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Finite-temperature magnetism of Ni monolayers: Interplay between flips
and amplitude fluctuations of the local moments
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The temperature dependence of the magnetization and spin fluctuation energies in Ni bulk and monolayers
are determined in the framework of a functional-integral itinerant-electron theory. The electronic structure is
obtained in the static approximation from a realistic spd-band model by using a real-space recursive expansion
of the local Green’s functions. The statistical averages of the spin fluctuations are performed by treating disorder
within the coherent potential approximation. Results for the magnetization M(T ) and spin fluctuation energies
of (001) fcc monolayers are presented for several values of the nearest-neighbor distance. Local environmental
effects are discussed by comparison with bulk results. An interesting transition from simple spin flips to amplitude
fluctuations of the local exchange fields is revealed as a function of dimensionality and bond length. Important
qualitative differences in the spin fluctuation energies of Ni are observed as compared to Fe, which reflect different
mechanisms of the dominant spin excitations in these itinerant-electron ferromagnets. The effects of sp electrons
and sp-d hybridizations are discussed.
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I. INTRODUCTION

The magnetic properties of transition metals (TMs) at the
nanoscale are of central importance from both fundamental
and technological standpoints. At temperature T = 0, it is
well known that the local environment of the atoms and the
dimensionality of the system play crucial roles in defining the
most important magnetic properties such as the magnetic mo-
ments, magnetic order, and magnetic anisotropy.1–4 However,
very little is still known about the microscopic origin of the
magnetic behavior of TM nanostructures at finite temperatures.
This is quite remarkable since the understanding of the
temperature dependence of magnetism in low-dimensional
systems and nanostructures is crucial for the development
of new materials with potential applications in magnetic
recording and magnetic memory devices.4–11

Previous experimental12–21 and theoretical studies22–36 have
demonstrated that it is very difficult to infer a priori simple
general trends on the stability of magnetism at finite tem-
perature T , for example, as a function of local coordination
number zl and nearest-neighbor (NN) distance d. In order
to derive reliable conclusions concerning the environment
dependence of the magnetization curve and Curie temperature
TC, it is necessary to develop an electronic theory that takes
into account both the fluctuations of the magnetic moments
and the itinerant character of the d-electron states. Simple
spin Hamiltonians, for example, based on the Heisenberg, xy,
or Ising models, are not expected to be very predictive, unless
they incorporate the electronic effects responsible for the envi-
ronmental dependence of the effective interactions between the
magnetic moments.37,38 Furthermore, the magnetic properties
of TMs are known to depend qualitatively on the d-band
filling. For example, in Fe bulk the spin fluctuation energies
(SFEs) show a double-minimum structure as a function of the
exchange fields ξ , which indicates that the dominant magnetic
excitations are flips of the magnetic moments keeping their
amplitude approximately constant.34–36,39–41 In contrast, the

dominant spin excitations in bulk Ni involve mainly amplitude
fluctuations of the local moments around the T = 0 values.
This corresponds to a a single minimum in the SFE34,41 and
is probably related to the fact that the magnetic moments at
T = 0 are much smaller in Ni than in Fe. Whether these trends
hold at the nanoscale is unclear at present. In fact, one expects
that for low coordinated sites l (small local coordination
number zl), Ni could also show a Heisenberg- or Ising-like
behavior due to the decrease of the kinetic energy EK relative
to the exchange energy Eex.42 Moreover, the perturbation
introduced by flipping an exchange field ξl at atom l is in
general less important when zl is small. It is one of the goals
of this paper to investigate this problem.

The electronic structure effects associated to the itinerant
character of the magnetic d states are therefore particularly
important in Ni since the physics behind the ferromagnetic
order is qualitatively different from what is observed in
Fe. In this context, the purpose of this work is to extend
our previous study35 of Fe to low-dimensional Ni systems
and to investigate the role of the local environment on the
electronic and magnetic properties by taking the (001) fcc free
monolayer as a representative example. In Sec. II we recall the
theoretical method used for the calculations, which is based
on Hubbard and Hasegawa’s spin fluctuation theory for the
periodic solid,41,43 as recently extended in the context of cluster
magnetism34 and thin films.35 The temperature dependence of
the magnetization and spin fluctuation energies of a fcc (001)
monolayer are presented and discussed in Sec. III. Comparison
is made with the corresponding bulk results in order to quantify
the role of dimensionality. Finally, Sec. IV summarizes the
main conclusions.

II. THEORY

In the following we review the functional-integral theory
used for the calculations of the magnetic properties of Ni bulk
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and monolayers. Since the effects of the hybridization between
the d and sp electrons are expected to be important in Ni films,
we extend the theory for a d-band Hamiltonian34–36 to the case
of an spd-band model. Our starting point is the Hamiltonian

Ĥ = Ĥ0 + ĤI . (1)

The first term

Ĥ0 =
∑
l,α,σ

ε0
lα n̂lασ +

∑
l �=m
α,β,σ

t
αβ

lm ĉ
†
lασ ĉmβσ (2)

describes the single-particle electronic structure of the valence
spd electrons in the tight-binding approximation.44 As usual,
ĉ
†
lασ (ĉlασ ) refers to the creation (annihilation) operator of an

electron with spin σ at the orbital α of atom l where α ∈
{s,px,py,pz,xy,yz,zx,x2 − y2,3z2 − r2}. The corresponding
number operator is given by n̂lασ = ĉ

†
lασ ĉlασ . The parameters

ε0
lα stand for the bare energy levels of the isolated atom (α ≡

s,p,d) and t
αβ

lm for the hopping integrals between atoms l and
m. The second term

ĤI = 1

2

∑
l,α,β
σ,σ ′

′ U
αβ

σσ ′ n̂lασ n̂lβσ ′ (3)

describes the interactions among electrons by means of an
intra-atomic Hubbard-like spd-band model. The prime in the
sum indicates that self-interactions are to be excluded [i.e.,
(ασ ) �= (βσ ′)]. The parameters U

αβ

σσ ′ are the effective Coulomb
repulsion integrals between electrons at the orbitals α and β

having spin projections σ and σ ′. For example, for d electrons
we have Udd

↑↓ − Udd
↑↑ = Jdd , where Jdd > 0 is the average

d-electron exchange integral. Notice that Eq. (3) does not
respect spin-rotational symmetry since the exchange terms
of the form Hxy = −∑

l,α<β Jαβ(S−
lαS+

lβ + S+
lαS−

lβ) have been
dropped. Nevertheless, this is not expected to be a serious
limitation in the present work because we are interested in
studying the spin fluctuations on top of broken-symmetry
ferromagnetic ground states.

In order to reduce the number of parameters and to simplify
the notation we neglect in the following the minor differences
in the Coulomb repulsion between s and p electrons, as well
as the exchange integrals among them. Mathematically, this
implies U

αβ

σσ ′ = Uss
σσ ′ for α and β ∈ {s,px,py,pz} and for

σ and σ ′ ∈ {↑,↓}. The interactions involving the d orbitals
are characterized by the average dd repulsion Udd = (Udd

↑↓ +
Udd

↑↑ )/2, the sp-d repulsion Usd = (Usd
↑↓ + Usd

↑↑)/2, and the
average d-electron exchange integral Jdd = Udd

↑↓ − Udd
↑↑ . It is

then meaningful to introduce the operator

N̂ s
l =

∑
σ, α∈sp

n̂lασ (4)

giving the number sp electrons at atom l, and the z component
of the local sp spin operator

Ŝs
lz = 1

2

∑
α∈sp

(n̂lα↑ − n̂lα↓), (5)

where α ∈ {s,px,py,pz}. Similarly, the d-electron number
operator is given by

N̂d
l =

∑
σ, α∈d

n̂lασ (6)

and the z component of the d spin operator by

Ŝd
lz = 1

2

∑
α∈d

(n̂lα↑ − n̂lα↓). (7)

With these definitions the interaction Hamiltonian can be
written as

ĤI = Ĥdd + Ĥss + Ĥsd , (8)

where

Ĥdd =
∑

l

{
Udd

2

(
N̂d

l

)2 − Jdd

(
Ŝd

lz

)2
}

, (9)

Ĥss = Uss

2

∑
l

(
N̂ s

l

)2
, (10)

and

Ĥsd = Usd

∑
l

N̂ s
l N̂

d
l . (11)

Notice that we have neglected for simplicity the orbital
dependence of the Coulomb integrals within each irreducible
s, p, and d band as well exchange integrals involving the more
delocalized s and p orbitals. Strictly speaking, Eqs. (8)–(10)
are equivalent to Eq. (3) only if the self-interaction terms
present in Eqs. (8)–(10) are canceled out by redefining the
single-particle energy levels. This has no consequences on the
magnetic properties to be discussed below.45

The finite-temperature properties are determined by apply-
ing the functional-integral method developed by Hubbard and
Hasegawa for periodic solids.41,43 Within this formalism, a
linearization of the two particle operators of the intra-atomic
Hubbard-like model [Eqs. (9)–(11)] is performed by means
of a three-field Hubbard-Stratonovich transformation within
the static approximation. Thus, a charge field ηls for the sp

electrons, a charge field ηld for the d electrons, and an exchange
field ξl for the d electrons are introduced at each atom l,
which describe the finite-temperature fluctuations of the s,
p, and d energy levels and of the local exchange splittings.
Using the notation �ξ = (ξ1, . . . ,ξn), �ηd = (η1d, . . . ,ηnd ), and
�ηs = (η1s , . . . ,ηns), the partition function Z is given by

Z ∝
∫

d�ξ d �ηd d �ηs exp{−βF ′(�ξ,�ηd,�ηs)}, (12)

where the free energy F ′ associated with the charge and
exchange fields �ηs , �ηd , and �ξ is given by

F ′ = 1

2

∑
l

(
Udd η2

ld + Uss η2
ls + 2 Usd ηls ηld + Jdd

2
ξ 2
l

)

− 1

β
ln{Tr[exp{−β(Ĥ ′ − μN̂ )}]}. (13)

The effective Hamiltonian

Ĥ ′(�ξ,�ηd,�ηs) = Ĥ0 +
∑

l

{
Udd iηldN̂

d
l + Uss iηls N̂ s

l

+Usd

(
iηlsN̂

d
l + iηldN̂

s
l

) − Jdd ξl Ŝ
d
lz

}
, (14)
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describes the dynamics as if the electrons were independent
particles moving in a random alloy with fluctuating spin-
dependent energy levels. The thermodynamic properties of
the system are obtained as a statistical average over all
possible distributions of the charge and exchange fields. The
underlying static approximation is exact in the atomic limit
(tαβ

lm = 0, ∀l �= m) where no fluctuations are present and in the
noninteracting limit (Uαβ

σσ ′ = 0).
For T → 0 the dominating field configuration corresponds

to the saddle point in the free energy F ′(�ξ,�ηd,�ηs). The partial
derivatives of F ′ are given by

∂F ′

∂ξl

= Jdd

2

(
ξl − 2

〈
Ŝd

lz

〉′)
, (15)

∂F ′

∂ηld

= Ud

(
ηld + i

〈
N̂d

l

〉′) + Usd

(
ηls + i

〈
N̂ s

l

〉′)
, (16)

and

∂F ′

∂ηls

= Uss

(
ηls + i

〈
N̂ s

l

〉′) + Usd

(
ηld + i

〈
N̂d

l

〉′)
, (17)

where 〈· · ·〉′ indicates average with respect to the single-
particle Hamiltonian Ĥ ′. The average sp occupations, d

occupations, and spin moments entering Eqs. (15)–(17) can
be readily obtained from Eqs. (4)–(7) by noticing that

〈n̂lασ 〉′ =
∫ +∞

−∞
ρlασ (ε) f (ε) dε , (18)

where f (ε) refers to the Fermi function and ρlασ (ε) to the
local density of states (DOS) at the orbital lασ . Notice that
by setting Eqs. (15)–(17) equal to zero one recovers the usual
mean-field equations for ηld , ηls , and ξl corresponding to the
self-consistent spd-band theory at T = 0.1,46

In this work we are interested in the temperature depen-
dence of the magnetic properties which are dominated by the
low-lying spin fluctuations. Moreover, since Jdd � Udd the
energy involved in local charge fluctuations is much larger
than the spin-fluctuation energies. Therefore, it is reasonable
to neglect the thermal fluctuations of the charge fields ηlα by
setting them equal to the values ηlα yielding the saddle point
of the free energy F ′(�ξ,�ηd,�ηs) for the given exchange-field
configuration �ξ . From Eqs. (16) and (17) and the saddle-point
condition ∂F ′/∂ηld = ∂F ′/∂ηls = 0 it follows that iηlα =
νlα = 〈N̂α

l 〉′ for α = s and d. Physically, this means that the
charge distribution νlα is calculated self-consistently for each
exchange-field configuration �ξ . Taking into account that the
self-consistent sp and d occupations νlα (or equivalently the
charge fields ηlα) are implicit functions of �ξ , we may regard
the free energy F ′(�ξ ) = F ′(�ξ,�ηd,�ηs) as a function of �ξ alone.
Finally, we have

Z ∝
∫

d�ξ exp{−βF ′(�ξ )}, (19)

where

F ′(�ξ ) = 1

2

∑
l

(
Jdd

2
ξ 2
l − Uddν

2
ld − Ussν

2
ls − 2Usdνldνls

)

− 1

β
ln (Tr[exp{−β(Ĥ ′(�ξ ) − μN̂ )}]). (20)

The integrand in Eq. (19) is proportional to the probability
density P (�ξ ) = exp{−βF ′(�ξ )}/Z for the exchange-field con-
figuration �ξ .

The thermodynamic properties of the system can be ob-
tained as a statistical average over all the possible distributions
of the exchange fields with exp{−βF ′(�ξ )} as weighting factor.
For instance, the local magnetization at atom l, which measures
the long-range order, is given by

Ml(T ) = 2
〈〈
Ŝs

lz + Ŝd
lz

〉〉 = 2

Z

∫
d�ξ 〈

Ŝs
lz + Ŝd

lz

〉′
�ξ e−βF ′(�ξ ) .

(21)

Besides Ml(T ) it is interesting to compute the local magnetic
moment

μl = 2
〈〈
(Ŝs

lz + Ŝd
lz)

2
〉〉 1

2

= 2

[
1

Z

∫
d�ξ 〈(

Ŝs
lz + Ŝd

lz

)2〉′
�ξ e−βF ′(�ξ )

] 1
2

, (22)

which provides information on the local spin correlations in
particular above TC.

The configurational averages over the random alloy are
determined by computing the average Green’s function within
the single-site coherent-potential approximation (CPA).47,48 In
the CPA, one considers an effective medium characterized by
a complex self-energy �̂(ε). This effective medium is self-
consistent in the sense that for each energy ε it matches the
average of the perturbed Green’s function associated to the
fluctuation of the exchange field ξ at any given site l with
respect to the effective medium. The average Green’s function
Ĝ(ε) associated to the self-energy �̂ is expressed in terms of
the effective-medium Hamiltonian Ĥeff = Ĥ0 + �̂ as Ĝ(ε) =
[ε − Ĥeff]−1. The perturbed Hamiltonian is given by Ĥp =
Ĥeff + V̂l with the perturbation

V̂l(ξ,ε) =
∑

σ

{
(Udd νld + Usd νls)N̂

d
l + Usd νld + Uss νls)N̂

s
l

− Jdd ξl Ŝ
d
lz

} − �̂l(ε), (23)

where �̂l is the self-energy operator reduced to the site l.
Finally, the self-consistent equation for �̂l reads47,48

�̂l = 〈〈(1 − Ĝl V̂l)
−1 (V̂l + �̂l)〉〉. (24)

The CPA configurational average is analogous to the case of a
d-band model considered in Ref. 35, where further details and
references may be found.

III. RESULTS

In this section we present and discuss our results for bulk
fcc Ni and for Ni (001) monolayers. Local environmental
effects are investigated by varying the nearest-neighbor (NN)
distances. The parameters used for the calculations are
determined as follows. The hopping integrals t

αβ

ij between
atoms are fitted to the band structure of the fcc Ni solid.49

The dominant d-electron exchange integral Jdd is chosen to
yield the proper bulk magnetic moment μlb = 0.6 μB at T = 0
[Jdd (Ni) = 0.96 eV]. The Green’s functions of the effective
medium and for the perturbation are computed by using
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Haydock-Heine-Kelly’s recursion method50 and the Dyson
equation,47 respectively.

A. Ni bulk

In this section, as a reference for further discussion,
we present the results of bulk fcc Ni. The temperature
dependence of the magnetization M(T ) and of the local
magnetic moment μ = 2

√
〈Ŝ2

z 〉 are shown in Fig. 1(a). First
of all, one observes that the shape of the M(T ) curve is
qualitatively similar to the experimental one. The dependence
of μ is in qualitative agreement with previous calculations,51

in particular concerning the increase of μ with increasing T

for T > TC. The value TC = 610 K obtained for the Curie
temperature is quite close to the experimental result52 value
TC(exp.) � 630 K. One of the reasons for the good agreement
between our results and experiment is probably related to
the nature of the spin-fluctuations in bulk Ni and to the
ability of the CPA to cope with them. In contrast to Fe, the
probability distribution for the exchange field ξ shows in Ni
a single peak, which resembles a Lorentz distribution with
a temperature-dependent mean value and width. Actually,
it is more closely a Gaussian-like distribution, with some
degree of asymmetry for T < TC, since the free energy is
approximately quadratic as a function of ξ [see Fig. 1(b)]. In
this context it is important to recall that the CPA yields the
exact average Green’s function if the energy levels of the alloy
follow a Lorentz probability distribution.48,53 Consequently,
the CPA should be very good approximation for describing
the temperature dependence of M(T ) when the fluctuations
of the modulus of the local moments dominate. Concerning
the comparison with previous works43 it should be also noted
that we do not assume a rigid model density of states (DOS)
but rather perform a realistic self-consistent determination of
the electronic structure, both in the ground state and in the
presence of spin fluctuations. Furthermore, we have taken into
account explicitly the contributions of the more delocalized
sp electrons and sp-d hybridizations, which are important for
the electronic structure, despite being almost negligible for
the magnetic moments. The sp local moments are quite small,
typically |μsp| � 0.04μB, and are in most cases antiparallel to
the d moments. The quantitative description of the electronic
structure and single-particle Green’s functions has certainly
also contributed to the good agreement with experiment.

In Fig. 1(b) the local spin fluctuation energy �F (ξ ) is
shown as a function of the exchange field ξ for several
representative temperatures (t = T/TC). First of all one
observes that the form of �F (ξ ) is qualitatively different
from what is found in bulk Fe.35 In Ni �F (ξ ) has a single-
minimum at ξ = ξ 0, which implies that the low-temperature
spin excitations involve mainly amplitude fluctuations of the
local exchange fields around a temperature-dependent average
value 〈ξ 〉 � ξ 0. �F (ξ ) shows a slight asymmetry around ξ 0

which favors fluctuations towards smaller values of ξ and thus
leads to the decrease of 〈ξ 〉 and of M(T ) as T increases.
For T � TC we have ξ 0 = 0 and �F (ξ ) becomes symmetric.
The trends in Ni differ strikingly from bulk Fe, where �F (ξ )
is far from parabolic to the point that a second minimum
develops out of a saddle point at ξ = ξ 0− � −ξ 0+ < 0 as T

increases and approaches TC. At the same time, the fluctuations
of the size of the exchange fields yield a small decrease
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FIG. 1. (a) Temperature dependence of the magnetization M(T )
(dots) and local magnetic moment μ (crosses) in bulk fcc Ni.
(b) Spin fluctuation energy �F (ξ ) = F ′(ξ ) − F ′(ξ 0), where ξ 0 =
ξ 0(T ) refers to the minimum of F ′(ξ ). The considered reduced
temperatures t = T/TC are indicated in the inset.

of ξ 0−. One concludes than in the present framework the
spin-flip excitations are essentially absent in Ni, which is
probably due to the fact that the magnetic moments at T = 0
are much smaller in Ni than in Fe. As a result the energy
required to fluctuate the amplitude of the moments is much
smaller than the spin-flip-like fluctuations observed in Fe.35

This behavior reflects the strong itinerant character of Ni
magnetism, which contrasts with the simpler fluctuations of
the direction of Heisenberg- or Ising-like localized magnetic
moments. As is discussed below, low-dimensional systems and
in particular ultrathin films show somewhat different behavior
with a stronger tendency to favor localized spin excitations.34

B. Ni monolayer

The effects of reduced dimensionality and local atomic en-
vironment on the temperature-dependent magnetic properties
are investigated by considering an fcc (001) Ni monolayer and
by varying the nearest-neighbor distances d. In Fig. 2 results
for the d magnetization M (d)(T ) are shown for several values of
r = d/db, where db refers to the bulk value. One observes that
the zero-temperature magnetization M (d)(T = 0) increases
monotonically with increasing r reaching the saturation value
10 − nd at approximately r � 1.1. This is a well-known con-
sequence of the d band narrowing, which follows the reduction
of the hopping integrals and the associated enhancement of the
density of states at the Fermi energy. It is important to remark
that the present finite-temperature theory takes into account
spin fluctuations described by Ising-like scalar fields on top
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FIG. 2. (Color online) Temperature dependence of the d magne-
tization of an fcc (001) Ni monolayer calculated by using the CPA.
Different representative values of the monolayer nearest-neighbor
distance d are considered. The numbers in the inset indicate the ratio
r = d/db between d and the bulk NN distance db.

of a symmetry-broken ground state. Therefore, the Mermin-
Wagner theorem, which actually holds for Heisenberg-like
vector spins having a continuous symmetry, does not apply
to our case. Moreover, our approach takes explicitly into
account the itinerant character of the d electrons responsible
for magnetism, while in Heisenberg-like models the spins
are localized. As a result the effective interactions between
exchange fields in itinerant-electron magnetism are not strictly
short ranged and therefore we obtain finite values of the Curie
temperature for the monolayer.

At finite temperatures one finds very different and more
complex behaviors depending on the value of r . For example,
first TC increases slowly with increasing d up to about r � 1.08
and then drops rather suddenly for r > 1.08. Let us first focus
on distances where the ground-state moments are essentially
saturated. For 1.1 < r < 1.18, M (d)(T ) decreases faster with
increasing T when the NN distances are larger. This implies
that for large NN distances, magnetism is less stable when
the electrons are more localized, that is, when the kinetic or
band energy is smaller. This is consistent with the fact that in
this range of r , TC decreases with increasing r . As we discuss
below, this corresponds to a localized-like magnetic behavior.
Concerning TC, one observes a nonmonotonous behavior with
a maximum value at approximately r � 1.08. Notice that TC

decreases for r > 1.08 even if all the curves start at approxi-
mately the same saturated magnetization per atom. Therefore,
the changes in TC for large values of r cannot be ascribed to an
environmental dependence of the local moments but rather to
changes in the effective couplings JH between them. A similar
distance dependence of TC has been found in thin Fe films.

It is interesting to analyze or interpret these results in the
framework of an Ising or Heisenberg model. In mean-field
approximation, the effective Heisenberg coupling JH between
NN spins is given by JH � 3kBTC/[zM(0)2], where z is the
coordination number and M(0) is the T = 0 moment. On the
basis of this expression for JH, one concludes that the effective
exchange coupling between local moments has reached its
maximum value at r � 1.1 and that the decrease of TC for
r > 1.1 is a consequence of a reduction of JH as the atoms

are pulled apart. Still, the reduced value of JH cannot explain
the temperature dependence completely since also the form
of M (d)(T ) changes as r increases. Indeed, for larger r the
drop in M (d)(T ) is faster. This implies that for more localized
electrons, strong spin fluctuations are only allowed close to TC.
The changes in the form of M (d)(T ) can be illustrated more
clearly by comparing, for example, the results for r = 1.18
with the case of smaller values of d (e.g., r = 0.96). For smaller
values of r (r < 1) we observe a reduction of TC, which is
consistent with the trends found in compact cluster structures,
where higher coordination number (reduction of the kinetic
energy) implies a reduction in TC.36

It is interesting to compare our results with experimental
findings. Previous experimental studies in Nin thin films of n

layers have shown a reduction of TC with respect to the bulk
value.5,54,55 In general, TC approaches monotonically to the
bulk value as a function of n. For instance, Li et al.5 measured
the TC of Nin/W(110) as a function of n � 20. Ney et al.55

reported the local moments at each layer in Nin/Cu(001) for
n � 4. Huang et al.54 found a qualitative difference between
the TC of Nin/Cu(111) and that of Nin/Cu(001) for n � 20.
In the first case, TC is larger than that of the second case for
a given value of n. Moreover, as n increases, TC approaches
faster to the bulk value in Nin/Cu(111) than in Nin/Cu(001).
Our results for the single Ni monolayer show an enhancement
of TC with respect to the bulk value, which is opposite to the
trend found in deposited Ni thin films. One should notice,
however, that the model system studied in the present paper
is a free monolayer. Therefore, a direct comparison with
experiment is not straightforward, since hybridization effects
between the monolayer, which most likely decrease TC, and
substrate are absent. Thus, free-standing monolayers should, in
principle, overestimate TC as compared to the deposited ones.
Nevertheless, it is important to recall that in itinerant-electron
magnetism the changes in the Curie temperature associated
to a reduction of dimensionality or coordination number are
far less obvious a priori. As already discussed, besides the
reduction of coordination number, which in the monolayer
tends to reduce TC, one also finds that TC is modified by
the enhancement of the local moments, which is also a
direct consequence of the reduction of local coordination and
d-band width. The latter implies an enhancement of the local
exchange splittings and is likely to yield an enhancement of the
effective exchange interactions between the local moments.
In fact, the interplay between these three factors (reduced
number of pairs of interactions, enhancement of the local
moments, and changes in the effective exchange couplings)
is what defines TC . Indeed, in the case of Fe monolayers35

we have found, in agreement with experiments of deposited
ultrathin films, that TC is smaller in the free monolayer than
in the bulk. Ni shows the opposite trend, which implies the
admittedly nonobvious behavior that the enhancement of the
local moments and effective exchange interactions dominate.
This may be a consequence of the specific electronic structure
of the idealized free monolayer. The trends could change
for small finite film thicknesses (bilayer, trilayer, etc.). In
addition, to our knowledge, experiments of a deposited single
Ni monolayer have not been reported. Moreover, a recent
experiment suggests that interface mixing between the Ni film
and the substrate should be considered.56
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FIG. 3. Local spin-fluctuation energy �F (ξ ) = F ′(ξ ) − F ′(ξ 0+)
in fcc (001) Ni monolayers. Different NN distances d are considered
as given by r = d/db, where db refers to the bulk value: (a) r = 0.96,
(b) r = 0.98, (c) r = 1.00, (d) r = 1.10, and (e) r = 1.18. F ′(ξ 0+)
refers to the minimum of the free energy ξ > 0. The considered
reduced temperatures t = T/TC are indicated in the inset.

Figure 3 shows the corresponding spin fluctuations energies
�F (ξ ) = F ′(ξ ) − F ′(ξ 0+), where ξ 0+ indicates the position
of the minimum of the free energy for ξ > 0. Results are given
for several representative temperatures T and NN distances. It
is interesting to identify three different behaviors. First, for the
smallest NN distance, the curves are similar to those obtained
for the bulk, particularly well bellow TC (t � 0.9). �F (ξ )
shows a single minimum at ξ = ξ 0+ > 0, which approaches
to ξ 0+ = 0 for t → 1. Consequently, the dominant spin
excitations involve mainly amplitude fluctuations of the local
exchange fields around the average exchange splitting or d-
electron magnetization M (d)(T ) = 〈ξ 〉. This is probably due to
the fact that the magnetic moment at this interatomic distance is
relatively small and similar to the bulk value [Mbulk(T = 0) �
0.6μB]. However, note that close to TC �F (ξ ) is very flat, much
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FIG. 4. (a) The ground-state d-electron magnetization M (d)(T =
0) and (b) the Curie temperature TC of an fcc (001) Ni monolayer as
a function of the NN distance d . The contribution of the sp electrons
to the total magnetization at T = 0 is shown (in μB) in the inset.

flatter than in the solid [�F (ξ ) ∼ ξ 4 for the monolayer, while
�F (ξ ) ∼ ξ 2 in the bulk; see Fig. 1(b)]. This means that much
larger amplitude fluctuations of ξ are present in the mono-
layer for T � TC. This can be interpreted as a consequence
of the reduced coordination number. Second, for r = 0.98–
1.00 one observes that the curves for �F (ξ ) get wider,
showing that the negative spin fluctuations start to become
energetically more favorable even well below TC [e.g., t =
0.85 for r = 1.0; see Fig. 3]. These negative ξ fluctuations
accelerate the decrease of the magnetization and are the
precursor of the development of a second minimum in �F (ξ )
for ξ < 0. Notice, moreover, that the curves are extremely flat
for T � TC. Finally, for r � 1.1 a second minimum develops
at ξ 0− � −ξ 0+, first close to TC and then, as r increases,
also at lower temperatures [see Figs. 3(d) and 3(e)]. For low
temperatures only an inflexion point is found for ξ � ξ 0−.
These trends can be interpreted as an enhancement of the local
character of the spin fluctuations due to the reduction of the
kinetic energy of the d electrons.

Ground-state and finite-temperature properties can be
correlated by comparing the results for the d-electron mag-
netization M (d)(T = 0) and the Curie temperature TC as a
function of the nearest-neighbor distance d. In this way
the interplay between kinetic and Coulomb energies can be
explored, since shorter NN distances yield larger d-band
widths, which correspond qualitatively to larger coordination
numbers. In addition, in the inset, we show the sp contribution
to M(T = 0). In Fig. 4 one observes that the ground-state d

moment grows monotonically with increasing r as the density
of states at the Fermi energy increases (Stoner criterion).
Nearly saturated values M

(d)
sat � 10 − nd are reached for the

region r � 1.05–1.10, beyond which M (d)(T = 0) increases
more slowly. Notice that the sp-electron spin polarization,
shown in the inset of Fig. 4, is parallel to the d-electron
moment (M (sp) > 0), in contrast to the solid. Since M (sp) > 0
is a consequence of the sp-d hybridization, it decreases with
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increasing d as the sp-d hopping integrals decrease despite the
small enhancement of the d-electron exchange splitting.

The Curie temperature, which measures the stability of
ferromagnetic order, shows a more interesting nonmonotonous
behavior. As in the case of �F (ξ ), different regimes can
be distinguished. For 0.96 � r � 1.04 one observes that TC

increases due to the increase of the local moments and the
associated enhancement of the exchange splitting �εd

x [see
Fig. 4]. In this case, the significant increase of M (d)(T = 0)
and �εd

x dominates over possible reductions of the NN spin
coupling in the increasing distance. Subtle effects of itinerant
magnetism are present in almost all Ni monolayers. For
example, for 1.04 � r � 1.1, M (d)(T = 0) increases but TC

is nearly constant. As discussed above, this behavior can
only be ascribed to the specific electronic structure, which
yields very little changes in the corresponding spin fluctuation
energies [see Figs. 3(b) and 3(c)]. In fact, the increase in the
ground-state local moments is compensated by a decrease
of the effective coupling JH as r increases. The behavior
of TC for r � 1.1 can be qualitatively interpreted in terms
of a mean-field Heisenberg model. As already discussed, JH

decreases with increasing r for these values of r . In this case,
the electronic hoppings and the kinetic energy of the electrons
are relatively small and the spin fluctuations have a more
localized character [see Figs. 3(d) and 3(e)]. Consequently,
the spin-fluctuation energies decrease, since the perturbations
introduced by spin disorder are less significant as r increases.
One may conclude that for r � 1.1 a transition or crossover
from itinerant- to localized-like character of the dominant
d-electrons occurs. In summary, the distance dependence of
the finite-temperature properties are the result of a subtle
competition between localized and itinerant aspects of mag-
netism. Interesting magnetic phenomena can be expected as a
function other variables, for example, the local coordination
number, which also affect the relative importance of kinetic
and Coulomb contributions.

IV. CONCLUSION

The finite-temperature magnetic properties of bulk Ni and
of Ni monolayers have been determined in the framework of
a functional-integral itinerant-electron theory. The effects of
disorder in the electronic structure due to spin fluctuations have
been taken into account by means of the single-site coherent
potential approximation. The stability of ferromagnetism has

been studied as a function of the local environment of the
atoms. A remarkable nonmonotonous dependence of the mag-
netization curves has been obtained by varying the interatomic
distances (strain effects). Moreover, it has been shown that
the reduction of the system dimensions, from three to two,
enhances the localized character of the spin fluctuations and
yields a clear transition from itinerant to localized behavior.
These trends have been correlated with the environmental
dependence of the electronic properties and with the resulting
changes in the ground-state magnetic moments and spin-
fluctuation energies. The electronic structure contributions and
the itinerant character of the s, p, and d valence electrons have
been found to be crucial for determining the magnetic behavior
of low-dimensional systems at finite temperatures.

The present electronic model and the local approach to
the electronic structure are well suited to investigate more
complex systems with reduced symmetry, such as clusters and
nanostructures on surfaces, or substrate and interlayer effects
on thin films and monolayers. Besides the applications, a
number of methodological improvements are worthwhile. For
instance, short-range magnetic order, noncollinear magnetic
order, and possible fluctuations of the direction of vector
exchange fields �ξl are likely to affect the magnetization curves
and value of TC. It would be therefore very interesting to quan-
tify the role of these spin fluctuations in the framework of the
present electronic theory. Moreover, the effects of interfaces
with nonmagnetic substrates could be incorporated in order
to achieve a more realistic comparison with experiment. In
addition, the model and CPA method could be extended by
including spin-orbit2,57 and dipole-dipole interactions, which
are responsible for the magnetic anisotropy and for the spin
reorientation transitions as a function of temperature and
structure.17,18,58,59 Finally, from a more fundamental perspec-
tive, it remains a major challenge to improve on the treatment
of many-body effects beyond the static approximation, since
the electronic correlations are expected to become increasingly
important as the system dimensions decrease.
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30F. López-Urı́as, G. M. Pastor, and K. H. Bennemann, J. Appl. Phys.
87, 4909 (2000).

31T. Herrmann, M. Potthoff, and W. Nolting, Phys. Rev. B 58, 831
(1998); J. H. Wu, H. Y. Chen, and W. Nolting, ibid. 65, 014424
(2001).

32P. Bruno, Phys. Rev. Lett. 87, 137203 (2001).
33A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, Phys. Rev. Lett.

87, 067205 (2001).
34G. M. Pastor, J. Dorantes-Dávila, and K. H. Bennemann, Phys. Rev.

B 70, 064420 (2004).
35R. Garibay-Alonso, J. Dorantes-Dávila, and G. M. Pastor, Phys.

Rev. B 73, 224429 (2006).
36R. Garibay-Alonso, J. Dorantes-Dávila, and G. M. Pastor, Phys.

Rev. B 79, 134401 (2009).
37J. Dorantes-Dávila, G. M. Pastor, and K. H. Bennemann, Solid State

Commun. 60, 465 (1986).
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Ĥ0.
46A. Vega, J. Dorantes-Dávila, L. C. Balbás, and G. M. Pastor, Phys.

Rev. B 47, 4742 (1993); P. Alvarado, J. Dorantes-Dávila, and
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