
PHYSICAL REVIEW B 85, 224421 (2012)

Excitations in high-dimensional random-field Ising magnets
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Domain walls and droplet-like excitation of the random-field Ising magnet are studied in d = {3,4,5,6,7}
dimensions by means of exact numerical ground-state calculations. They are obtained using the established
mapping to the graph-theoretical maximum-flow problem. This allows us to study large system sizes of more
than 5 ×106 spins in exact thermal equilibrium. All simulations are carried out at the critical point for the strength
h of the random fields, h = hc(d). Using finite-size scaling, energetic and geometric properties like stiffness
exponents and fractal dimensions are calculated. Using these results, we test (hyper)scaling relations, which
seem to be fulfilled below the upper critical dimension du = 6. Also, for d < du, the stiffness exponent can be
obtained from the scaling of the ground-state energy.
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I. INTRODUCTION

The random-field Ising magnet (RFIM) is one of the most
frequently studied models for magnetic systems with quenched
disorder. For d = 3 and higher dimensions,1 it is known to
undergo a phase transition2–13 at a critical temperature Tc

which depends on the disorder strength. For low temperatures
and weak disorder the ferromagnetic interactions dominate,
and the system is ferromagnetically long-range ordered. For
large temperature or strong disorder, the RFIM exhibits no
long-range order and behaves like a paramagnet in a field.

Numerically, the nature of this phase transition can be
studied in many cases conveniently by means of exact
ground-state (GS) calculations (see below), based on an
established mapping to the graph-theoretical maximum-flow
problem. This allows us to treat large system sizes in thermal
equilibrium, in contrast to Monte Carlo simulations. For
Gaussian disorder, the phase transition is of second order
along the full transition line and can be characterized by
critical exponents in the usual way, like ν, describing the
divergence of the correlation length, and α, describing the
behavior of the specific heat. Nevertheless, the RFIM behaves
differently compared to the standard ferromagnet. In particular,
the hyperscaling relation dν = 2 − α has to be changed14 by
including a positive parameter θ , yielding

ν(d − θ ) = 2 − α . (1)

In general, the value of θ can be obtained directly from the
scaling of domain-wall energies, e.g., induced by changing the
boundary conditions, and is known as the stiffness exponent.
The study of such domain-wall excitations was pioneered in the
field of spin glasses.15,16 Here, a comprehensive understanding
of the nature of the behavior of two-dimensional spin glasses
could be obtained,17,18 which turned out to be compatible with
the droplet picture.15,19–21

According to the droplet picture, the energy scaling of
droplet-like excitations should be the same as for domain walls.
For two-dimensional spin glasses, this was recently confirmed
via using modified GS algorithms.22–24 Later on, the value of
θ was also determined in higher dimensions25–29 up to the
upper critical dimension, in this case via (heuristic) ground-
state calculations before and after changing the boundary
conditions.

For the RFIM, which is the subject of this work, domain-
wall studies similar to the spin-glass case, i.e., based on GS
calculations, were performed for three and four dimensions,7,11

but to our knowledge not in higher dimensions. Droplet-type
low- or lowest-energy excitations have only been obtained
in three dimensions so far.12,30 For three dimensions at
finite temperature, also free-energy barriers were calculated
recently.31,32

Furthermore, the prediction for the RFIM upper critical
dimension du = 6 was confirmed13 via exhaustive exact GS
calculation up to d = 7. This shows that the RFIM can be
investigated conveniently by numerical exact algorithms even
close to and above the upper critical dimension.

Hence, it is the purpose of this work to study domain-wall
and droplet excitations of the RFIM in dimensions d = 5,6,7
(and for d = 3,4 for comparison), similar to the corresponding
d = 2 studies for spin glasses, with the striking difference
that for the RFIM an exact polynomial-time GS algorithm
is available for any dimension, allowing us to treat much
larger system sizes of more than 5 ×106 spins in thermal
equilibrium. Another difference is that we performed the study
for the RFIM right at the zero-temperature disorder critical
point (like the previous work in lower dimensions) since the
scaling in the ferromagnetic and paramagnetic phases should
be trivial. We analyzed energetic and geometric properties of
the excitations using finite-size scaling. We compare the results
of different excitations, which should agree according to the
droplet picture, and verify the above-mentioned hyperscaling
relation. Also we compare the geometric (fractal) properties
of these excitations. Treating system sizes up to and above the
upper critical dimension allows us to observe the transition to
mean-field behavior.

To state the model in detail, the RFIM consists of N Ising
spins Si = ±1 located on the sites of a hypercubic lattice with
periodic boundary conditions (PBC) in all directions. The spins
couple to each other and to local net fields. Its Hamiltonian
reads

H = −J
∑
〈i,j〉

SiSj −
∑

i

(hεi) Si . (2)

It has two contributions. The first covers the spin-spin
interaction, where J is the ferromagnetic coupling constant
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between two adjacent spins and 〈i,j 〉 denotes pairs of next-
neighbor spins. The second part of the Hamiltonian describes
the coupling to local fields hi = hεi . The factor h is the
disorder strength, and εi the quenched disorder, i.e., Gaussian
distributed with zero mean and unit width.

This paper is organized as follows: In Sec. II we describe
in principle how the GSs are calculated. The following section
covers the definition and use of the different excitations and
their theoretical background. Then we state our results in
Sec. IV and finish with our conclusions and discussion.

II. GROUND STATES

The phase space of the RFIM consists of a ferromagnetic
phase and a paramagnetic phase. The transition from one phase
to the other takes place at a critical point Pc = (hc,Tc). The
transition can be triggered by varying the temperature T or
varying the standard deviation h of the disorder distribution.
From Ref. 33, it is known via renormalization group calcula-
tions that the critical behavior of the RFIM is controlled from
the zero-temperature fixed point. Hence, it is possible to focus
on T = 0 = const and vary h to study the phase transition.
Here, we concentrated on T = 0, h ≈ hc, to study excitations
right at at the critical point.

At T = 0 it is possible to calculate exact ground states in
a very efficient way. Following an approach from Refs. 34
and 35, a d-dimensional hypercubic realization of the disorder
{hεi} can be mapped to a graph with N + 2 nodes and (d +
2)N + 1 edges with suitable edge capacities, where N is the
number of spins of the RFIM. On this graph a sophisticated
maximum-flow/minimum-cut algorithm can be applied.36,37

The resulting minimum cut directly corresponds to the GS spin
configuration {Si} of that specific realization of the disorder.
For our simulations the implementation of the maximum flow
algorithm from the LEDA library38 is used. For the RFIM, the
actual runtime of the algorithm increases only slightly stronger
than linear with the number N of spins.39

III. DOMAIN WALLS AND DROPLET EXCITATIONS

We studied two types of excitations, domain walls and
droplets. The domain walls treated in this work separate spin
regions which are affected by changed (boundary) conditions
from unaffected spins. Following Ref. 7 we forced boundary
spins along distinct directions, i.e., up (+) or down (−), at
opposite boundaries. Hence, the PBC are released in that
direction, while they are preserved in the remaining d − 1
directions. We calculated the GSs for the four possible
combinations, +−, −+, ++, and −−. Three types of spin
regions can be distinguished. The first type can be flipped,
changing a single boundary condition, e.g., from ++ to +−.
We call these spin regions strong controllable. The second type
is just called controllable if it can be flipped by changing both
boundary conditions. The third type forms fixed, stable islands,
unaffected by any boundary-condition change. Examples for
regions of such spins are shown in Fig. 1.

We also compare two kinds of droplet excitations of the
GS. In both cases, first a GS {S(0)

i } is calculated for full PBC
of each realization.

−+

++

+

−

−

−

++

++

−

−
+ −

+

− −+ +−

−
+ −

+

−

−
+ −

+

− +−

−
+ −

+

+ −

FIG. 1. Fixing the boundary spins (black bars on the left and
right of every sketch) forces controllable spins to the direction of the
boundary sign. Areas with si = +1 are shaded gray, and areas with
spins si = −1 are white. The (d − 1)-dimensional surface between
spins of opposite direction is called the domain wall (black lines). In
some regions, the random fields may freeze the spins into boundary-
independent stable islands. Islands may include opposite-directed
islands. Hence, islands may also interfere with the domain wall. The
dashed lines signal the border of islands within an area of equally
oriented spins and, at the top and the bottom, the periodic boundary
conditions in the remaining d − 1 directions.

(i) The first type of excitation is obtained by now fixing
(L/3)d spins in the center opposite their ground-state orienta-
tion. This is inspired by the approach of Ref. 40 for a disordered
solid-on-solid model. This effect can be achieved conveniently
by applying strong local fields h̃i in the desired direction for
the fixed spins. Also, we fixed the spins on the hyperplanes of
the boundary in parallel to the GS orientation.20 Hence, now
the local fields read

hε′
i =

⎧⎪⎨
⎪⎩

−hbigS
(0)
i i ∈ center,

hbigS
(0)
i i ∈ boundary,

hεi otherwise,

(3)

where hbig is large enough that it fixes the GS orientation, e.g.,
hbig = J (2d + 1). Note that the spins inside the center area
create a contribution to the droplet energy via the local fields.
To exclude this unwanted effect, we set the local fields ε in
the center region to zero already for the first GS calculation
of {S(0)

i }. Via a recalculation of the GS of the modified system
({S ′

i}), i.e., for the fields hε′
i , this leads to a large excitation with

respect to the first GS {S(0)
i }. Note that the excitation does not

include the boundary; i.e., it is impossible that the full system
flips over. Below, we refer to these excitations as bulk-induced
droplets; see Fig. 2. From the definition it is clear that these
excitations involve O(L3) spins. Therefore, they come very
close to the definition of droplets in droplet theory.20,21 To our
knowledge, such droplets have not been studied for the RFIM.

(ii) The other type of excitation, called single-spin-induced
droplets, consists of flipping only the very center spin and
freezing it antiparallel to its ground-state orientation, again
including fixing boundary spins in parallel to the GS. In the
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island

forced spins

FIG. 2. Spinwise difference of the pure GS and a droplet.
Unchanged spins are shown as white areas (S(0)

i − S ′
i = 0), and

changed spins are displayed in gray (|S(0)
i − S ′

i | = 2). The excitation
is generated, freezing the spins on the boundaries to their pure GS
orientation, while the spins in a region in the center are frozen inverted
to their ground-state orientation (a black dot for the single-spin-
induced droplets and a dashed square for the bulk-induced droplets).
Under these frozen-spin constraints a new GS is calculated. This
new configuration is an excitation with respect to the original GS.
The resulting droplet may spread to an arbitrary shape with a fractal
surface. It also may contain islands.

same way as for the bulk-induced droplets, this is achieved by
applying strong local fields:

hε′
i =

⎧⎪⎨
⎪⎩

−hbigS
(0)
i i = center spin,

hbigS
(0)
i i ∈ boundary,

hεi otherwise.

(4)

The droplet created in such a way will include the center
spin, but not the boundary. Theses single-spin-induced droplets
will be usually smaller than the bulk-induced droplets. Such
excitations have been studied in d = 3 so far.30

Hence, for each realization {hεi} of the disorder, we
obtained seven different (ground-state) configurations for
different types of boundary conditions/constraints [PBC,
(++), (−−), (+−), (−+), bulk-induced droplets, and single-
spin-induced droplets]. Technically, to obtain the droplets, we
extracted the absolute differences between the spin config-
uration of two or more GSs via linear combinations of the
configurations. Spins with the same properties add to the
same value and form connected clusters. These clusters were
obtained using a breadth-first-search algorithm. In this way,
the calculation of geometric properties of the clusters was
very convenient. For the droplets, we measured the domain
wall enclosing the droplet, i.e., the droplet surface. In the case
of different boundary conditions, we are interested in different
definitions of the domain walls, i.e., separating uncontrollable
spins vs controllable spins and strongly controllable spins vs
controllable spins and islands, allowing us to measure different
related fractal exponents.

The surfaces are usually not flat or smooth; instead, a type of
disorder-averaged surface A◦ exhibits asymptotically a fractal

scaling behavior of the form

A◦ = c◦Ld◦ , (5)

where d◦ is the corresponding fractal dimension and c◦ is a
constant. Depending on the different boundary and droplet
conditions, several fractal exponents can be deduced. Partially
following the definitions of Ref. 7, we measured the following.

ds is the surface exponent describing the dimensionality
of the (hyper)surface of unchanged spins within two GSs of
++ and +− boundary conditions. Technically, we calculate
xi = |s++

i − s+−
i | = {0,2} and count the bonds between the

difference-zero cluster (unchanged spins) and difference-two
cluster (changed spins).

dI is the incongruent interface exponent describing the
dimensionality of the surface of unchanged spins within the
three GSs of ++, +−, and −− boundary conditions. This
domain wall does not include any parts of stable islands. In
detail, we calculate xi = s−−

i + s++
i − 2s−+

i + 4 = {2,4,6}.
xi results in 2 if si is strongly controllable. Spins with xi = 4
belong to a stable island and xi = 6 if si is just controllable.
For the incongruent boundary only the bonds between the
difference-two cluster and difference-six cluster are counted.

dJ is the exchange stiffness exponent, describing the scaling
behavior of the sum of signed bonds, positive in the +−
and −+ configurations and negative for the ++ and −−
configurations.

dB is the fractal exponent of the surface between all flipped
and unflipped spins, i.e., the number of bonds between these,
for bulk-induced droplets, including islands.

d
(o)
B is the same as dB, but excluding islands.

d1 is the fractal exponent of the surface between all
flipped and unflipped spins, induced by single-spin-induced
excitations, including islands.

d
(o)
1 the same as d1, but excluding islands.

In the case of droplet excitations, we measured additionally
the disorder-averaged volume V , i.e., the average number of
spins in the cluster of droplet spins.

In addition to the geometric properties of domain walls and
droplets we are interested in the stiffness exponent θ , and we
compare three different types of excitations. The first approach
is based on the symmetrized stiffness � defined by Middleton
and Fisher,7 i.e., the disorder-averaged symmetrized sum of
the boundary-condition-dependent energies.

� ≡ 〈E+− + E−+ − E++ − E−−〉 /2 , (6)

where Epq is the GS energy for boundary condition pq ∈
{+ + , − −, + −, − +} and 〈·〉 denotes the disorder average.

A detailed picture of the resulting configurations can be
found in Fig. 1. Close to criticality, the average stiffness can
be assumed to scale as7

�(L) ∼ Lθ , (7)

where θ denotes the stiffness exponent. According to droplet
theory, the energy for other types of excitations of the order of
system sizes should scale with the same exponent. Hence, for
the bulk-induced droplets, one should be able to observe

�EB(L) ∼ Lθ , (8)

where �EB is the average of the excitation energy of the
droplet, i.e., the energy of the droplet configuration for the
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original value of the fields minus the GS energy for the same
original values of the fields.

Note that the single-spin-induced droplets tend to be
small; i.e., they are not of the order of the system size.
Hence, one cannot directly measure θ from the scaling of the
droplet energy. Instead, for the third approach, we follow the
arguments of Ref. 30. Therein, it is shown that the distribution
of single-spin-induced droplet radii scales as p(R) ∼ R−θ .

IV. RESULTS

We performed exact ground-state calculations for

d = 3 : L = 8 · · · 128 with11×104 · · · 1 × 105,

d = 4 : L = 6 · · · 45 with 2×104 · · · 2×105,

d = 5 : L = 6 · · · 20 with 2×103 · · · 1×104,

d = 6 : L = 6 · · · 14 with 55 · · · 1×104,

d = 7 : L = 4 · · · 8with 1 ×103 · · · 1 × 104,

where the range of numbers indicates the number of re-
alizations of the disorder and the largest size exhibits the
smallest number of realizations. Note that for d = 4, we
studied L = 45 only for the bulk-induced droplets, whereas
we did not included results for bulk-induced droplets in d > 5.
In general, due to computer main memory restrictions we are
limited to system sizes below 5 ×106 spins. We start our
analysis with the geometric properties of the domain walls.

A. Domain walls

The surfaces of the three different defined boundary-
induced domain walls scale with plain and very clear power
laws. For example, the scaling of the simple domain wall,
i.e., (++)/(+−) (yielding the fractal exponent ds), is shown
in Fig. 3. Error bars41 were obtained as standard error bars
from the empirical variance. The other plots look quite the
same with the same precision. The scaling exponents ds , dJ ,
and dI were found with high statistical accuracy. They are
stated in Table I. Note that the upper limit for any fractal
dimension is d; hence the result for ds at d = 7 is an artifact
created by the small range of sizes which is accessible at
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FIG. 3. (Color online) Simple surface of domain walls. Most error
bars are smaller than the symbol size. The lines show power-law fits
according to Eq. (5).

TABLE I. Fit parameters for the scaling of the different surface
definitions, i.e., pure surface, �J , and the incongruent parts of the
domain walls.

d cs ds cJ dJ cI dI

3 0.90(3) 2.367(9) 5.9(2) 2.178(8) 0.96(3) 2.28(1)
4 0.674(8) 3.924(3) 9.0(2) 3.001(7) 1.261(6) 3.231(2)
5 0.98(2) 4.96(1) 11.7(1) 3.800(4) 1.97(1) 3.925(3)
6 1.37(9) 5.88(3) 16.2(8) 4.56(2) 3.5(2) 4.51(3)
7 1.11(9) 7.06(7) 15(1) 5.57(4) 3.3(3) 5.49(5)

this high dimension. Also, the obtained exponents depend
on the fit range, reflecting possible systematic correction to
the limiting scaling behavior of Eq. (5). To estimate such
systematic errors, we have performed fits for different ranges,
leading to the final results which are displayed in Table II.
Given this accuracy, the results for dJ may dI agree or differ,
particularly in large dimensions (see discussion in Sec. V), but
ds differs, comparable to the previously obtained results7,11 for
d = 3,4.

We continue by calculating the stiffness exponents. First,
the well-established ansatz according to Eq. (6) is used for
d = 3,4,5,6,7. Our data show well-behaved power laws in
each dimension; see Fig. 4. The fits of the data points follow
Eq. (7), and the parameters are stated in Table III, where the
resulting estimate for the stiffness exponent θ is denoted θdw.
Varying the ranges of fitted sizes leads to the final estimates,
again stated in Table II.

B. Droplets

Concerning the droplet behavior, we start with the fractal
surface properties of the droplets. We start by using a scatter-
plot to obtain the relation between the surface and volume of
single-spin-induced droplets. Theoretically, it should follow a
power law of the form

A ∼ V d1/d . (9)

The fractal surface exponents with and without stable islands
can be obtained this way, depending on whether the islands
are included in the calculation of A. Indeed, the results exhibit

101

102

103

104

 10  100

Σ

L

7d
6d
5d
4d
3d

FIG. 4. (Color online) Stiffness, as defined in Eq. (6). Most error
bars are smaller than the symbol size. Lines display results of fits to
power-laws according to Eq. (7).
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TABLE II. Previous results7,11,13 compared to our final results. The first part of the final results contains different estimates for the stiffness
exponent, while the second part contains measurements for the fractal properties of domain walls. Note that the values stated here differ usually
from the values given in the lists of fit parameters since the former include systematical errors, which were estimated by varying the range of
fitted system sizes and observing the change of the resulting parameters.

d = 3 d = 4 d = 5 d = 6 d = 7

Previous results
hc 2.28(1) 4.18(1) 6.02(2) 7.78(1) 9.48(3)
β 0.017(5) 0.13(5) 0.25(1) 0.50(5) 0.50(5)
γ 1.98(7) 1.57(10) 1.3(1) 1.07(5) 1.0(2)
α 0 0 0 0 0
ν 1.37(9) 0.78(10) 0.60(3) 0.50(5) 0.47(5)
θ̃ = γ /ν 1.4(2) 2.0(4) 2.3(3) 2.1(5) 2.2(5)
Final results
θE 1.49(3) 1.81(6) 2.03(2) 2.42(2) 2.42(2)
θdw 1.44(2) 1.75(2) 2.15(1) 2.60(2) 3.5(1)
dJ −1/ν 1.4(1) 1.65(15) 2.1(1) 2.5(2) 3.5(1)
θB 1.51(2) 1.8(1)

ds 2.37(2) 3.92(6) 4.9(2) 5.8(8) 6.9(2)
d1 2.32(1) 3.73(10) 4.9(1) 5.9(1) 6.9(1)
dB 2.35(2) 3.79(4) 4.6(1)
dJ 2.14(3) 2.93(2) 3.79(2) 4.54(2) 5.5(1)
dI 2.25(2) 3.23(1) 3.92(1) 4.5(2) 5.4(2)

clear power laws; see Fig. 5. Additionally, for each dimension
the data points for other system sizes L scatter around the
same line. The fit parameters are listed in Table IV for fixed
system sizes. The fractal exponents with and without enclosed
islands do not differ significantly. We have observed slight
changes in the value of d1 when varying the system size L

(unless using very small system sizes where the fitted value
of d1 is much smaller). Hence, the final values we quote (c.f.
Table II) are slightly different and involve larger error bars
than the pure statistical error bars. When approaching large
dimensions ds gets close to the dimension of the system,
particularly right at the upper critical dimension. The result
for the fractal dimensions is, given the unknown correlations
to scaling, in fair agreement with the results for ds , as shown
in Table I.

The bulk-induced droplets have the disadvantage that a
smaller effective range of sizes if accessible: The minimal
system size to generate such a droplet excitation must be L =
6. In the linear direction, one spin is used to fix the boundary
and at least one other is needed at the very center to form the
“large core.” Therefore, only two spins in each direction are
left to form the droplet. In the same way, also for larger sizes,
the volume available for the droplets to form is smaller, leading
to stronger finite-size corrections; see below. This means, for
d > 5, that the range of system sizes (L � 6) is too small to

TABLE III. Fit parameters for θ according to Eq. (7).

d a θdw

3 2.42(1) 1.442(2)
4 4.40(3) 1.760(3)
5 7.97(5) 2.146(3)
6 14.6(5) 2.60(1)
7 14.3(6) 3.45(2)

observe the leading scaling behavior. Hence, we restrict our
analysis of the bulk-induced droplets to d = 3,4 and d = 5.

In Fig. 6 a scatterplot of the enclosing surface as a function
of the volume can be seen. For the fits the ansatz according
to Eq. (9) was made, but using dB instead of d1. The fit
parameters can be obtained from the large number of data
points by using the data points for all system sizes in one fit,
with high statistical accuracy. The fit parameters can be found
in Table V. Given the small ranges of system sizes here and
unknown corrections to scaling, the agreement with the results
for the single-spin-induced droplets is fair.

Systematic finite-size corrections are neglected by this
single fit of the scatterplot data. Hence, to estimate these
corrections, leading to the results stated in Table II, we
proceeded as follows: Instead of observing the scatterplot, the
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FIG. 5. (Color online) Scatterplot of the enclosing surface, i.e.,
not counting islands inside the droplet, of single-spin-induced
droplets as function of their volume. The surface is scaled with a factor
of k = 1,2,4,8,16 for d = 3,4,5,6,7 to separate the data visually.
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TABLE IV. Fit parameters for the scaling of the enclosing surface
and ragged surface for single-spin-induced droplets, calculated for a
large system size with a high sample number, with system sizes as in
Fig. 5.

d c1 d1 c
(o)
1 d

(o)
1

3 6.07(2) 2.32(1) 6.02(2) 2.33(1)
4 6.88(1) 3.70(1) 6.87(1) 3.70(1)
5 8.15(3) 4.87(1) 8.51(2) 4.87(1)
6 10.13(1) 5.91(1) 10.13(1) 5.91(1)
7 12.49(3) 6.88(1) 12.53(3) 6.86(1)

mean of the enclosing surface can be analyzed as a function
of the system size. A power law AB(L) = cB(L − L0)dB

leads to the best fits. The length-scale correction L0 covers
finite-size effects. Of course, an ansatz using a correction
term cBLdB (1 + c2L

d ′
) can be used too, but the correction

term involves one more parameter. Anyway, fitting AB(L)
leads to similar exponents compared to those obtained from
the scatterplot; see Table VI. Again, the results for the
different approaches for surface measurement do not lead to
significantly different results.

Next, we discuss the energetic properties of droplets to
estimate the stiffness exponent θ . The singe-spin droplets
are known to be very small.30 This property prohibits the
direct measurement of the stiffness exponents from the relation
of droplet energy to linear droplet size. Nevertheless, the
distribution of droplet radii R follows30 approximately a power
law P (R) ∼ R−θ when the data are binned logarithmically.
Hence, we obtained the distribution of droplet radii. For
d = 3,4,5 a logarithmic binning of the data points is possible.
For larger dimensions, the achievable system sizes seem to be
too small to get a histogram of sufficient statistical quality.
The histograms can be seen in Fig. 7. There exist regions
in which the radii distribution follows R−θ when using the
values for θdw obtained from the domain-wall measurements.
This confirms the results of Ref. 30 for higher dimensions,
d = 4,5. Nevertheless, the distribution itself is not sufficient
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FIG. 6. (Color online) Scatterplot of the enclosing surface of
bulk-induced droplets as a function of their volume for d = 3,4,5.
The bottom right labels show system sizes of the 3d data, and the top
left labels show those for 5d; 4d is unlabeled.

TABLE V. Fit parameters for scaling the enclosing surface and
ragged surface for bulk-induced droplets. For d > 4, high-quality
data are not available for large-enough system sizes.

d cB dB c
(o)
B d

(o)
B

3 4.300(4) 2.3282(2) 2.761(3) 2.660(2)
4 4.085(3) 3.7257(2) 4.024(3) 3.7328(2)
5 6.10(3) 4.758(2) 6.10(3) 4.758(2)

to determine the stiffness in a meaningful way if the values of
θ were not known from other sources.

For the bulk-induced droplets, their length scale is fixed to
be O(L), as assumed in droplet theory.20,21 Hence, one could
hope that the scaling of the droplet energy is governed by
the (stiffness) exponent θ . We looked at the scaling of the
difference between the GS energies of the original system
and the GS for the bulk-induced droplets (calculated with
the original set of random fields). The resulting average bulk
droplet energies �EB are shown in Fig. 8 for d = 3,4. A
clear curvature is visible; hence there are strong finite-size
corrections to Eq. (8). This can be explained by the fact
that, due to the extensive size of the center area, the effective
volume which is accessible for the droplet to arrange is much
smaller. In particular this means that for the higher dimension
d > 4 the linear sizes L which are accessible are too small
to come even just near the final scaling behavior. Hence, we
have restricted ourselves for the energetic properties of the
bulk-induced droplets to dimensions d = 3 and 4. To include
corrections to scaling, we fitted the data by using

�EB = a(L − L0)θB ; (10)

see Table VII. This fit approximately and heuristically de-
scribes the situation where the data are compatible with a
power law only beyond a system size L � L0, and it has
already been used in finite-size data analysis in the past
(see, e.g., Refs. 42 and 43). The minimum system size Lmin

which was included in the fit was chosen such that the fitting
quality (measured by the weighted sum of square residuals per
degree of freedom, denoted as WSSER/NDF in GUNPLOT) was
acceptable, i.e., around 1. To estimate systematic corrections,
we also performed fits for larger values of Lmin, leading to
the final results for θB as stated in Table II. We also tried a
more standard scaling form �E′

B = a′Lθ ′
B (1 + eL−f ), which

carries one additional parameter. Nevertheless, the quality of
the fit was smaller compared to the scaling form (10). Also, the
resulting values of θ ′

B = 1.43(15) (d = 3) and θ ′
B = 1.74(35)

(d = 4), although compatible with the values obtained from
fitting to (10), exhibit much less accuracy. Hence we decided

TABLE VI. Fit parameters for scaling the enclosing surface and
ragged surface for bulk-induced droplets when scaling the surface
as a function of system size. For d = 6,7, a large-enough range of
system sizes is not available.

d cB L0 dB c
(o)
B L

(o)
0 d

(o)
B

3 1.37(8) 2.2(1) 2.35(2) 1.02(6) 1.88(9) 2.44(1)
4 0.49(5) 1.50(9) 3.79(3) 0.48(5) 1.49(9) 3.80(3)
5 0.8(2) 2.0(1) 4.54(6) 0.8(2) 2.0(1) 4.54(6)
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FIG. 7. (Color online) Number of single-spin-induced droplets
with a radius in a specific interval for d = 3, L = 96; d = 4, L = 24;
and d = 4, L = 13. The last two were down scaled by a factor 10
and 20, respectively. The lines are power laws using the stiffness
exponents.

to finally state the results obtained from using the less common
scaling form (10). Within error bars, these resulting values for
the droplet stiffness are compatible with the results obtained
for the domain walls. Hence, it appears that indeed the basic
assumption of the droplet theory is true, that different types of
excitations are universally described by the same exponents.

C. Scaling of ground-state energy

There seems to exist a third alternative way of determining
the stiffness exponent, not related to externally induced
domain walls and droplets. For spin glasses in finite and
low dimensions with PBC, it has been conjectured44 and
numerically observed for two dimensions45 that the finite-size
behavior of the (total) GS energy EL of the unperturbed system
is given by

EL = E∞ + aLθ . (11)

10 100
L

10
2

10
3

10
4

ΔE
B

d=4
d=3
fits

FIG. 8. Scaling of the excitation energy �EB of bulk-induced
droplets for d = 3 and d = 4. Lines show fits to power laws �EB ∼
(L − L0)θ , with θ = 1.50 (3d) and θ = 1.91 (4d).

TABLE VII. Fit parameters for scaling the droplet energy accord-
ing to Eq. (10). The fits were performed for a range of system sizes
ranging from Lmin to the largest system sizes considered here.

d Lmin a L0 θB

3 15 5.34(15) 2.42(10) 1.501 (7)
4 12 7.41(18) 2.75 (5) 1.91 (1)

The explanation is that the PBC induce “hidden” domain
walls (with respect to free boundary conditions) which
dominate the finite-size corrections above higher-order con-
tributions. Hence, we have reanalyzed the data of previous
work.6,10,13 The results of θ from fitting (11) to the GS energies
can be found in Fig. 9; its exponents are given as θE in
Table II. Compared with the results for the stiffness exponent
θdw, the assumptions seem to be indeed true for d < du = 6
and maybe also at d = du (given that we state here only
statistical error bars, true error bars are likely larger). The
assumption of Eq. (11) is certainly not true above the upper
critical dimension. It seems rather that the exponent for the GS
energy finite-size correction attains some mean-field value for
d � du. Interestingly, θE agrees within the error bars with γ /ν

in all dimensions d = 3, . . . ,7.

V. CONCLUSION AND DISCUSSION

To calculate the ground states of the RFIM numerically,
we applied a well-known mapping to the maximum-flow
problem. Using efficient polynomial-time-running maximum-
flow/minimum-cut algorithms, we were able to study large sys-
tems sizes up to 5 × 106 spins in exact equilibrium at T = 0.

Comparing the GS configurations obtained from different
constraints leads to suitably defined domain-wall and droplet
excitations. We obtained fractal surface exponents and the
stiffness exponent in d = 3,4,5,6,7 for these excitations;
see the final results in Table II. The values for domain walls
stated in the literature7,11 for d = 3,4 could be recovered. For
all dimensions, different types of excitations are described,
within the error bars, by the same value of the stiffness
exponents, as assumed by droplet theory.20,21 In particular,

-8.3

-8.2

4 6 8  10  12  14

L

d=7

-7

-6.9

-6.8

e h
c(L

)

d=6

-5.6

-5.5

d=5

FIG. 9. (Color online) Scaling of the ground-state energy at the
critical point. The lines show fits to Eq. (11).
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(bulk-induced) droplet excitations have been calculated for
the RFIM and have been found to be compatible with domain
walls. Also, the result for θdw is compatible with the scaling
relation dJ − 1/ν, which is fulfilled within the error bars
for all dimensions. Furthermore, the scaling inequality46,47

d/2 − β/ν � θ � θ/2 is fulfilled in all dimensions.
On the other hand, the hyperscaling relation (1) is fulfilled

within error bars only for d = 3,4,5 but not for d = 6,7.
Usually, hyperscaling relations involving the dimension d

are not valid in the mean-field regime, i.e., above the upper
critical dimension. Right at the upper critical dimension,
where (1) predicts θ = 2, logarithmic corrections become
important;48–50 hence one has presumably to reach large
system sizes to observe the leading behavior. Here, by studying
system sizes L � 14 we reach the limit of our numerical
resources (meaning that we are able to obtain exact ground
states for systems having more than 7 ×106 spins). Thus, it
seems extremely impossible with current resources and known
algorithms to verify whether the apparent failure of hyperscal-
ing at d = 6 is only due to strong finite-size corrections.

Also, the fractal properties of the droplets and domain walls
found for lower dimensions extend to larger dimensions. In

particular, the “geometrically” measured values ds , d1, and
dB agree for all dimensions within the error bars. Finally, the
values for dI and dJ , measuring different fractal properties of
the domain walls, are clearly different within the error bars
from ds , d1, and dB. Also, below the upper critical dimension
du = 6, dI and dJ are different from each other within the
error bars, while the values are compatible with each other for
d � 6. This seems to be another property of the mean-field
limit, that certain properties which are different for d < du

agree for d � du.
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38K. Mehlhorn and S. Näher, The LEDA Platform of Combina-

torial and Geometric Computing (Cambridge University Press,
Cambridge, 1999).

39A. A. Middleton, Phys. Rev. Lett. 88, 017202 (2001).
40K. Schwarz, A. Karrenbauer, G. Schehr, and H. Rieger, J. Stat.

Mech. Theory Exp. (2009) P08022.
41A. K. Hartmann, A Practical Guide to Computer Simulation (World

Scientific, Singapore, 2009).
42S. V. Buldyrev, S. Havlin, E. López, and H. E. Stanley, Phys. Rev.
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