation
∑

I C+
I |�〉〈�|CI = 1 = |�〉〈�| +∑

I 	=0 C+
I |�〉〈�|CI we get a set of nonlinear and linear

equations for the correlation coefficients SI and S̃I ,
respectively. The order parameter (sublattice magnetization)
in the rotated coordinate frame is given by

M = − 1

N

N∑
i

〈�̃|sz
i |�〉. (4)

In the CCM the only approximation is the truncation of
the expansion of the correlation operator S and S̃. We use

the well-established LSUBm scheme, where all multispin
correlations on the lattice with m or fewer contiguous sites
are taken into account. The number of these configurations
can be reduced, using lattice symmetry and conservation
laws, but it is increasing very rapidly with m. In the highest
order of approximation considered here, LSUB10, we have,
for example, 180 957 configurations for the collinear stripe
reference state (CAF) and 219 446 for the antiferromagnetic
plaquette state (PAF), that is, finally 180 957 or 219 446
corresponding coupled nonlinear equations which have to be
solved numerically.

Since the LSUBm approximation scheme becomes exact
for m → ∞, we can improve our results by extrapolating the
“raw” LSUBm data to m → ∞. There is ample empirical
experience regarding how one should extrapolate the magnetic
order parameter M(m) for systems with quantum phase
transition between magnetically ordered and disordered GS
phases. Following Refs. 15–17 and 44, we use M(m) =
b0 + b1(1/m)1/2 + b2(1/m)3/2 to extrapolate to m → ∞. As
a rule,15–17,44 the lowest level of approximation, LSUB2,
is excluded from extrapolation. For the particular 4-spin
plaquette model considered here, we expect LSUB2 to be
especially poor, because its cluster size (2 spins) is smaller than
the unit cell (4 spins) of the model. Hence, we use LSUB4,
LSUB6, LSUB8, and LSUB10 data for the extrapolations.

IV. RESULTS FOR THE QUANTUM s = 1/2 MODEL

A. Antiferromagnetic nearest-neighbor exchange J1

We first consider the AFM case, set J1 = +1, and start with
the discussion of ED data (see Figs. 3 and 4). Corresponding
to the three classical phases there are three regimes in the
quantum model. The spin-spin correlation functions 〈s0si〉
presented in Fig. 3 for λ = 0.5 and λ = 0.7 are quite strong
for small and large J2, thus indicating semiclassical magnetic
LRO, where the signs of 〈s0si〉 fit to the classical phases NAF
and CAF. In an intermediate regime, around J2 = 0.5, the
interplaquette spin-spin correlations are weak. These three
different regimes are also well seen in Fig. 4, where the
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FIG. 3. (Color online) ED data for the spin-spin correlation
functions 〈s0si〉 versus J2 (AFM J1 = +1) for two values of λ for
the finite lattice of N = 32 sites. Except the site indices 0 and i

corresponding to Fig. 1 we also give the square of separation R2

of the sites 0 and i. Note that 〈s0s1〉 and 〈s0s4〉 are intraplaquette
correlation functions, whereas the other ones are interplaquette
correlation functions.

finite-size order parameter m2 [see Eq. (2)] is shown. In
particular, the m2 data yield clear evidence for regions with
weak magnetic order. The widths of those regions increase
drastically with decreasing λ. Bearing in mind that for λ = 1
the region of magnetic disorder is 0.4 � J2 � 0.6 (see, e.g.,
Refs. 12,17,18,21,22, and 24), our ED data for N = 32
suggest that there is no semiclassical antiferromagnetic LRO
of plaquette type (PAF). Moreover, for small values of λ � 0.5
the finite-size order parameter is small in the whole range of
J2 values, indicating the absence of any magnetic LRO.

Now we discuss the CCM results (N → ∞). Figure 5
provides the CCM GS energy per site e0 for λ = 0.5 and
λ = 0.7 compared with the corresponding ED data. Obviously,
the CCM and the ED agree well. To discuss magnetic LRO
we consider the CCM-LSUBm magnetic order parameter
M (sublattice magnetization) extrapolated to m → ∞ [see
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FIG. 4. (Color online) ED data for the finite-size order parameter
m2/m2

FM as defined in Eq. (2) versus J2 (AFM J1 = +1) for various
values of λ for the finite lattice of N = 32 sites. For convenience m2

is scaled by its value for the FM state m2
FM = 0.25.
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FIG. 5. (Color online) CCM LSUB10 data for the GS energy
e0 (AFM J1 = +1) for λ = 0.5 and λ = 0.7 compared with corre-
sponding ED data (N = 32). The CCM results correspond to the NAF
reference state (small J2), the PAF reference state (intermediate J2),
and the CAF reference state (large J2).

Eq. (4)] that is depicted in Fig. 6. To illustrate the quality of
the used extrapolation for the order parameter M of the “raw”
LSUBm data to the limit m → ∞ we also show, as an example,
corresponding plots for the λ = 0.7 in Fig. 7. It is obvious that
the LSUBm data are well fitted by the applied extrapolation
function.

First we notice that the extrapolated order parameter using
the PAF reference state for all relevant parameter sets of λ and
J2 vanishes (see also Fig. 7); that is, there is no PAF magnetic
LRO in the quantum model. This finding is in agreement with
the ED data for m2 discussed above (and see again Fig. 4). The
range of stability of the semiclassical NAF and CAF phases
is visible in Fig. 6. We define the quantum critical points
J c1

2 (λ) and J c2
2 (λ) as those points, where the extrapolated CCM

magnetic order parameter M vanishes. For λ = 1 (uniform
model) we find J c1

2 = 0.447J1 and J c2
2 = 0.586J1, which is in

agreement with previous CCM predictions.15–17 As expected,
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FIG. 6. (Color online) Extrapolated CCM data for the magnetic
order parameter (sublattice magnetization) M for the AFM case (J1 =
+1) and for various values of λ. The CCM reference state is the NAF
state (left-hand side, small J2) and the CAF state (right-hand side,
large J2). The extrapolated CCM data are obtained using LSUBm with
m = 4, 6, 8, 10 and the extrapolation rule M(m) = b0 + b1(1/m)1/2 +
b2(1/m)3/2.
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extrapolations to m → ∞ according to M(m) = b0 + b1(1/m)1/2 +
b2(1/m)3/2 we have used LSUBm data for m = 4,6,8,10.

with decreasing λ the region of J2 values without magnetic
LRO increases (see Fig. 6). Collecting the data for the quantum
critical points J c1

2 and J c2
2 for various λ we get the GS

phase diagram of the quantum model as shown in Fig. 8. Our
phase diagram is in good agreement with the only available
corresponding one of Ref. 9. Hence, one can argue that the
phase diagram is basically correct.

Concerning the order of the quantum phase transitions at
J c1

2 and J c2
2 our data are in favor of a continuous transition

at J c1
2 and a first-order transition at J c2

2 as it is was discussed
for the uniform model.3,9,11,21 The scenario of a first-order
transition between the QPM and the CAF phases is supported
by (i) the kinklike behavior in e0 (see Fig. 5), (ii) the steep fall
in the CCM order parameter M near J c2

2 (see Fig. 6), and (iii)
the jumplike behavior of the spin-spin correlations functions
(see Fig. 3) and of the finite-size order parameter (see Fig. 4).
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FIG. 8. (Color online) The CCM GS phase diagram of the
model (1) for the AFM case (J1 = +1). NAF denotes the semiclas-
sical phase with Néel LRO, CAF the semiclassical phase with CAF
LRO, and QPM the magnetically disordered quantum paramagnetic
phase. For comparison we also show the classical transition lines (thin
dashed lines) (cf. Fig. 2).

For the unfrustrated case J2 = 0 we can compare
our result λc = 0.47 (and see Fig. 8) for the critical λ,
where the NAF LRO breaks down with several previous
results, namely λc = 0.555 (Ising series expansion9),
λc = 0.6 (exact diagonalization48), λc = 0.5485 (QMC50,52),
λc = 0.5491, . . . ,0.5513 (contractor renormalization
expansion50), and λc = 0.4822 (real space renormalization
group approach53). Likely, the QMC result is most accurate.
Our result is in reasonable agreement with that result, but
slightly overestimates the stability region of NAF LRO.

Let us briefly discuss another limit of the model, namely the
limit of large J2. As discussed above in that limit the system
splits into two interpenetrating square-lattice Heisenberg anti-
ferromagnets (where J2 plays the role of the AFM NN bond),
which are Néel-ordered for λ = 1. However, for λ < 1 each of
the two interpenetrating square lattices carries now a staggered
arrangement of J2 and λJ2 bonds, which corresponds precisely
to the so-called J -J ′ model discussed in Refs. 51,52,61,69–71.
The QMC estimate of the critical λ is λc = 0.397 (see Ref. 51).
For J2 = 1 we find from our CCM data a critical value of
λc = 0.301 (see Fig. 8). Increasing J2 beyond J2 = 1 (not
shown in Fig. 8) yields a steep increase of the critical line as
already indicated by the last two data points near J2 = 1 in
Fig. 8. In the limit of large J2 the critical λc is even smaller
as for J2 = 1. For example, at J2 = 5 we obtain λc = 0.375
that is in good agreement with the QMC result for the critical
λc of the J -J ′ model. Note that our value of λc deviates from
an early CCM result λc = 0.316.61 The difference is related
to the fact that we use here (i) a higher approximation level
(LSUB10) and (ii) an improved extrapolation in comparison
with Ref. 61.

B. Ferromagnetic nearest-neighbor exchange J1

We now consider the FM case and set J1 = −1. Although,
the classical phase diagrams for J1 = −1 and J1 = +1 are
identical (see Fig. 2), we know from the uniform model (i.e.,
λ = 1) that the phase diagrams in the quantum case s = 1/2
are basically different.14,36–46 In particular, it was found for
J1 = −1 that the region of semiclassical CAF LRO extends up
to much smaller values of J2 compared with the case of J1 =
+1.44,46 Hence, we expect also for λ < 1 basic differences
between J1 = +1 and J1 = −1.

We start again with ED results for the spin-spin correlation
functions 〈s0si〉 (see Fig. 9) and the finite-size order parameter
m2 defined in Eq. (2) (see Fig. 10). The three classical
phases lead again to three different regimes in the quantum
model. The trivial FM state at small J2 is, of course, also
present in the quantum model. It gives way at J c1

2 (λ) for an
intermediate singlet state. This transition at J c1

2 is clearly seen
by jumps in 〈s0si〉 and m2. J c1

2 is smaller than the classical
value J c1

2,clas = 0.5, and it depends on λ for the quantum
model. Moreover, there is a second jumplike behavior of the
spin-spin correlation functions indicating the transition from
the intermediate regime to the CAF regime. We can use the
positions of these jumps to extract the transition points J c1

2
and J c2

2 between the regimes from our ED calculations, see
the discussion of Fig. 12 given below.

The main difference in comparison to the AFM model
(J1 = +1) concerns the intermediate regime. From Fig. 9 it
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GÖTZE, KRÜGER, FLECK, SCHULENBURG, AND RICHTER PHYSICAL REVIEW B 85, 224424 (2012)

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.3  0.4  0.5  0.6  0.7

 <
s 0

s i>

 J2

 0.3  0.4  0.5  0.6  0.7
 J2

λ=0.7λ=0.5

i=1, R2=1
 i=25, R2=1

i=4, R2=2
i=2, R2=2

  i=10, R2=8
  i=22, R2=16

FIG. 9. (Color online) ED data for the spin-spin correlation
functions 〈s0si〉 versus J2 (FM J1 = −1) for two values of λ for
the finite lattice of N = 32 sites. Except the site indices 0 and i

corresponding to Fig. 1 we also give the square of separation R2

of the sites 0 and i. Note that 〈s0s1〉 and 〈s0s4〉 are intraplaquette
correlation functions, whereas the other ones are interplaquette
correlation functions.

is evident that the interplaquette correlation functions 〈s0s10〉
and 〈s0s22〉 (see Fig. 1) are not small. Hence, the intermediate
phase might be long-range ordered for FM J1. Indeed, in
the finite-size order parameter m2 shown in Fig. 10 an
intermediate regime is clearly visible for λ � 0.5, where the
finite-size order parameter m2 in this regime is much larger
than that for J1 = +1 (cf. Fig. 4). The possible appearance
of magnetic LRO can be understood on the basis of the
classical PFM state (see also Sec. II): The elementary unit
is the 4-spin-plaquette (with strong bonds). Due to the strong
FM intraplaquette bond J1 the plaquette carries an effective
block (composite) spin s = 2. These block spins interact via
λJ2 and form effectively two interpenetrating square-lattice
s = 2 Heisenberg antiferromagnets.

Now we pass to the CCM results (N → ∞). Figure 11
provides the CCM GS energy per site e0 for λ = 0.5 and
λ = 0.7 in LSUB6 and LSUB10 approximation compared
with the corresponding ED data. The agreement between the

 0
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 0.35  0.4  0.45  0.5  0.55  0.6

 m
2 /m

2 FM

 J2
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λ=0.7
λ=0.8
λ=1.0

FIG. 10. (Color online) ED data for the finite-size order parameter
m2/m2

FM as defined in Eq. (2) versus J2 (FM J1 = −1) for various
values of λ for the finite lattice of N = 32 sites. For convenience m2

is scaled by its value for the FM state m2
FM = 0.25.
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CCM (LSUB10): PFM
CCM (LSUB10): CAF
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FIG. 11. (Color online) CCM-LSUB10 (thick lines) and LSUB6
data (thin lines) for the GS energy e0 (J1 = −1) for λ = 0.5 and
λ = 0.7 compared with corresponding ED data (N = 32). The CCM
results correspond to the PFM reference state (intermediate J2) and
the CAF reference state (large J2). The black solid line is the exact
FM GS energy.

CCM and the ED is good. The three regimes, FM, PFM,
and CAF, are clearly seen in the energy data. For the CCM
estimate for the transition point J c1

2 between the FM state
and the PFM regime we use the intersection points between
the FM energy and the CCM-LSUB10 as well as the LSUB6
energy calculated with the PFM reference state. Both results
for J c1

2 almost coincide (see Fig. 12). Moreover, we find an
excellent agreement between the ED and CCM results for J c1

2 .
Concerning the order of the phase transition at J c1

2 we have
clear evidence for a first-order transition as indicated by (i) the
jumplike behavior of the spin-spin correlations functions (see
Fig. 9) and of the finite-size order parameter (see Fig. 10), (ii)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

J 2

λ

FM

CAF
QPM

PFM

LSUB10
LSUB8
LSUB6
LSUB4

ED N=32
CCM: M=0

FIG. 12. (Color online) GS phase diagram of the plaquette model
of Eq. (1) for the FM case (J1 = −1). The transition lines between the
FM and the PFM phases as well as the PFM and the CAF/QPM phases
are obtained by (i) ED by using the jumps in the ED data (black lines)
(see Figs. 9 and 10) and (ii) by CCM from the intersection points
between the GS energies using various reference states for the CCM
calculation (blue lines) (see text). The transition lines between the
CAF and the QPM phase (red line) correspond to those parameter
values (λ,J2), where the extrapolated CCM order parameter vanishes
(and see Fig. 14). For comparison we also show the classical transition
lines (magenta line) (cf. Fig. 2).
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FIG. 13. (Color online) CCM magnetic order parameter M for
the FM case (J1 = −1) versus J2 using the PFM and the CAF states
as CCM reference states for λ = 0.5 and λ = 0.7. The extrapolated
CCM results are obtained using LSUBm with m = 4,6,8,10 and the
extrapolation rule M(m) = b0 + b1(1/m)1/2 + b2(1/m)3/2.

the kinklike behavior in e0 (see Fig. 11), and (iii) the jump in
the CCM order parameter M at J c1

2 (see Fig. 13).
To determine the transition point J c2

2 between the PFM and
the CAF regimes we are faced with the problem that near this
transition no CCM-LSUB10 solutions for the CAF reference
state could be found. This observation, that for high orders of
CCM approximation in the vicinity of an intersection point of
two CCM energy curves belonging to two different GS phases
no solution of the large set of coupled nonlinear ket equations
can be obtained, is often found when dealing with strongly
frustrated systems (see, e.g., Refs. 13 and 44). However, from
Fig. 11 it is obvious that the parameter range, where solutions
for lower levels m of LSUBm approximations can be found, is
much larger than for LSUB10. Moreover, the LSUBm data for
e0 for various m are very close to each other. Hence, we can
use the intersection points for lower levels of CCM-LSUBm

approximation to determine the second transition point J c2
2 .

Thus, we find intersection points for LSUB8, LSUB6, and
LSUB4 for λ � 0.7, λ � 0.5, and λ � 0.25, respectively. In
addition, we can also take benefit from the almost straight
behavior of e0(J2) curves (see Fig. 11), which allows a reliable
extrapolation of e0(J2) until a hypothetical intersection point
(cf. also Refs. 44 and 46). This gives finally various sets
of J c2

2 (λ) data, which, however, agree well with each other
(cf. Fig. 12). Only for λ � 0.3 a slight difference is visible.
Nevertheless, it is necessary to mention that the CCM estimate
for J c2

2 (λ) becomes less reliable for smaller values of λ due to
the increasing distance between the hypothetical intersection
points and the last data points for which LSUBm solutions
for the CAF reference state could be found. The results for
J c1

2 (λ)and J c2
2 (λ) obtained by ED and CCM are collected in

the phase diagram presented in Fig. 12. It is obvious that both
ED and CCM yield very similar values for J c1

2 and J c2
2 .

The question about magnetic LRO in the various regimes we
address next by analyzing the CCM magnetic order parameter
M for the PFM and CAF regimes. (Remember that in the
trivial FM phase we have always M = 1/2.) In Fig. 13 we
show M versus J2 for λ = 0.5 and λ = 0.7. Obviously, the
order parameter in the PFM regime is nonzero and even larger
than in the CAF regime. This observation is in agreement with

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M

λ
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CAF

CAF: J2=1.0
CAF: J2=0.7

J2=0.5, LSUB4
J2=0.5, LSUB6
J2=0.5, LSUB8

J2=0.5, LSUB10
J2=0.5, extrapol

FIG. 14. (Color online) Magnetic order parameter M for the FM
case (J1 = −1) versus λ for J2 = 1.0 (solid triangles), 0.7 (circles),
and 0.5 (lines) using the PFM and the CAF states as CCM reference
states. The extrapolated CCM results are obtained using LSUBm with
m = 4,6,8,10 and the extrapolation rule M(m) = b0 + b1(1/m)1/2 +
b2(1/m)3/2.

our ED results (cf. Fig. 10) and can be related to the effective
block-spin s = 2 model discussed above. The order parameter
in the CAF is only weakly dependent on J2, but its magnitude
depends on λ. As discussed above we do not get CAF CCM
solutions for LSUBm for higher values of m near the transition
to the PFM phase. Nevertheless, the curves presented in Fig. 13
indicate that there is likely a direct first-order transition at J c2

2
between semiclassical phases with PFM and CAF magnetic
LRO for λ � 0.4.

Next we fix J2 and consider the behavior of the order
parameter M in dependence on λ (see Fig. 14). For values
of J2 � 0.55 the PFM regime is not relevant. As explained
in Sec. IV A in the limit of large J2 our plaquette model
corresponds to the J -J ′ model, where at λ = λc = 0.397
(QMC result, see Ref. 51) a second-order transition to a QPM
phase takes place. This behavior is clearly seen in our CCM
data for M(λ) for J2 = 1.0 and J2 = 0.7 shown in Fig. 14. We
find that for J2 � 0.6 the extrapolated CCM order parameter
M vanishes continuously at a critical value λ = λc(J2) defining
a second-order transition between a semiclassical phase with
CAF magnetic LRO and the QPM phase, which is depicted as a
red line in Fig. 12. Interestingly, λc practically does not depend
on J2 and we have λc ≈ 0.383 for 0.6 � J2 � 1. This value is
close to the QMC value51 λc = 0.397 valid for J2 → ∞ and
also to λc = 0.375 obtained for the AFM model (J1 = +1) for
J2 = 5 (see Sec. IV A).

For J2 = 0.5 the situation is different, since both, the PFM
and CAF regimes, play a role. For λ < 0.494 we are inside the
PFM regime. Obviously, the PFM order parameter is large and
the variation with λ is weak. Within the CAF regime we are
again faced with the problem that the CAF LSUBm solutions
for higher m terminate before meeting the corresponding
PFM LSUBm solutions. Hence, the critical line λc(J2) (red
vertical line in Fig. 12) terminates before meeting the transition
line J c2

2 (λ), and we cannot give a secure statement on the
continuation of the critical line λc(J2) toward lower values
of J2.
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FIG. 15. (Color online) Illustration of the extrapolation (solid
lines) of the CCM-LSUBm data (symbols) for the magnetic order
parameter M for λ = 0.5, J1 = −1, and specific values of J2 corre-
sponding to the CAF and PFM reference states. For the extrapolations
to m → ∞ according to M(m) = b0 + b1(1/m)1/2 + b2(1/m)3/2 we
have used LSUBm data for m = 4,6,8,10.

Finally, we illustrate the quality of the used extrapolation for
the order parameter M of the “raw” LSUBm data to the limit
m → ∞ for λ = 0.7 in Fig. 15. It is obvious that the LSUBm

data are well fitted by the applied extrapolation function.
Let us briefly discuss the relation of our results to the

schematic phase diagram previously presented in Ref. 49. As
stated in Ref. 49 the approximations used there (bond-operator
mean-field theory as well as a second-order perturbation theory
in λ) may be not reliable for large λ ∼ 1 and large J2 ∼ 1. The
main features of our phase diagram agree well with those
presented in Ref. 49. For λ → 0 we obtain the same transition
point J c2

2 = 0.5 between the QPM and the PFM phases.
However, for λ ∼ 1 and J2 ∼ 1 some differences appear. For
instance, we do not find a nematic phase for λ � 1, as it was
discussed in Ref. 49. Note that the absence of the nematic phase

is in agreement with the recent findings for the uniform model,
that is, at λ = 1.44,46 Moreover, the second-order transition
between the QPM and CAF phases for large J2 is found in
Ref. 49 at λ ≈ 0.5, but it should be at λ ≈ 0.4.

V. SUMMARY

Inspired by a recent investigation of a frustrated two-
dimensional Heisenberg model proposed to describe the
magnetic properties of (CuCl)LaNb2O7 (see Refs. 55 and 49),
we investigate the GS phase diagram of the spin- 1

2 J1-J2

Heisenberg model on the square lattice with plaquette struc-
ture. The 4-site plaquettes carrying the (strong) intraplaquette
bonds J1 and J2 are coupled to each other by (weaker)
interplaquette bonds λJ1 and λJ2, 0 � λ � 1. The parameter λ

can also be thought of modeling a distortion of the underlying
square lattice.

We consider AFM (J1 > 0) as well as FM nearest-neighbor
exchange coupling (J1 < 0). Except the phases with magnetic
LRO (FM, Néel, and collinear striped AFM) and the nonmag-
netic quantum paramagnetic phase known from the standard
spin- 1

2 J1-J2 model we find for FM J1 a new plaquette phase
showing AFM long-range of s = 2 block spins associated
with 4-spin plaquettes. For the AFM model (J1 > 0) the
region of the quantum paramagnetic phase is significantly
increased for λ < 1 compared to the standard model, thus
increasing the prospects of finding a magnetically disordered
low-temperature phase in real magnetic materials, where the
exchange pattern may deviate from the standard J1-J2 model
(see, e.g., Refs. 54, 72, and 73).
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