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Anomalous magnetoresistance in Fibonacci multilayers
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We theoretically investigated magnetoresistance curves in quasiperiodic magnetic multilayers for two different
growth directions, namely, [110] and [100]. We considered identical ferromagnetic layers separated by
nonmagnetic layers with two different thicknesses chosen based on the Fibonacci sequence. Using parameters for
Fe/Cr multilayers, four terms were included in our description of the magnetic energy: Zeeman, cubic anisotropy,
bilinear coupling, and biquadratic coupling. The minimum energy was determined by the gradient method and
the equilibrium magnetization directions found were used to calculate magnetoresistance curves. By choosing
spacers with a thickness such that biquadratic coupling is stronger than bilinear coupling, unusual behaviors for
the magnetoresistance were observed: (i) for the [110] case, there is a different behavior for structures based on
even and odd Fibonacci generations, and, more interesting, (ii) for the [100] case, we found magnetic field ranges
for which the magnetoresistance increases with magnetic field.
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I. INTRODUCTION

The study of magnetic multilayers has been the focus
of much attention since the discovery of antiferromagnetic
bilinear coupling between magnetic Fe layers separated by
nonmagnetic Cr layers.1 The subsequent discovery of giant
magnetoresistance (GMR),2 which allowed the electrical
resistance in these systems to be controlled through external
magnetic fields, led to several applications, particularly in the
field of information storage. In 1990, Parkin et al.3 showed
that depending on spacer thickness, bilinear coupling between
magnetic films oscillated between being ferromagnetic and
antiferromagnetic. One year later, Rührig et al.4 discovered a
form of coupling (later called biquadratic coupling) in which,
for certain spacer thickness, noncollinear coupling existed
between the magnetic films, resulting in a 90◦ angle between
the magnetization of adjacent films.

Around the same time, other important breakthroughs
were being made in what was then an unrelated field. The
discovery of quasicrystals by Shechtman et al.5 in 1984
confirmed the existence of an intermediate phase between
ordered crystals and disordered solids. A year later, Merlin
et al.6 reported performing a quasiperiodic superlattice fol-
lowing the Fibonacci sequence. More recently, quasiperiodic
Fe/Cr magnetic multilayers with biquadratic coupling were
grown experimentally,7 illustrating the development of crystal-
growth techniques, which allow substantial thickness control
for each layer.

The magnetic properties of multilayers can depend signif-
icantly on the stacking pattern of their layers, which can now
be tailored in unusual stacking arrangements. For instance, a
quasiperiodic stacking pattern in Fe/Cr magnetic multilayers
induces new magnetic phases, which would not be observed
in a periodic arrangement. The consequences of these new
phases are observed in the static8 and dynamic properties9

of these magnetic structures. As previously mentioned, the
spacer thickness greatly influences the property of these
multilayers; a relevant question that naturally arises is what
are the consequences of a quasiperiodic stacking pattern of the

nonmagnetic spacers? This paper investigates a new stacking
pattern with varying spacer thickness. In our model, the spacer
can have one out of three different thicknesses, which results
in variations of the relative strength of bilinear and biquadratic
couplings. The nonmagnetic layers are arranged in a Fibonacci
quasiperiodic sequence, and interesting properties emerge for
specific combinations of spacers. Furthermore, results were
obtained for two different growth directions, namely, [100]
and [110].

This paper is organized as follows. In Sec. II we discuss
the theoretical model, with emphasis on the description of the
quasiperiodic sequences and the crystallographic orientations
considered here. The numerical method, used to obtain the
equilibrium configurations, is described in Sec. II as well. The
numerical results are described in Sec. III, and our findings are
summarized in Sec. IV.

II. THEORY

A quasiperiodic multilayer can be built by juxtaposing two
building blocks (A,B) following a quasiperiodic sequence.
The Fibonacci sequence is widely used, with building blocks
transforming according to the following rule: A → AB, B →
A. The first Fibonacci sequence is S1 = A, the second is
S2 = AB, the third is S3 = ABA, and so on. A more detailed
description of quasiperiodic sequences can be found in Ref. 10.

In the present study, nonmagnetic Cr layers, between fer-
romagnetic Fe layers, were chosen with thicknesses following
the Fibonacci sequence. A is a Cr layer with thickness t1
and B is a Cr layer with thickness t2. For instance, the
multilayer Fe/Cr(t1)/Fe/Cr(t2)/Fe/Cr(t1)/Fe, corresponds to
Fe/A/Fe/B/Fe/A/Fe. Illustrations of multilayers with non-
magnetic layers following sequences S1, S2, S3, and S4 are
shown in Fig. 1.

In order to describe the magnetic behavior of these
multilayer systems, we considered four terms in the magnetic
energy: the Zeeman term (owing to interaction between the
magnetization of the ferromagnetic films and the applied
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FIG. 1. (Color online) Schematic multilayers constructed follow-
ing the Fibonacci sequence. (a) and (b) correspond to S1, with one
representing Cr thickness equal to t1 = 3.0 nm and the other for
Cr thickness equal to t2 = 1.5 nm. (c) S2 and (d) S3 depict the
magnetic counterpart of the second and third Fibonacci sequence,
respectively.

external magnetic field), the cubic anisotropy term (due to
interaction between the crystalline structure and electronic
spins), and the two aforementioned terms that couple the
magnetization of Fe layers separated by Cr layers, namely,
bilinear and biquadratic couplings. Considering these terms,
the total magnetic energy can be written as11

ET

dMS

=
n∑

i=1

[
−H0 cos(θi − θH ) + Hac

8
sin2(2θi)

]

+
n−1∑
i=1

[ − Hbli cos(θi − θi+1) + Hbqi
cos2(θi − θi+1)

]

(1)

for the [100] direction, and

ET

dMS

=
n∑

i=1

[
−H0 cos(θi − θH ) + Hac

8
(cos4 θi + sin2 2θi)

]

+
n−1∑
i=1

[ − Hbli cos(θi − θi+1) + Hbqi
cos2(θi − θi+1)

]

(2)

for the [110] direction. A comparison of the two equations
shows that the cubic anisotropy terms depend on the growth
direction. A thorough description of how this term is calculated
for both growth directions can be found in Ref. 11. In these
equations, d represents the thickness of the Fe layers (which
in our model is constant), MS is the saturation magnetization,
n is the total number of ferromagnetic films, H0 is the external
magnetic field that we consider to be maintained within the
plane of the films (in our case the x-z plane; see Fig. 1),
θH is the angle between the external magnetic field and the
z axis, Hbl is the bilinear coupling term that gives rise to
parallel (antiparallel) magnetization alignment of adjacent
Fe films if positive (negative), and Hbq is the biquadratic
coupling term aligning the magnetization of adjacent Fe films
in a perpendicular manner. Hca measures the strength of the
cubic anisotropy field and, for the [100] case, tends to align
magnetization of the films parallel to the crystalline axis (either
x or z); whereas, in the [110] case, the magnetization tends to
be aligned parallel to the x direction (although there is a local
minimum along the z direction, and a maximum at θ ≈ 35◦). In
accordance with the values given by Refs. 12 and 13, we used
the numerical value of Hca = 0.5 k Oe and selected θH = 0
for both cases (this means the field is applied in the easy axis
for the [100] case and in the intermediate axis in the [110]
case).

Another important aspect of these equations is that the
bilinear and biquadratic fields change from one pair of layers
to the next. This is due to the varying spacer thicknesses since,
as previously mentioned, the values of these coupling terms
strongly depend on this thickness. We performed calculations
for three different values of spacer thickness:

(1) t = 1.0 nm for which Hbq = 0.1|Hbl | with Hbl =
−1.0 k Oe,

(2) t = 1.5 nm for which Hbq = 0.3|Hbl | with Hbl =
−0.15 k Oe,

(3) t = 3.0 nm for which Hbq = |Hbl| with Hbl =
−0.035 k Oe.

These values are the same as those found in Refs. 12 and 13.
In general, if we choose the second set for Cr layers that
correspond to A and the third set for Cr layers that correspond
to B, we obtain different results from those we would have
obtained if we had chosen the third set for A and the second
set for B. This means there is a total of six sets of parameters.
We found more interesting results for the case where the
biquadratic is relatively strong.

In order to calculate magnetoresistance for these multilayer
systems, we need the set {θi} of equilibrium angles that
minimize Eq. (2) [or Eq. (3)]. As the number of ferromagnetic
films rises, the computational cost of numerically minimizing
these equations increases, requiring an efficient method of
calculating this minimum. As such, we applied the gradient
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method, which takes into account the gradient of ET in relation
to the set {θi},

�∇ET =
n∑

i=1

∂ET

∂θi

θ̂i . (3)

A brief description of this algorithm is as follows:
(i) An initial set of angles was randomly chosen, {θi}0.

These were used to calculate an initial energy E0.
(ii) The gradient of the magnetic energy was calculated,

�∇ET , and the set {θi}0 was employed to find its numerical
value �∇ET ({θi}0).

(iii) We applied the calculated energy and gradient to
find the next set of angles, {θi}1, using {θi}1 = {θi}0 −
α �∇iET ({θi}0) for each ferromagnetic film.

(iv) The energy E1 was then calculated based on this new
set of angles. If E1 < E0, then this energy and the new set of
angles were stored, otherwise we halved the value of α and
repeated step (iii).

(v) This process was repeated until α was smaller than a
given tolerance.
A complete discussion of this method can be found in
Ref. 10.

Theoretically, it is well known that spin-dependent scat-
tering is responsible for the magnetoresistance (MR) effect in
these multilayers.14 It was also shown that MR varies linearly
with cos(�θ ) when electrons form a free-electron gas, i.e.,
there are no barriers between adjacent films.15 Here, cos(�θ )
is the angular difference between adjacent film magnetizations.
In metallic systems such as Fe/Cr, this angular dependence is
valid, and, once the set {θi} of equilibrium angles is determined,
we obtain normalized values for magnetoresistance,8 i.e.,

MR(H0) = R(H0)/R(0) =
∑n−1

i=1 [1 − cos(θi − θi+1)]

2(n − 1)
, (4)

where R(0) is the electric resistance at zero field.

III. NUMERICAL RESULTS

Although calculations were performed with several differ-
ent sets of parameters, the remainder of this paper focuses
on only one of these, since we determined this is sufficient to
illustrate our system’s most relevant properties. We selected the
second set of parameters for Cr films associated with A letters
of the quasiperiodic sequence and the third set of parameters
for Cr films associated with B letters of the quasiperiodic
sequence. From now on, we label them as Cr(A) and Cr(B),
respectively.

A. [110] cubic anisotropy

Let us discuss our numerical results for the magnetoresis-
tance in the case of the [110] growth direction. These results
are illustrated in Figs. 2 and 3. In Fig. 2, we present the
magnetoresistance considering the Cr layers following the
fourth and sixth Fibonacci generations, which means 6 and
14 Fe films, respectively. As we can see, all transitions are
of the first-order type, characterized by discontinuous jumps
in the magnetoresistance. For the fourth generation of the
Fibonacci sequence (S4 = ABAAB), which is illustrated in
Fig. 2(a), in the small field region, the magnetoresistance

FIG. 2. Normalized magnetoresistance curves for growth direc-
tion [110] for the (a) fourth and (b) sixth Fibonacci generations.

value is 1 because all magnetizations are antiparallel to
each other at zero field. As the external magnetic field
increases (∼80 Oe), a transition takes place to a magnetic
phase in which the magnetization of the bottom layer is
aligned with the field. We can observe that, increasing the
magnetic field, more transitions take place and the saturated
phase emerges when H0 � 570 Oe. A similar behavior is
observed for the sixth generation of the Fibonacci sequence
(S6 = ABAABABAABAAB), which is shown in Fig. 2(b).
As in the fourth-generation case, in the low-field region,
the magnetizations are in the antiferromagnetic configuration.
As the field increases, ten different transitions are observed,
from the antiferromagnetic configuration (H0 < 90 Oe) to the
saturated regime (H0 � 570 Oe). It is easy to note the self-
similar pattern, which is the basic signature of a quasiperiodic
system, present in Fig. 2, i.e., the magnetoresistance profile of
the fourth generation is reproduced in the magnetoresistance
profile of the sixth generation. Let us now take a look
at the results for the magnetoresistance considering the Cr
layers following the fifth (S5 = ABAABABA) and sev-
enth (S7 = ABAABABAABAABABAABABA) Fibonacci
generations, which means 9 and 22 Fe films, respectively.
These results are illustrated in Fig. 3. Once again, there
is a clear self-similar pattern which is shown in Fig. 3,
i.e., the magnetoresistance profile of the fifth generation is
reproduced in the magnetoresistance profile of the seventh
generation. One can observe that in the low-field region, the
central magnetoresistance step is much larger than the case of
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FIG. 3. Normalized magnetoresistance curves for growth direc-
tion [110] for the (a) fifth and (b) seventh Fibonacci generations.

even generations. This is because the even generations of
the Fibonacci sequence are terminated by B. This letter is
associated with the third set of parameters (lower values of
Hbl and Hbq). As a consequence, the Fe film at the bottom of
the multilayer is weakly coupled to its only adjacent Fe film,
and a lower magnetic field is enough to induce a transition.
Therefore, if we compare Figs. 2 and 3, we can see that
structures built using even and odd Fibonacci generations
present different profiles for the magnetoresistance. Moreover,
we can also remark that there are two self-similar patterns: one
for the even generations and another for the odd generations.
As explained above, this is also a consequence of the subtle
difference between even and odd Fibonacci generations. Such
behavior had been observed previously in the specific heat of
quasiperiodic magnetic superlattices.16

B. [100] cubic anisotropy

Figure 4 depicts the (a) fourth and (b) fifth Fibonacci gen-
erations obtained for the growth direction [100]. It illustrates a
number of interesting properties. As in the [110] case, there are
various first-order phase transitions, which are proportional to
the number of ferromagnetic layers. Much more interesting,
however, is the behavior of the magnetoresistance in the
low-magnetic-field region. Figure 4 shows, for both fourth and
fifth generations, a region where one can see a positive change
of the magnetoresistance, i.e., a region where an increase
in the magnetic field leads to a rise in magnetoresistance,
that is, �MR/�H > 0. In order to understand these positive
changes in magnetoresistance, it is necessary to analyze the

FIG. 4. Normalized magnetoresistance curves for growth direc-
tion [100] for the (a) fourth and (b) fifth Fibonacci generations.
Positive magnetoresistance changes are evident.

magnetization behavior of the various films. Figure 5 shows
a diagram of the fourth Fibonacci generation, illustrating the
magnetization direction of each ferromagnetic layer. The num-
bered arrows indicate the magnetization direction of different
layers. For example, number 1 represents the first layer, on
the top, and number 6 represents the last layer, on the bottom,
of the multilayer. Once the cubic anisotropy is dominant, all

FIG. 5. Diagram of the fourth Fibonacci generation (growth
direction [100]). The magnetization of each ferromagnetic layer is
represented schematically by an arrow.
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magnetizations remain close to a crystalline axis, as observed
in the diagram. For low magnetic field, the Zeeman term is not
important and it can be ignored. As a consequence, the film
magnetizations tend to form a configuration that minimizes the
bilinear and biquadratic energies. For Cr(A), the sum of the two
terms is minimized when θi − θi+1 = 180◦, whereas for Cr(B),
the sum of the two terms is minimized when θi − θi+1 = 90◦.
In Fig. 5, one can observe that in the low-field region, the
film magnetizations are not in the antiparallel configuration
because of two Cr(B) spacers in the multilayer. As the
magnetic field increases, the Zeeman energy plays a more
important role. A transition takes place for H ∼ 46 Oe. For
this configuration, all magnetizations, except for the bottom
film magnetization, are in the antiparallel configuration. Thus,
the magnetoresistance increases, resulting in a transition with
�MR/�H > 0. When the magnetic field reaches 90 Oe,
a second transition takes place. In this configuration, only
the fourth Fe film changes its magnetization antiparallel to
the magnetic field. Therefore, the magnetoresistance drops
to ∼0.64. With a further increase of the magnetic field, it
becomes energetically too costly for the film magnetizations
to be opposite to the external field. This implies that the
next transition, which takes place for H ∼ 130 Oe, leads
to a configuration for which there is no film magnetization
antiparallel to the external magnetic field. However, most
of the magnetizations are orthogonal to each other. As a
consequence, according to Eq. (4), the magnetoresistance
of this configuration is higher than the previous one. Once
again, we observe a transition with �MR/�H > 0. As the
magnetic field increases, the film magnetizations gradually
become aligned with the field, and the magnetoresistance
monotonically decreases with the magnetic field. Saturation
is reached for HS ∼ 450 Oe. An analogous analysis applies
to the fifth generation of the Fibonacci sequence depicted in
Fig. 4(b).

IV. CONCLUSION

In summary, we studied quasiperiodic magnetic multi-
layers, composed of ferromagnetic Fe layers separated by
nonmagnetic Cr layers. The nonmagnetic Cr layers were
arranged according to the Fibonacci quasiperiodic sequence,
such that the letters A and B in the sequence correspond to Cr
layers with thicknesses t1 and t2, respectively. The Fe layers
are between Cr layers as well as on the top and bottom of the

multilayer structure. The calculation is based on a phenomeno-
logical model which includes the following contributions to the
magnetic energy: Zeeman, cubic anisotropy, and bilinear and
biquadratic exchanges. The magnetic energy was minimized
using the gradient method and the resulting equilibrium
angles were used to calculate magnetoresistance curves for
the system. We selected a particular set of parameters such
that the thickness of the Cr(A) layer corresponds to Hbq =
0.3|Hbl | and the thickness of the Cr(B) layer corresponds
to Hbq = |Hbl|. These two sets of exchange couplings are
responsible for the exchange energies between two adjacent
Fe films. We numerically calculated the magnetoresistance
curves assuming two possible crystallographic orientations,
namely, [110] and [100]. Our results show that quasiperiodic
magnetic multilayers exhibit a rich variety of configurations
induced by the external magnetic field. In particular, two points
may be emphasized: (i) the well-defined even and odd parity
observed in the behavior of the magnetoresistance curves
and (ii) the positive change of the magnetoresistance with
�MR/�H > 0.

As illustrated in Figs. 2 and 3, magnetoresistance curves for
odd and even Fibonacci generations show different profiles.
This is a consequence of the quasiperiodic sequence itself,
since even generations of the sequence terminate with B,
while odd generations start and end with A. This subtle
difference is responsible for the well-defined even and odd
parity related to the generation number of the Fibonacci
structure. A similar parity had been observed previously in
the specific heat of quasiperiodic magnetic superlattices.16 On
the other hand, a much more interesting and novel behavior
is the positive change of magnetoresistance characterized by
�MR/�H > 0, illustrated in Figs. 4 and 5. Our numerical
results showed that in the low-field region, the transitions,
induced by the increase of the magnetic field, may lead to a
magnetic configuration with a higher magnetoresistance. This
is a direct consequence of the quasiperiodic distribution of the
Cr layers in the multilayer structure.
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L. Albuquerque, Phys. Rev. B 60, 9264 (1999); C. G.
Bezerra and M. G. Cottam, J. Magn. Magn. Mater. 240, 52
(2002).

224416-5

http://dx.doi.org/10.1103/PhysRevLett.57.2442
http://dx.doi.org/10.1103/PhysRevLett.61.2472
http://dx.doi.org/10.1103/PhysRevLett.61.2472
http://dx.doi.org/10.1103/PhysRevB.39.4828
http://dx.doi.org/10.1103/PhysRevLett.64.2304
http://dx.doi.org/10.1103/PhysRevLett.64.2304
http://dx.doi.org/10.1002/pssa.2211250225
http://dx.doi.org/10.1002/pssa.2211250225
http://dx.doi.org/10.1103/PhysRevLett.53.1951
http://dx.doi.org/10.1103/PhysRevLett.53.1951
http://dx.doi.org/10.1103/PhysRevLett.55.1768
http://dx.doi.org/10.1016/j.ssc.2010.11.018
http://dx.doi.org/10.1016/j.ssc.2010.11.018
http://dx.doi.org/10.1103/PhysRevB.60.9264
http://dx.doi.org/10.1016/S0304-8853(01)00838-1
http://dx.doi.org/10.1016/S0304-8853(01)00838-1


L. D. MACHADO et al. PHYSICAL REVIEW B 85, 224416 (2012)

9P. W. Mauriz, E. L. Albuquerque, and C. G. Bezerra, J. Phys.
Condens. Matter 14, 1785 (2002); C. G. Bezerra and M. G. Cottam,
Phys. Rev. B 65, 054412 (2002).
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