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Bloch point structure in a magnetic nanosphere
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A Bloch point singularity can form a metastable state in a magnetic nanosphere. We classify possible types
of Bloch points and analytically derive the shape of the magnetization distribution for different Bloch points.
We show that an external gradient field can stabilize the Bloch point: The shape of the Bloch point becomes
radially dependent. We compute the magnetization structure of the nanosphere, which is in good agreement with
performed spin-lattice simulations.
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I. INTRODUCTION

Topological singularities are widely recognized as a key for
understanding the behavior of a wide variety of condensed-
matter systems. Linear topological singularities, such as
dislocations, disclinations, and vortices play a crucial role
in low-dimensional phase transitions,1 crystalline ordering on
curved surfaces,2 rotating trapped Bose-Einstein condensates,3

etc. Recent advances in microstructuring technology have
made it possible to fabricate various nanoparticles with well-
prescribed geometry. Much recent research in this field has
focused on the statics and dynamics of topological singularities
in nanoscale confined systems: Essentially, inhomogeneous
states can be realized in magnetic nanoparticles4–6 and ferro-
electric nanoparticles.7 As a result of the competition between
exchange and magnetic dipole-dipole interactions, the ground
state of magnetic disks with sizes larger than some tens of
nanometers is a flux-closure vortex state.

Besides linear singularities, there also exist so-called
point singularities, such as monopoles, Bloch points, and
boojums. For example, hedgehog (monopole) singularities
play a crucial role in the behavior of matter near quantum
phase transitions that are seen in a variety of experimentally
relevant two-dimensional antiferromagnets,8 boojums are rel-
evant in superfluid He-3,9 and Bloch points along with Bloch
lines are principal in the understanding of magnetic bubble
dynamics.4,10

The concept of point singularities in magnetism was
introduced by Feldtkeller,11 who considered different mag-
netization distributions around the singularity and proposed
the first estimations of the Bloch point shape. Later, Döring12

studied how magnetostatic energy governed the Bloch point
structure by selecting the rotation angle inside the Bloch
point. Bloch point singularities were directly observed in
yttrium iron garnet crystals.13 During the last decade, Bloch
points were also studied by micromagnetic simulations in
nanowires,14 in bubble materials,15 and in disk-shaped16,17

and astroid-shaped nanodots.18 The ultrafast switching of the
vortex core magnetization opens doors to consider the vortex
state nanoparticles as promising candidates for magnetic
elements of storage devices. There are different scenarios
of the switching process: (i) The symmetric or so-called
punch-through core reversal takes place under the action of
a dc magnetic field applied perpendicularly to the magnet
plane.9,16,19,20 This reversal process, as a rule, is mediated by

the creation of two Bloch points.16 However, the single Bloch
point scenario was also mentioned in Thiaville et al.16 (ii) The
switching, under the action of different in-plane ac magnetic
fields or by spin-polarized currents,21–26 is accompanied by the
temporary creation and annihilation of the vortex-antivortex
pair. The latter is accompanied by Bloch point creation.17

The purpose of the current paper is to study the magneti-
zation structure of the Bloch point in the spherical nanosized
particle. As opposed to bubble films where the static Bloch
point results from the transition between Bloch lines4,10 and
vortex nanodots where the Bloch point dynamically appears
during the vortex core switching process,16,21 the nanosphere is
a natural geometry where the Bloch point forms a metastable
static configuration. Such a singularity is, in some respect,
the only stable singularity in the ferromagnet.16 We consider
different types of Bloch points and classify them in terms of
vortex parameters. The conventional magnetization distribu-
tion in the Bloch point is generalized for the radially dependent
one. Such radial distribution becomes important for the Bloch
point nanosphere under the action of a nonhomogeneous
magnetic field. We show that a radial gradient field can stabilize
the Bloch point and we compute the magnetization structure,
which is in good agreement with performed spin-lattice
simulations.

The paper is organized as follows. In Sec. II, we describe
the model and present the classification of different Bloch
point types (Sec. II A). The energetic analysis and the
Bloch structure is analyzed in Sec. II B. In order to stabilize the
Bloch point inside the nanosphere, we consider the influence of
an external gradient field on the magnetization structure. The
Bloch point solution becomes radially dependent: We calculate
the magnetization structure analytically in Sec. III. In Sec. IV,
we study the Bloch point structure numerically, in particular,
the problem of stability. We discuss our results in Sec. V. In
the Appendix, we analyze the Bloch point structure under the
influence of weak fields using the linearized equations.

II. THE MODEL AND THE BLOCH POINT SOLUTIONS

Let us consider the classical isotropic ferromagnetic sphere
of radius R. The continuum dynamics of the magnetization
can be described in terms of the magnetization unit vector
m = M/MS = (sin � cos �, sin � sin �, cos �), where �

and � are, in general, functions of the coordinates and the
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time, and MS is the saturation magnetization. The total energy
E of such a sphere, normalized by 4πM2

SV with V = 4
3πR3,

reads

E = E ex + E f + E ms. (1a)

The first term in Eq. (1a) is the dimensionless exchange energy,

E ex = 3

8π
ε

∫
d r[(∇�)2 + sin2 �(∇�)2], (1b)

with ε = �2/R2 being the reduced exchange length, � =√
A/4πM2

S being the exchange length, A being the exchange
constant, and r = (x,y,z)/R being the reduced radius vector.
The second term determines the interaction with external
magnetic field H ,

E f = − 3

4π

∫
d r(m · h), (1c)

where h = H/4πMS is a reduced external field. We will
discuss the influence of the external field later, see Sec. III.
The last term determines the reduced magnetostatic energy,

E ms = − 3

8π

∫
d r(m · hms), (1d)

where hms = Hms/4πMS is a reduced magnetostatic field
Hms. Magnetostatic field hms satisfies the Maxwell magne-
tostatic equations,4,5

∇ × hms = 0, ∇ · hms = 4πλ, (2)

which can be solved using a magnetostatic potential hms =
−∇ψ . The sources of field hms are magnetostatic charges:
volume charges λ ≡ −(∇ · m)/4π and surface ones σ ≡ (m ·
n)/4π with n being the external normal. The magnetostatic
potential inside the sample reads

ψ(r) =
∫

V

d r ′ λ(r ′)
|r − r ′| +

∫
S

dS ′ σ (r ′)
|r − r ′| (3a)

≡ 1

4π

∫
V

d r ′(m(r ′) · ∇r ′)
1

|r − r ′| . (3b)

The equilibrium magnetization configuration is determined
by minimization of the energy functional (II), which leads to

the following set of equations:

ε∇2m = ∇ψ, ∇2ψ = ∇ · m. (4)

A. Classification of singularities

Let us start the Bloch point as a particular solution of
Eq. (4). In the exchange approach, the simplest hedgehog-type
Bloch point is characterized by the magnetization distribution
of the form m = r/r with a singularity at the origin. Using a
spherical frame of reference for the radius vector r with the
polar angle ϑ and the azimuthal one ϕ, one can describe the
magnetization angles of such a Bloch point as follows: � = ϑ

and � = ϕ. The energy of the Bloch point in the exchange
approach reads12

E ex
0 = 3ε, Eex

0 = 4πAR. (5)

This interaction is invariant with respect to the joint rotation
of all magnetization vectors, which gives the possibility
for considering a family of solutions with different rotation
angles.11,12

We consider the following singular magnetization
distribution:

�(ϑ) = pϑ + π (1 − p)/2, �(ϕ) = qϕ + γ,
(6)

p,q = ±1,

which describes a three-parameter Bloch point. We refer to
the parameter q = ±1 as the vorticity of the Bloch point
and p = ±1 as its polarity using the conventional symbols
for magnetic vortices. The last parameter γ describes the
azimuthal rotational angle of the Bloch point.11,12

We refer to the micromagnetic singularity (6) as BPp
q .

For example, the hedgehog-type Bloch point is a vortex
Bloch point with positive polarity (p = 1, q = 1, γ = 0). The
schematic of magnetization distribution in different types of
Bloch points is presented in Fig. 1. The analogy between Bloch
point and vortices comes from the vortex polarity switching
process under the action of a dc perpendicular magnetic field.16

A single Bloch point can be imagined as a composite of two
vortices with opposite polarities: Such a singularity can appear
in three-dimensional (3D) Euclidean space during the vortex
polarity switching process in antiferromagnets.8,27 Due to the
equivalence of two face surfaces of the nanodot, the vortex

(a) p = q = 1 (b) p = −1 q = 1 (c) Vortex
switching

(d) p = 1 q = −1 (e) p = q = −1 (f)
Antivortex
switching

FIG. 1. Schematic of different types of Bloch points. Magnetization distribution in azimuthal vortex Bloch points in a sphere, see (a) and
(b), and both Bloch points in the axial part of the cylinder-shaped sample during the vortex polarity switching process, see (c). The same for the
azimuthal antivortex Bloch points, see (d) and (e), and both singularities in the axial part of the astroid-shaped sample during the switching, see (f).
During the switching process shown in (c) and (f), two Bloch points move along the disk axis in opposite directions and finally annihilate halfway.
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polarity switching is mediated, as a rule, by the creation
of two Bloch points (symmetric or so-called punch-through
mechanism), see Fig. 1(c). They are injected from the ends of
the nanodot and annihilate on its axis.16 All four distributions
for different signs of p and q can be observed during
symmetrical Bloch points’ injection in the polarity switching
process of vortices16 [Fig. 1(c)] and antivortices18 [Fig. 1(f)].

Topological properties of the Bloch point can be described
by the topological (Pontryagin) index,

Q = 1

4π

∫
sin �(r)d�(r)d�(r) = pq. (7)

Different Bloch point distributions with equal Q are topolog-
ically equivalent: e.g., BP−1

−1 can be obtained from BP1
1 by

simultaneous rotation of all magnetization vectors by π in
the vertical plane, and BP1

−1 transforms to BP−1
1 by rotation

by π/2 in the vertical plane. Note that similar topological
notations were introduced by Malozemoff and Slonzewski10

for magnetic bubbles.28

B. Magnetization structure of Bloch points

The strongest exchange interaction is isotropic, hence,
the exchange energy takes the same values for any rotation
angle γ . Such degeneracy is removed under the account of
magnetostatic interaction. It is worth noting that the problem
of stray field influence on the Bloch point energetics has a
long story. Feldtkeller, in his pioneer paper,11 used a so-called
pole avoidance principle, see, e.g., Ref. 29: The magnetostatic
charge tries to avoid any sort of volume or surface charge. In
this way, he calculated the angle γ from the condition of the
total volume magnetostatic charge

∫
λ(r)d r = 0, where λ(r)

is the charge density. For the Bloch point given by ansatz (6), it
has a form λ(r) = −[p sin2 ϑ + cos γ (cos2 ϑ + 1)]/4πr and
leads to the rotation angle,

γF = arccos

(
−p

2

)
=

{
120◦, p = +1,

60◦, p = −1.
(8)

It is interesting to note that the same value γF also corresponds
to the absence of the total surface charge

∫
σ (r)dS = 0

where the surface charge density is σ (r) = (p cos2 ϑ +
cos γ sin2 ϑ)/4π .

Another approach was put forward by Döring,12 who
determined the equilibrium angle of γ by minimizing the
energy,

E ms
D = 3

8π

∫
V

d r(hms)2, (9)

and obtained

γD = arccos

(
−11

29

)
≈ 112.3◦. (10)

However, one has to emphasize that the equilibrium angle
(10) minimizes only the inner part of the magnetostatic energy
because the integration in Eq. (9) is carried over the sample
volume V , while the outer part of the stray field is ignored.
Note that a similar approach was used in a quite recent paper30

where a magnetization contraction was taken into account.
The aim of this section is to find the equilibrium rotation

angle which minimizes the total magnetostatic energy. In order

to derive the magnetostatic energy of Bloch points (6), we first
calculate magnetostatic potential (3b) using an expansion of
1/|r − r ′| over the spherical harmonics,

1

|r − r ′| = 1

r>

∞∑
l=0

l∑
m=−l

4π

2l + 1

(
r<

r>

)l

Ylm(ϑ,ϕ)Y 
lm(ϑ ′,ϕ′),

with r< = min(r,r ′) and r> = max(r,r ′), which results in

ψ
p

q=1(r)=pπr + π

3
(9r − 8) cos γ+ πr(p− cos γ ) cos2 ϑ,

(11a)

ψ
p

q=−1(r) = pπr(1 + cos2 ϑ) + πr cos(2ϕ + γ ) sin2 ϑ.

(11b)

Simple calculations show that the magnetostatic energy of
the antivortex Bloch point does not depend on γ and E ms

q=−1 =
7/30 ≈ 0.23. In contrast to this, the vortex Bloch point energy
depends on rotation angle γ and has the form

E ms p

q=1 (γ ) = 1
30 (7 + 4p cos γ + 4 cos 2γ ). (12)

The equilibrium value of rotation angle γ0 corresponds to the
minimum of the energy (12). It gives

γ0 = arccos
(
−p

4

)
≈

{
105◦, p = +1,

76◦, p = −1.
(13)

Let us compare Bloch point energies (12) for the above-
mentioned approaches: The energy of the Feldtkeller11 Bloch
point is E ms p

q=1 (γF) = 0.1, for the Döring12 Bloch point, one
has E ms(γD) ≈ 0.088, and the result by Elı́as and Verga30 is
E ms

1 (γEV) ≈ 0.089. The minimal energy has a Bloch point with
rotation angle γ0, see Eq. (13),

E ms p

q=1 (γ0) = 1
12 ≈ 0.083. (14)

In order to verify our results, we performed numerical
spin-lattice simulations, see details in Sec. IV. We compare
analytical dependence E ms p=1

q=1 (γ ), see Eq. (12), with the dis-
crete energy (24), extracted from simulations, see Fig. 2. Both
dependencies are matched in maximum at γ = 0. Comparison
can be provided by calculating the energy gain �E (γ ) =
E ms

max − E ms(γ ) for different rotation angles γ . According to the

0
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0.5

-150 -100 -50 0 50 100 150

Em
s
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)

Angle γ, deg

0.05

0.1

80 100 120

γ0 γD

γF

FIG. 2. (Color online) The Bloch point energy vs the rotation
angle for BP1

1: analytical result (12) (solid curve) and simulations
(symbols). Simulations parameters: sphere diameter 2R = 35a0,
exchange length � = 3.95a0, and damping parameter η = 0.5.
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simulation results, the energy gains for the above-mentioned
angles read

�E (γF) ≈ 0.446, �E (γD) ≈ 0.460, �E (γ0) ≈ 0.465.

The maximum energy gain takes place for γ0, which corre-
sponds to the energy minimum in good agreement with our
analytical result (13).

III. THE BLOCH POINTS IN AN EXTERNAL FIELD

The Bloch point does not form a ground state of a magnetic
sphere. It corresponds to the saddle point (sphaleron) of the
energy functional.31 This brings up the question: How to
stabilize the Bloch point? In this section, we show that one way
to achieve this goal is to apply a magnetic field, which has the
same symmetry as the hedgehog Bloch point with m = r/r ,
i.e., a radially symmetric magnetic gradient magnetic field in
the form

h = br. (15)

Under the action of the space-dependent magnetic field
(15), the magnetization distribution also becomes space
dependent. We take into account possible dependence by the
following radial Bloch point ansatz:

�(ϑ) = pϑ + π (1 − p)/2, �(r,ϕ) = qϕ + γ (r), (16)

with a radially dependent parameter γ (r) in comparison with
Eq. (6). The form of this ansatz will be justified by numerical
simulations in Sec. IV.

Inserting Eq. (16) into Eq. (1b) for the exchange energy of
such magnetization distributions, we get

E ex = 3ε + ε

∫ 1

0

(
dγ

dr

)2

r2dr. (17a)

The magnetostatical potential of the Bloch point (16) reads

ψ
p=1
q=1 (r) = −4π

3

∫ 1

r

[1 + 2 cos γ (r ′)]dr ′

− 4π

3

3 cos2 ϑ − 1

r3

∫ r

0
r ′3[cos γ (r ′) − 1]dr ′.

Here and below, we consider the case of BP1
1 only. The

magnetostatic energy of such a Bloch point has the form

E ms = 1

10

∫ 1

0
r2[7 + 4 cos γ (r) + 4 cos 2γ (r)]dr. (17b)

From Eq. (1c), we obtain that the Bloch point interaction with
a magnetic field can be expressed as follows:

E f = −2b

∫ 1

0
r3 cos γ (r)dr. (17c)

By minimizing the total energy δE /δγ = 0, we obtain that
the equilibrium distribution γ (r) is a solution of the following
nonlinear differential equation:

ε
d2γ

dr2
+ 2ε

r

dγ

dr
+ 1

5
sin γ + 2

5
sin 2γ − br sin γ = 0

(18)
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Analytics
b = 0.05
b = 0.80

FIG. 3. (Color online) Reduced rotation angle gε(r), see Eq. (20)
for different field intensities and ε = 0.05: analytical result (A1)
(solid curve) and numerical solution of Eq. (18) (dashed curves).

augmented by boundary conditions of the form

dγ

dr

∣∣∣∣
r=0

= dγ

dr

∣∣∣∣
r=1

= 0. (19)

In the case of weak fields, one can linearize Eq. (18) in the
vicinity of spatially uniform solution (13) and obtain that

γ (r) ≈ γ0 + bgε(r), |b| 	 1. (20)

An explicit form of the function gε(r) is calculated in the
Appendix. The comparison with the numerical solution of
Eq. (18) shows quite good agreement up to relatively strong
fields (b � 1), see Fig. 3.

Another limiting case is realized in the case of strong
magnetic fields when the Bloch point magnetization is parallel
to the external field. In this case, the rotation angle is γ =
0 (mod π ).

To describe the behavior of the Bloch point in a critical
region b ≈ bc where the spatially nonuniform distribution
transforms to the spatially uniform one, we use a variational
approach with a two-harmonics trial function γ (r) ≈ α0 +
α1 cos πr . Near the critical point, α0,α1 	 1. We expand the
total energy in a Taylor series up to the fourth order with
respect to α0 and to the second order with respect to α1. By
excluding α1 and keeping terms not higher than α4

0, we get

E (γ ) ≈ E0 + p2(b,ε)α2
0 + p4(b,ε)α4

0 . (21)

The energy (21), as a function of α0, has a double-well shape
[p2(b,ε) < 0] for b < bc with the critical magnetic field bc

given by

bc(ε) ≈ 1.8 − 21.6ε +
√

0.4 − 20.2ε + 467ε2. (22)

In the critical region, when 0 < bc(ε) − b 	 bc(ε),

α0(b) ≈ a(ε)
√

bc(ε) − b. (23)

For b > bc, p2 > 0, and the function Eq. (21) has a minimum
for α0 = 0. It corresponds to γ = 0. Numerical integration of
Eq. (18) for ε = 0.05 shows that the phase transition occurs
when bc ≈ 1.47, see Fig. 4. It agrees well with the value
bc(0.05) ≈ 1.46 obtained from Eq. (22). The critical behavior
predicted by Eq. (23) is also confirmed by our numerical
simulations [see Fig. 4(a)].
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FIG. 4. (Color online) Bloch point under the action of the gradient field. (a) Critical behavior where the rotation angle vs field intensity b

near the critical field bc = 1.47 from the numerical solution of Eq. (18) (blue curves) and theoretical estimation by Eq. (23) (red curves) with
ε = 0.05. Solid lines correspond to rotation angle γ (0), and the dashed line corresponds to γ (1). (b) Phase diagram for solutions of Eq. (18).
The upper (hedgehog) phase corresponds to the solution γ = 0, and the lower (nonhomogeneous) one corresponds to the radially dependent
Bloch point with γ (r). Dashed lines correspond to the analytical result for the critical field bc ≈ 1.46 for ε = 0.05, see text.

IV. NUMERICAL STUDY OF THE BLOCH
POINT STRUCTURE

In order to check analytical results about Bloch point
structure, we performed simulations using the in-house de-
veloped spin-lattice simulator SLaSi (Ref. 32) that solves the
Landau-Lifshitz-Gilbert equation in terms of spins,

dSn

dt
= −1

h̄

[
Sn × ∂H

∂ Sn

]
− η

S

[
Sn × dSn

dt

]
,

where H is a lattice Hamiltonian of the classical ferromagnet,

H = −J

2

∑
(n,δ)

Sn · Sn+δ + 2μB H
∑

n

Sn

+ 2μ2
B

∑
n
=k

[
(Sn · Sk)

rnk
3

− 3
(Sn · rnk)(Sk · rnk)

rnk
5

]
. (24)

Here, Sn is a classical spin vector with fixed length S in units
of action on the site n of a three-dimensional cubic lattice with
lattice constant a0, J is the exchange integral, μB is the Bohr
magneton, rnk is the radius vector between nth and kth nodes,
η is a damping parameter, H is the external magnetic field,
and δ runs over six nearest neighbors. Integration is performed
by the modified fourth- and fifth-order Runge-Kutta-Fehlberg
method (RKF45) and free spins on the surface of the sample.33

Numerically, we checked the Bloch point structure, given
by the radially dependent ansatz (16) by modeling a spherically
shaped sample with diameter 2R = 35a0 (such a sample
consists of 24 464 nodes with nonzero spin) and exchange
length � = 3.95a0 (ε = 0.05). In order to stabilize the Bloch
point, we applied the gradient magnetic field with b = 1.0.
By modeling the overdamped dynamics, we observed that
the Bloch point structure quickly relaxed to the state similar
to the one given by Eq. (16): The polar Bloch point angle
�(r) does not deviate from ϑ within an accuracy of 0.099
rad. The azimuthal angle is also well described by Eq. (16)
with the radially dependent rotation angle γ (r), see Fig. 5.
Simulations were performed for crystallographic directions
[111] (ϑ = π/4) and [110] (ϑ ≈ π/2, the plane is shifted by
z = −0.5a0 from the origin). From Fig. 5, one can see that

numerical data are well confirmed by analytical curve γ (r),
calculated as a numerical solution of Eq. (18).

To validate our theory, we also performed a direct stability
check. Numerically, we checked the stability of the Bloch
point against the shift in its position. We start simulations
with the Bloch point state using ansatz function (16), which is
shifted along the ẑ axis by �z = −2a0. We also apply γ (r,t =
0) = 3◦ in order to break the symmetry. For rapid relaxation,
in most of the simulations, we used the overdamped regime
(the damping parameter η = 0.5). We checked the shift in the
Bloch point by controlling the total spin projections: Only for
the Bloch point, situated at the sample origin, is the total spin
S tot

x = S tot
y = S tot

z = 0.
The temporal evolution of the initially shifted Bloch point

is presented in Fig. 6 for the Bloch point sample with 2R =
35a0 (24 456 nodes) in an applied field with b = 1, see also
the Supplemental Material.34 Originally, the Bloch point was
shifted down from the origin, which corresponds to S tot

z > 0,
see inset (a). During the evolution, a number of magnons are
generated, inset (b). After quick damping of the oscillations,
the micromagnetic singularity goes to the sample origin, see
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FIG. 5. (Color online) Radial dependence of rotation angle γ in a
spherical particle. Line: numerical integration of Eq. (18). Symbols:
SLASI simulations for crystallographic directions [110] and [111].
Parameters are the same as in Fig. 2.
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inset (d). The relaxation process consists of two parts: (i) The
rotation angle γ (r) changes its value from the initially uniform
one to the final nonhomogeneous state during a time τγ ≈
500ω−1

0 . (ii) The relaxation of the S tot
z component of the total

spin of the sample took approximately the same time. During
all simulation times, |S tot

x | ≈ |S tot
y | � 10−11.

V. CONCLUSION

To summarize, we studied the magnetization structure of
the Bloch point. Despite the fact that the Bloch point, as a
simplest 3D topological singularity, was studied for a long time
from the pioneering papers by Feldtkeller11 and Döring,12 for
a review, see also Refs. 4 and 10, the problem of the Bloch
point structure still causes discussions.16,30,35 The point is that
the strongest exchange interaction depends only on relative
direction of neighboring magnetic moments due to the isotropy
of exchange. Therefore, it does not determine the value of
rotation angle γ . This rotation angle, which is determined
by the magnetostatic interaction, is most questionable: Its
value is equal to 120◦ according to Feldtkeller,11 to 112.3◦
following Döring,12 and to 113◦ following Elı́as and Verga.30

We analyzed the origin of all these results and calculated the
equilibrium value, about 105◦, see Eq. (12), which minimizes
the total magnetostatic energy, not only a part of it.

The next problem appears in the modeling of the Bloch
point. It was discussed by Thiaville et al.16 that the modeling
of singularity is mesh dependent within the continuum descrip-
tion of micromagnetism. In particular, a mesh-friction effect
and a strong mesh dependence of the switching field during the
Bloch point mediated vortex switching process was detected
using OOMMF micromagnetic simulations.16 The reason is
that micromagnetic simulators consider the numerically dis-
cretized Landau-Lifshitz equation, which is valid in continuum
theory. Since the Bloch point appears as a singularity of
continuum theory, it is always located between mesh points
and causes the mesh-dependent effects and, therefore, may be
insufficient for describing near-field Bloch point distribution.
In contrast to this, spin-lattice simulations are free from these
shortages. From the beginning, we considered discrete spins,
located on the cubic lattice, and their dynamics was governed
by the discrete versions of the Landau-Lifshitz equations. The
lattice Hamiltonian allows us to calculate the discrete energy

of the Bloch point similar to the atomiclike calculations by
Reinhardt.36

Using the in-house developed spin-lattice SLaSi (Ref. 32)
simulator, we modeled the Bloch point state nanosphere and
checked our analytical predictions about the Bloch point
structure. We stabilized the singularity inside the spherical
particle by applied gradient magnetic field. The field causes
additional radial dependence of rotation angle γ (r) in the
Bloch point structure.
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APPENDIX: BLOCH POINT STRUCTURE
IN A WEAK FIELD

Here, we consider the magnetization structure of a Bloch
point under the action of a weak magnetic field. One has
to linearize Eq. (18) on the background of the unperturbed
rotation angle γ0, see Eq. (20), which can be presented as
follows:

γ (r) ≈ γ0 + bgε(r), gε(r) = 2
√

5ε

3
f (λr), λ = 1

2

√
3

ε
.

Here, the function f (ξ ) satisfies the linearized version of
Eq. (18),

d2f

dξ 2
+ 2

ξ

df

dξ
− f = ξ,

which can be easily integrated

f (ξ ) = Cλ

sinh ξ

ξ
+ 2

cosh ξ − 1

ξ
− ξ,

(A1)

Cλ = λ2 − 2λ sinh λ + 2 cosh λ − 2

λ cosh λ − sinh λ
.

The graphics of the gε(r) for ε = 0.05 is presented in Fig. 3
together with the numerical solution of Eq. (18) by the shooting
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FIG. 7. (Color online) Reduced rotation angle gε vs reduced
exchange length ε at r = 0 (solid curve) and r = 1 (dashed curve).

method. Despite the limitation of our analysis by the case
of a weak field |b| 	 1, the function gε(r) provides a good
approximation for the solution of nonlinear Eq. (18) up to
very strong fields b � 1 with a relative error of |[γ (r)num −
γ (r)theor]/γ (r)num| � 0.04.

The rotation angle in the Bloch point is essentially
influenced by the exchange parameter ε, see Fig. 7. In
the limiting case of a small particle (ε � 1), the role of
exchange is dominant, which results in the constant angle
g∞ = −√

15/4 ≈ −0.97. In the opposite case ε 	 1, the role
of the magnetostatic interaction is enhanced, and this leads to a
nonhomogeneous rotational angle distribution. In the limiting
case, g0(0) = 0 and g0(1) = −√

5/3 ≈ −1.3. Such a limiting
case is realized in typical soft nanomagnets sized in some tens
of nanometers.
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4A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of
Magnetic Microstructures (Springer-Verlag, Berlin, 1998).

5J. Stöhr and H. C. Siegmann, in Magnetism: From Fundamentals
to Nanoscale Dynamics, Springer Series in Solid-State Sciences
Vol. 152 (Springer-Verlag, Berlin/Heidelberg, 2006).
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(2006).

22Q. F. Xiao, J. Rudge, B. C. Choi, Y. K. Hong, and G. Donohoe,
Appl. Phys. Lett. 89, 262507 (2006).
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