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Thermodynamics of coherent interfaces under mechanical stresses. II. Application to atomistic
simulation of grain boundaries
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The thermodynamic theory of coherent interfaces developed in Part I of this work is applied to grain boundaries
(GBs) subject to nonhydrostatic elastic deformations. We derive expressions for the GB free energy as the
reversible work of GB formation under stress. We also present a generalized adsorption equation whose differential
coefficients define the GB segregation, GB stress tensor, GB excess volume, and GB excess shear. The generalized
adsorption equation generates a set of Maxwell relations describing cross effects between different GB properties.
The theory is applied to atomistic simulations of a symmetrical tilt GB in Cu and Cu-Ag alloys. Using a
combination of molecular dynamics and Monte Carlo methods, we compute a number of GB excess quantities
and their dependencies on the applied stresses, temperature and chemical composition in the grains. We also test
several Maxwell relations and obtain excellent agreement between the theory and simulations.
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I. INTRODUCTION

Solid-solid interfaces are important elements of materials
microstructure. They can strongly affect thermodynamic sta-
bility of materials, phase transformations and many physical
and mechanical properties.1,2 In Part I of this work,3 we
developed a thermodynamic theory of coherent interfaces in
multicomponent systems subject to nonhydrostatic mechanical
stresses. Coherent interfaces were defined as those whose
formation and motion conserves lattice sites and which support
static shear stresses applied parallel to the interface plane.
For such interfaces, we derived thermodynamic equations
for the interface free energy γ as an excess of appropriate
thermodynamic potentials. We also derived a generalized
adsorption equation, along with its Gibbs-Helmholtz form,
which are the fundamental equations of interface thermody-
namics. The generalized adsorption equation naturally led us
to definitions of the interface stress tensor, the interface excess
volume, the excess shear and a number of other measurable
excess quantities. It also generated a set of Maxwell relations
describing interesting cross effects.

The goal of Part II of this work is to apply the theory of
Ref. 3 to atomistic simulations of coherent grain boundaries
(GBs). GBs are interfaces between regions of the same
crystalline phase with different lattice orientations. Similarly
to coherent phase boundaries, coherent GBs can support not
only stresses normal to their plane but also shear stresses
parallel to it. When a coherent GB moves, it conserves the
number of lattice sites and only rearranges them from one
crystallographic orientation to the other. If a GB can be
equilibrated under applied stresses, the grains generally end
up in different thermodynamic states due to elastic anisotropy
of the lattice. In particular, their equilibrium chemical compo-
sitions and strain energy densities can be generally different.
In such cases, the GB can be formally treated as simply a
particular case of a phase boundary and our theory3 applies
without modifications. However, there are certain crystallo-
graphic symmetries and types of applied loads that leave the
grains thermodynamically identical. The exact definition of
“thermodynamically identical” grains and the corresponding
symmetries were discussed in Part I.3 In such cases, the two

grains are parts of a single phase and all thermodynamic
equations must be modified accordingly. The equations take
simpler forms, which facilitates their testing by simulations. At
the same time, this relatively simple case preserves most of the
key concepts and relations of the general theory,3 including the
adsorption equation, the excess volume, excess shear, interface
stress, and most of the Maxwell relations. Thus this case offers
a convenient test bed of our theory.

In Sec. II, we discuss symmetry requirements imposed
on GBs that preserve the grain identity under stresses and
specialize the general thermodynamic relations of Ref. 3 to this
case. In Sect. III, we introduce our simulation methodology and
provide computational details. The results of the simulations
are reported in Sec. IV, which is the central part of this work.
The results include the effects of deformation, temperature
and chemical composition of the GB free energy and GB
stress. We also test several Maxwell relations that charac-
terize mechanical, mechanochemical, thermomechanical and
thermochemical responses of the boundary. In Sec. V, we
summarize our work and draw conclusions.

II. THERMODYNAMICS OF GRAIN BOUNDARIES

A. Grain-boundary symmetry considerations

When the grains separated by a GB are stress free, they are
thermodynamically identical and form a single-phase system.
As mentioned above, when a stress is applied to the GB, it
generally destroys the initial equilibrium between the grains
due to elastic anisotropy of the lattice. The system can reach a
new equilibrium state, but the states of the grains generally
become nonidentical. We are interested in different cases,
namely, in special cases when the applied stresses do preserve
the single-phase nature of the system.

As an example, consider a coherent symmetrical tilt GB
shown schematically in Fig. 1. Suppose the tilt axis of
the boundary is aligned parallel to the Cartesian axis x1

while the GB plane is normal to the axis x3. Due to the
mirror symmetry across the GB plane, homogeneous tensions,
compressions, and in-plane shears parallel to the GB plane
preserve the thermodynamic identity of the grains. The same
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FIG. 1. Geometry of a symmetrical tilt GB relative to the
coordinate axes.

is true for tensions and compressions normal to the GB plane.
Furthermore, due to the twofold symmetry around the x2

axis, the shear stress σ31 parallel to the tilt axis also leaves
the grains identical. The only remaining stress component
is the shear σ32 applied normal to the tilt axis. This stress
can cause GB migration coupled to shear deformation of the
grains.4 Hypothetically, this migration could be stopped by
creating different chemical compositions in the grains and
thus an additional thermodynamic driving force opposing the
coupled motion. However, even if that happened, the difference
in chemical compositions would destroy the thermodynamic
identity of the grains and the single-phase treatment of the GB
would be impossible. To summarize, we can elastically deform
a bicrystal with a symmetrical tilt boundary and still treat the
two grains as a single phase as long as we keep σ32 = 0.

There can be other boundaries permitting single-phase
treatment under applied stresses. For example, a twist bound-
ary produced by rotation of two cubic lattices around a
common [110] axis contains two mutually perpendicular
two-fold symmetry axes lying in the GB plane. Suppose these
symmetry axes are aligned with the coordinate axes x1 and
x2. Then the system preserves the single-phase state when it is
subject to homogeneous lateral deformations, normal tension
or compression, and either σ31 �= 0 with σ32 = 0 or σ32 �= 0
with σ31 = 0. While such twist boundaries could be the subject
of future work, in this paper, we chose a simpler and better
studied case of a symmetrical tilt GB.

In the equations presented in this section, we include all
stress components with the understanding that in applications
to a particular GB some of them may disappear due to
symmetry restrictions.

B. The grain-boundary free energy

To simplify the exposition, we will focus on a binary
substitutional solid solution whose chemical composition will
be characterized by the atomic fraction, c2, of component 2. An
extension to multicomponent systems with both substitutional
and interstitial atoms is straightforward by analogy with Part
I.3 Vacancies are neglected and c2 can be interpreted as
the fraction of lattice sites occupied by atoms 2. This solid
solution has eight thermodynamic degrees of freedom which
can be, for example, the temperature T , composition c2, and
six components of the stress tensor σij .

Following Gibbs,5 we define the GB free energy γ as
the reversible work required for creation of a unit GB area.
To express γ through other thermodynamic properties, we

(c)

B B

(a)

Grain 2

Grain 2

Grain 1

Grain 1

GB

(b)

31

33

σ
σ

32σ

V′

x
1

x
3

FIG. 2. (Color online) Two-dimensional schematic of the forma-
tion of a coherent GB from a single crystal. (a) Initial single-phase
region of volume V ′. (b) Bicrystal created by lattice transformation to
a new orientation above a plane normal to x3. (c) Overlapping shapes
of the initial and final regions, showing the displacement vector B.
This two-dimensional schematic does not show the shear deformation
normal to the page.

consider a thought experiment in which the GB is formed
starting from a single-crystalline sample. The GB formation
process is illustrated by a two-dimensional schematic in Fig. 2.
The initial state of the system is an infinitely large single
crystal, in which we select a region of volume V ′ with the
shape of a parallelepiped. The top and bottom faces of the
parallelepiped are and always remain normal to the x3 axis.
This single crystal is in internal equilibrium at uniform values
of the temperature, composition, and stress.

To create a tilt GB, we reversibly transform the lattice above
a chosen plane normal to the x3 axis to a new crystallographic
orientation. The shape of the upper part of the selected region,
which now becomes part of the upper grain, undergoes a shear
deformation parallel to the GB plane (x1,x2). The process is
also accompanied by a tensile or compressive deformation
normal to the x3 axis. During this process, the cross-section of
the region parallel to the GB plane remains fixed in order to
maintain the coherency. Suppose the lattice of the lower grain
is fixed in space. Then, as a result of the GB formation, the
lattice sites near the upper face of the parallelepiped undergo
a displacement by a vector B shown in Fig. 2. This vector will
appear in the subsequent thermodynamic equations because it
defines the mechanical work Wm performed by the stress σij

during the GB formation.
As in Part I,3 we assume that the GB formation occurs at

fixed values of T , σ3i , and the diffusion potential6,7 M21 of
component 2 relative to component 1. The system is open
and its average chemical composition is allowed to vary
(subject to the conservation of sites). The system can also
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exchange heat with the environment. In the final state, the
grains are thermodynamically identical and thus have the same
temperature, chemical composition and stress as in the initial
single crystal. The energy change �U of the discussed region
is the sum of the heat T �S, the chemical work M21�N2,
the mechanical work Wm = A�iBiσ3i , and the nonmechanical
work Wnm = γA expended for the formation of the GB. Here,
A is the GB area, �S is the entropy change of the region, and
�N2 is the change in the number of atoms 2. The first law of
thermodynamics leads to the following expression for γA:3

γA = �U − T �S − M21�N2 − A
∑

i=1,2,3

Biσ3i . (1)

This equation can be rewritten in a form which is more
convenient for atomistic simulations. Namely, �U can be
computed as

�U = U − N (Ug/Ng), (2)

where U is the total energy of the region containing the GB, N
is the total number of atoms in this region, and the quantities
Ug and Ng refer to an arbitrarily chosen homogeneous region
inside one of the grains (hence the subscript g). More generally,
for any extensive property Z, we introduce the notation

[Z]N := Z − N (Zg/Ng). (3)

The meaning of [Z]N is the GB excess of property Z relative
to a homogeneous grain region comprising the same total
number of atoms as the region containing the boundary. For
example, the excess [N2]N characterizes the GB segregation of
component 2. It can be shown that the excess quantities defined
by Eq. (3) do not depend on the choice of the boundaries of
the two regions (with and without the GB) involved in the
calculation.3,8

It should be emphasized that the above definition of
excesses is different from the one introduced by Gibbs, which
was based on the construct of the dividing surface.5 In the latter
case, the two regions used in the excess calculation have the
same volume but generally contain different numbers of atoms.
Accordingly, the Gibbsian excess volume of any interface is
zero by definition. The excess defined by Eq. (3) retains the
GB excess volume, an important property which was measured
both experimentally9–11 and in simulations.12–14

Using this definition of excess quantities, Eq. (1) finally
becomes

γA = [U ]N − T [S]N − M21[N2]N − σ33[V ]N − A
∑
i=1,2

Biσ3i .

(4)

Note that in the mechanical work term, we separated the
contributions from i = 1, 2, and 3. This produced a separate
term containing the GB excess volume [V ]N = AB3 and two
terms representing the work of the shear stresses σ31 and σ32,
respectively. The coefficients AB1 and AB2 appearing in the
last two terms are the excess shears of the boundary. Such
shears exist only for coherent interfaces and were discussed in
detail in Ref. 3.

Equation (4) is a particular case of Eq. (96) of Part I.3

It clearly shows that the free energy of a GB subject
to an applied stress includes the work performed by the

stress during the boundary formation. In the particular case
when the grains are stressed hydrostatically, the terms with
σ31 and σ32 disappear. Furthermore, in hydrostatic systems
M21 = μ2 − μ1, where μi are chemical potentials of the
components. (While undefined in nonhydrostatically stressed
solids,5 chemical potentials are well-defined quantities under
hydrostatic conditions.) Equation (4) then becomes

γA = [U − T S + pV − μ1N1 − μ2N2]N
= U − T S + pV − μ1N1 − μ2N2, (5)

where p := −σ33 is pressure inside the grains and we used
the relation Ug − T Sg + pVg − μ1N1g − μ2N2g = 0 for ho-
mogeneous hydrostatic systems. Equation (5) recovers Gibbs’
expression for γA in fluid systems.5

C. The adsorption equation

The adsorption equation of an interface expresses the
differential of γA in terms of differentials of independent
intensive variables defining the equilibrium state of the system.
It is the fundamental equation of the interface, from which all
other interface properties we can be derived. The adsorption
equation of a GB subject to applied stresses was derived in
Part I3 as a particular case of the general coherent interface
theory when the two phases are thermodynamically identical.
Without repeating the derivation, we will adapt Eq. (93) from
Ref. 3 for the particular case considered here:

d(γA) = −[S]NdT − [N2]NdM21 − [V ]Ndσ33

−A
∑
i=1,2

Bidσ3i + A
∑

i,j=1,2

τij deji . (6)

The last sum in this equation contains the symmetrical
2 × 2 lateral strain tensor deji describing elastic stretching
(de11 and de22) and shearing (de12) of the boundary. It
is a small-strain tensor relative to the current state of the
boundary. The coefficients in front of deji describe the effect
of the lateral strains on the total GB free energy γA. Tensor
τij is called the GB stress tensor and is similar to the
interface stress discussed by Gibbs for solid-fluid interfaces.5

Gibbs distinguished between the reversible work of interface
formation, represented by γ , and the reversible work of elastic
deformation of the interface, represented by interface stress.
For solid-fluid interfaces, the components of τij turn out to be
quite different from γ and can be positive or negative.15 The
same is expected to be true for the GB stress.

As other coefficients in Eq. (6), the GB stress is an excess
quantity. Namely, it is the excess of lateral components of the
stress tensor relative to their values inside the grains. The local
stress in the GB core region is generally different from the
stress σij in the grains, creating a tensile or compressive state
of the boundary core described by τij . Adapting Eq. (95) from
Ref. 3, τij can be written in the form

τij = 1

A

(
σ ijV − δijσ33V − ABiσ3j − δij

∑
k=1,2

ABkσ3k

)

− N

ANg

(σijVg − δij σ33Vg). (7)
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Here, δij is the Kronecker delta, σ ij are the lateral stress
components averaged over the volume V of the region
containing the GB, and Vg and Ng refer to an arbitrarily
chosen homogeneous region inside the grains. Equation (7)
shows that, even though τij is an excess of the lateral
stress components, its calculation generally involves also the
shear and normal stress components σ3k (k = 1,2,3). This
complexity of the GB mechanics is further manifested in the
Maxwell relations discussed later. In the particular case when
the grains are hydrostatic, the adsorption equation becomes

d(γA) = −[S]NdT − [N2]Nd(μ2 − μ1)

+ [V ]Ndp + A
∑

i,j=1,2

τij deji , (8)

with the GB stress given by

τij = V

A
(σ ij + δijp). (9)

The adsorption equation (6) contains eight independent
differentials representing the eight degrees of freedom of
the single-phase system. However, as discussed above, in
order to keep the grains thermodynamically identical, certain
symmetry-dictated constraints need to be imposed on the ap-
plied stresses, such as σ32 = 0 for symmetrical tilt boundaries.
Such constraints reduce the actual number of parameters that
can be varied independently.44

Equation (6) can be rewritten in another form by expressing
[S]N from Eq. (4) and inserting it in Eq. (6). After some
rearrangement, this gives

d

(
γA

T

)
= − �

T 2
dT − [N2]N

T
dM21 − [V ]N

T
dσ33

− A

T

∑
i=1,2

Bidσ3i + A

T

∑
i,j=1,2

τij deji , (10)

where

� := [U ]N − M21[N2]N − σ33[V ]N − A
∑
i=1,2

Biσ3i . (11)

Equation (10) can be called the Gibbs-Helmholtz form of the
adsorption equation. Its derivation is mathematically similar
to the derivation of the classical Gibbs-Helmholtz equation
∂(G/T )/∂T = −(U + pV )/T 2 for bulk fluid systems, G

being the Gibbs free energy.16 In fact, if all variables in
Eq. (10) are fixed and only temperature is varied, this equation
reduces to ∂(γA/T )/∂T = −�/T 2 with γA playing the role
of G and � playing the role of the enthalpy U + pV .

The advantage of the Gibbs-Helmholtz form (10) over the
standard form of the adsorption equation is that the former does
not contain the excess entropy, the quantity which is difficult
to measure or compute. This makes Eq. (10) more suitable for
calculations of γ by thermodynamic integration. Indeed, all
excess quantities appearing in Eq. (10) are easily accessible by
atomistic simulations. Thus all differential coefficients of this
equation can be readily computed along an equilibrium path
connecting a chosen reference state with the state of interest.
This approach to calculation of γ will be applied later in this
paper.

D. The Lagrangian and physical forms
of the adsorption equation

As discussed in Sec. II B (see also Part I),3 the product γA

appearing in the adsorption equations (6) and (10) is the total
free energy of a GB patch within a selected region containing
a fixed set of lattice sites. During the lateral deformations
described by the strain tensor deij , those lattice sites are
conserved and are only stretched and/or sheared elastically
parallel to the GB plane. In terms of continuum mechanics,17

this means that the Lagrangian area of the GB remains fixed
whereas its Eulerian (physical) area A changes. Let the GB
area in its current state, i.e. prior to the application of the strain
deij , be denoted A′. Then there are two ways to define a specific
GB free energy: by dividing γA by the physical (elastically
deformed) area A and by dividing it by the Lagrangian area
A′. The first definition gives the physical GB free energy
γ , while the second gives the Lagrangian GB free energy
γ ′ := (γA)/A′.

This classification can be applied to all other excess
quantities: any total excess [Z]N generates the specific
excesses [Z]N/A (physical) and [Z]N/A′ (Lagrangian). In
particular, the GB stress τij introduced above is the physical
specific excess of the lateral stress components, whereas
τ ′
ij := (τijA)/A′ is the corresponding Lagrangian excess.

Likewise, besides the physical excess shears B1 and B2 we
can introduce their Lagrangian counterparts B ′

1 := (B1A)/A′
and B ′

2 := (B2A)/A′.
To emphasize that Eqs. (6) and (10) are Lagrangian forms

of the adsorption equation, they can be rewritten as

dγ ′ = − [S]N
A′ dT − [N2]N

A′ dM21 − [V ]N
A′ dσ33

−
∑
i=1,2

B ′
idσ3i +

∑
i,j=1,2

τ ′
ij deji (12)

and

d

(
γ ′

T

)
= − �

A′T 2
dT − [N2]N

A′T
dM21 − [V ]N

A′T
dσ33

−
∑
i=1,2

B ′
i

T
dσ3i +

∑
i,j=1,2

τ ′
ij

T
deji, (13)

where all differential coefficients are Lagrangian specific
excesses. To obtain the respective physical forms of the
adsorption equation, we take the differential of γA in the
left-hand side and move the term γ dA to the right-hand side.
Using the relation dA = A

∑
i,j=1,2 δij deij , we obtain

dγ = − [S]N
A

dT − [N2]N
A

dM21 − [V ]N
A

dσ33

−
∑
i=1,2

Bidσ3i +
∑

i,j=1,2

(τij − δij γ ) deji (14)

and

d

(
γ

T

)
= − �

AT 2
dT − [N2]N

AT
dM21 − [V ]N

AT
dσ33

−
∑
i=1,2

Bi

T
dσ3i +

∑
i,j=1,2

(τij − δij γ )

T
deji . (15)
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As for phase boundaries,3 Eqs. (12) and (14) generate the
Lagrangian form of the Shuttleworth equation,8

∂γ ′

∂eij

= τ ′
ij , (16)

as well as its physical form,18

∂γ

∂eij

= τij − δij γ . (17)

E. Maxwell relations

All forms of the adsorption equation discussed above ex-
press dγ , d(γA), d(γ /T ) and d(γA/T ) as perfect differentials
of intensive variables. These equations generate a number
of Maxwell relations between their differential coefficients.
Since these differential coefficients are either Lagrangian or
physical excesses, each Maxwell relation can be written in
two forms: Lagrangian and physical. The preferred choice
of the form depends on the case. For example, in Maxwell
relations involving the GB stress, the Lagrangian form contains
the readily accessible tensor τ ′

ij , whereas the physical form
contains the quantity (τij − δij γ ) whose calculation requires
knowledge of γ . Because γ is difficult to compute or measure
experimentally, the Lagrangian form is preferred.

A number of Maxwell relations were presented in Part I of
this work.3 For reference purposes, they are listed below in a
form adapted for GBs. Each relation is given in the Lagrangian
and physical forms. In some cases, when the derivatives are
taken at a fixed cross section of the GB, the two forms are
identical and we list only the Lagrangian form. As in Ref. 3,
all relations are divided into four categories, depending on the
type processes represented by the derivatives.

(i) Mechanical relations:

∂τ ′
ij

∂ekl

= ∂τ ′
kl

∂eij

,
∂(τij − δij γ )

∂ekl

= ∂(τkl − δklγ )

∂eij

,

(18)
i,j,k,l = 1,2,

∂τ ′
ij

∂σ33
= −∂([V ]N/A′)

∂eij

,
∂(τij − δij γ )

∂σ33
= −∂([V ]N/A)

∂eij

,

(19)
i,j = 1,2,

∂τ ′
ij

∂σ3k

= −∂B ′
k

∂eij

,
∂(τij − δij γ )

∂σ3k

= −∂Bk

∂eij

,

(20)
i,j,k = 1,2,

∂B ′
k

∂σ33
= ∂([V ]N/A′)

∂σ3k

, k = 1,2. (21)

(ii) Mechanochemical relations:

∂τ ′
ij

∂M21
= −∂([N2]XY /A′)

∂eij

,

∂(τij − δij γ )

∂M21
= −∂([N2]N/A)

∂eij

, i,j = 1,2, (22)

∂([V ]N/A′)
∂M21

= ∂([N2]N/A′)
∂σ33

, (23)

∂B ′
k

∂M21
= ∂([N2]N/A′)

∂σ3k

, k = 1,2. (24)

(iii) Thermomechanical relations:

∂(τ ′
ij /T )

∂T
= −∂([�]N/A′T 2)

∂eij

,

∂{(τij − δij γ )/T }
∂T

= −∂([�]N/AT 2)

∂eij

, i,j = 1,2, (25)

∂([V ]N/A′T )

∂T
= ∂([�]N/A′T 2)

∂σ33
, (26)

∂B ′
k

∂T
= ∂([�]N/A′T 2)

∂σ3k

, k = 1,2. (27)

(iv) Thermochemical relation:

∂([N2]N/A′T )

∂T
= ∂([�]N/A′T 2)

∂M21
, (28)

Equations (18)–(20) describe the effect of applied stresses
on the GB stress. In Eq. (19), the right-hand side describes the
GB “Poisson effect,” i.e, the effect of lateral strains on the GB
“thickness” (excess volume per unit area). The right-hand side
of Eq. (21) represents a more subtle effect, in which applied
shear stresses influence the GB excess volume. The right-hand
sides of Eqs. (22)–(24) describe the effect of applied lateral
strains, normal stress, and shear stresses on GB segregation.

III. METHODOLOGY OF ATOMISTIC SIMULATIONS

A. Simulated systems

A bicrystal containing a symmetrical tilt �5 (310) GB was
created by standard geometric constructions.19 The grains were
symmetrically misoriented by 36.87◦ around the [001] tilt axis
parallel to the x1 direction of the coordinate system. The GB
plane is (310) and is normal to the x3 axis. The atomic structure
of this boundary viewed down the tilt axis consists of identical
kite-shaped structural units shown in Fig. 3. Due to the 2mm

[1 3 0]

[3 1 0]

-
[0 0 1]

FIG. 3. Atomic structure of the symmetrical tilt �5 (310) GB.
The open and filled circles indicate atomic positions in alternate
(002) planes parallel to the page. The tilt axis is normal to the page.
The kite-shaped structural units are outlined.

224107-5



T. FROLOV AND Y. MISHIN PHYSICAL REVIEW B 85, 224107 (2012)

[130]

[310]

-

[001]

x1

x2

x3

Surface
 region 1

Surface
 region 2

FIG. 4. (Color online) Simulation block containing the �5 (310)
symmetrical tilt GB. The GB position is indicated by the red color.
The atoms colored in grey form the surface regions 1 and 2 discussed
in the text. Boundary conditions parallel to the GB plane are periodic.
The image was produced with the ATOMEYE visualization program.43

symmetry of this boundary, uniform elastic deformations of
the bicrystal create identical stress tensors in both grains and
thus preserve equilibrium between them as long as the shear
stress σ32 remains zero. A nonzero σ32 destroys the identity of
the grains and induces coupled motion of this boundary.4,20 It
should be noted that this boundary remains coupled even at
σ32 = 0. Its spontaneous displacements up and down are ac-
companied by concurrent grain translations by geometrically
prescribed amounts.4 Such coupled displacement-translation
events are equilibrium fluctuations and do not contradict our
thermodynamic analysis.

The simulation block had dimensions 22 × 23 × 145 Å
and contained 5256 atoms (see Fig. 4). Periodic boundary
conditions were applied in the x1 and x2 directions parallel
to the GB plane. In the x3 direction, the grains terminated at
“surface regions” labeled 1 and 2. The thickness of each surface
region was twice the cutoff radius of atomic interactions.
The motion of atoms in these regions was subject to certain
restrictions which produced desired states of stress in the
system. Unless otherwise stated, the atoms in region 2 are fixed
in their perfect lattice positions to prevent rigid translations of
the entire simulation block.

We used pure Cu and Cu-Ag alloys as model materials.
Interactions between the atoms were modeled by embedded-
atom method potentials for copper21 and the Cu-Ag system.22

The binary potential reproduces the eutectic phase diagram
of the Cu-Ag system in semiquantitative agreement with
experiment.23 Cu was chosen as component 1 and Ag as
component 2. The chemical composition is characterized by
the atomic fraction, cAg, of Ag atoms. In this work, we studied
Cu-rich solid solutions with cAg less than 1%.

B. Simulations in pure Cu

The effect of elastic deformation on GB properties in pure
Cu was studied at the temperature of 0 K. Lateral deformations
of the simulation block were described by a small-strain
tensor eij relative to the initial state with stress-free grains.
To compute the GB excess properties as functions of e11, e22,
σ31, and σ33 and to test the Maxwell relations (18)–(21), the
GB was elastically deformed along various deformation paths.
The deformations included tensions and compressions parallel
to the coordinate axes and a shear parallel to the GB plane in
the x1 direction.

Uniaxial and biaxial deformations parallel to the GB plane
were modeled by imposing the strains e11 or e22 (or both)
while keeping the stress components σ31, σ32, and σ33 zero. For
biaxial deformations, the block was strained by e11 = e22 := e.
The deformations were implemented by scaling the atomic
coordinates in small increments followed by static relaxation
after each step. During the relaxation, the lateral dimensions of
the system were kept fixed, allowing the atoms to move until
the total energy reached a minimum. The amount of strain was
varied from −1.6% (compression) to 1.6% (tension). Because
the principal axes of stress and strain coincide by symmetry of
the system, such deformations do not create any shear stresses
σ31 or σ32. Furthermore, atoms in the surface region 1 were
allowed to move freely in the x3 direction, imposing the zero-
stress condition σ33 = 0.

Tension and compression normal to the GB plane were
applied by scaling the x3 coordinates of all atoms by small
increments followed by static relaxation. During the relax-
ation, atomic positions in the surface regions 1 and 2 remained
fixed. This deformation produced a normal stress σ33 while
keeping the shear stresses σ31 and σ32 zero by symmetry. The
relaxed σ33 values implemented in the simulations ranged form
−2.4 GPa (compression) to 2.7 GPa (tension).

Finally, the shear stress σ31 parallel to the tilt axis was
applied at fixed lateral dimensions of the simulation block
and zero σ33. The shear was imposed by incremental rigid
displacements of surface region 1 in the x1 direction while
keeping fixed atomic positions in surface region 2. During the
relaxation, the atoms in surface region 1 were allowed to move
only in the x3 direction, imposing the σ33 = 0 condition. Using
this procedure, σ31 was ramped from 0 to 1.49 GPa. Changing
the sign of the shear would produce identical result due to the
mirror plane normal to the x1 axis.

For calculation of excess quantities, the region containing
the GB comprised all atoms separated by more than 20 Å
from each of the surface regions. The grain properties were
computed by averaging over two approximately 25-Å-thick
homogeneous regions selected inside the grains and not
influenced by the GB or the surface regions. The exact
boundaries of these regions were chosen to coincide with (310)
atomic planes. To calculate the relevant components of vector
B, all atoms outside the GB core were assigned to individual
(310) layers and average coordinates of atoms belonging
to such layers were computed. Let (X1,X2,X3) denote the
average coordinates of the top layer of the region containing
the GB relative to its bottom, and let (X1g,X2g,X3g) be a
similar vector computed for the selected homogeneous grain
region. Then B1 and B3 are given by Bi = Xi − (N/Ng)Xig ,
i = 1,3.
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Testing the Maxwell relations required calculation of
derivatives of GB excess quantities with respect to e11, e22,
σ31, or σ33. To this end, the discrete data points obtained
by individual simulations were fitted with a second-order
polynomial and the derivative was evaluated for the stress-free
state.

The GB properties at finite temperatures were studied by
molecular dynamics (MD) simulations in the NVT ensemble
(constant number of atoms N, volume V and temperature
T) using the Nose-Hoover thermostat. The MD simulations
employed the ITAP molecular dynamics (IMD) program24–26

and were performed in the temperature range from 0 to 900 K
in 100 K steps. At each temperature, the simulation block
was pre-expanded by the thermal expansion factor computed
previously21 to eliminate thermal stresses in the grains. No
restrictions were imposed on atomic motion in the surface
regions 1 and 2, turning them to open surfaces. While this
procedure ensured stress-free states inside the grains, finite
lateral stresses σ11 and σ22 existed in the GB region due to the
GB stress τij . At each temperature, the system was equilibrated
for 2 ns, followed by a 10-ns-long production run during
which multiple snapshots of the system were generated. The
snapshots contained positions of atoms as well as their energies
and stresses. This data was later used for post-processing the
results.

C. Simulations for the binary Cu-Ag system

To model the binary Cu-Ag system at finite temperatures,
we used Monte Carlo (MC) simulations in the semi-grand
canonical ensemble.27–29 In this ensemble, the temperature and
the total number N of atoms are fixed, whereas the positions
and chemical species of the atoms can vary. Each step of the
MC process includes a random selection of an atom and its
small random displacement with simultaneous random change
of its chemical species. The trial move is accepted or rejected
according to the Metropolis algorithm. The probability of
switching chemical species depends on the diffusion potential
M21, which is an input parameter of the simulation. The MC
simulations allow the system to reach equilibrium much faster
than by MD simulations, which require actual diffusion of
atoms.

The MC simulations were performed at a constant tempera-
ture of 800 K and sampled the composition range from cAg = 0
to cAg = 0.58% inside the grains. Different chemical composi-
tions in the grains were created by adjusting the value of M21.
Prior to each simulation, the block was pre-expanded accord-
ing to the expansion coefficient of a bulk solid solution subject
to the chosen M21. Such expansion coefficients were computed
in separate MC simulations of a single crystal with all-periodic
boundary conditions in the NPT ensemble (constant number
of atoms N, pressure P and temperature T) at zero pressure.
This pre-expansion procedure was applied to eliminate the
compositional and thermal stresses inside the grains. During
the subsequent MC simulations, the x1 and x2 dimensions
of the simulation block remained fixed, whereas in the x3

direction the grains terminated at free surfaces. In each sim-
ulation run, the system was first equilibrated by 5 × 104 MC
steps per atom, followed by a production stage which typ-
ically comprised 7 × 105 MC steps per atom. During the

production run, snapshots containing energies, stresses and
atomic species of individual atoms were generated every
70 MC steps per atom.

To test the Maxwell relations, four types of simulation were
conducted: (i) biaxial tension/compression parallel to the GB
plane at constant T , M21, σ31, and σ33, (ii) tension/compression
normal to the GB plane at constant T , M21, and e, (iii) variation
of M21 at constant T , σ31, σ33, and e, and (iv) variation of T

at constant M21, σ31, σ33, and e. The elastic deformations
were implemented by the same methodology as in the 0 K
simulations described above. In each of the four types of state
variations, several MC simulations were performed at different
values of the respective intensive parameter (e, σ33, M21, or
T ). Each simulation included the equilibration and production
stages as indicated above and produced average values of the
relevant GB properties. The discrete data points thus obtained
were fitted with a second-order polynomial to compute the
respective derivative. All derivatives appearing in the Maxwell
relations were evaluated for the same thermodynamic state of
the grains, namely, T = 800 K, M21 = 0.4 eV, and σij = 0.
In this state, the chemical composition inside the grains was
cAg = 0.036%.

IV. RESULTS

A. Pure Cu at 0 K

At 0 K the entropy terms in all equations vanish and there
is no need to compute the excess entropy [S]N . This simplifies
all thermodynamic equations and enables direct calculation of
γ through appropriate excesses of energy and other quantities.
Calculations at 0 K allow us to test the proposed thermo-
dynamic integration schemes by computing γ both directly
(as indicated below) and by integration of the adsorption
equation. We will test several integration paths corresponding
to different types of deformation. Thermodynamic integration
requires knowledge of γ in a reference state. The latter was
chosen to be the state with stress-free grains at 0 K. The GB
free energy γ0 in this state is readily computed by [U ]N/A′,
where A′ is the respective GB area. The calculations give γ0 =
0.905 J/m2 in agreement with previous work.19

1. Tension and compression parallel to the GB plane

The GB free energy was computed as a function of strain
for two uniaxial deformations (e11 and e22) and the biaxial
deformation. Because all σ3i are zero, Eq. (4) reduces to

γ = [U ]N/A, (29)

offering an easy recipe for calculation of γ . On the other hand,
the integrated forms of Eq. (6) for these deformations are

γ = γ0A
′

A
+ 1

A

∫
τ11Ade11, (30)

γ = γ0A
′

A
+ 1

A

∫
τ22Ade22, (31)

γ = γ0A
′

A
+ 1

A

∫
(τ11 + τ22)Ade. (32)
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FIG. 5. (Color online) GB stress in pure Cu at 0 K as a function
of strain. (a) Biaxial strain (e := e11 = e22). (b) Uniaxial strain e11.
(c) Uniaxial strain e22.

The GB stress τij is readily computed from Eq. (7), which with
σ3i = 0 reduces to

τii = 1

A

(
σ iiV − N

Ng

σiiVg

)
, i = 1,2. (33)

By the symmetry of the system τ12 = 0.
For the reference state (σij = 0), the calculations give

τ11 = 1.305 J/m2 and τ22 = 1.774 J/m2. During the biaxial
deformation, both components of τij decrease under tension
and increase under compression (see Fig. 5). The fact that
∂τii/∂e < 0 indicates that the GB core is “softer” than the
lattice (positive excess of compliance). At all strains tested,
both components of τij remain positive, i.e., the GB core is
under tension.

Figure 6 displays the plots of γ as a function of strain
for all three deformation paths. The discrete points were
obtained by direct calculations from Eq. (29), whereas the
lines were computed by integration of Eqs. (30)–(32). The
excellent agreement between the two calculations confirm
the correctness and accuracy of our methodology. Note that
∂γ /∂eii > 0, i.e., γ increases under tension and decreases
under compression. Since both components of τij are larger
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FIG. 6. (Color online) GB free energy as a function of strain for
pure Cu at 0 K. (a) Biaxial strain (e := e11 = e22). (b) Uniaxial strain
e11. (c) Uniaxial strain e22.

than γ , this behavior is consistent with the Shuttleworth
equation (17).

2. Deformation normal to the GB plane

When the GB is subject to a normal stress σ33, γ is no
longer identical to the excess energy. In addition to [U ]N ,
there is another term representing the mechanical work of
the normal stress when the boundary is formed. Accordingly,
Eqs. (4) and (6) become

γ = [U ]N/A − σ33[V ]N/A (34)

and

γ = γ0 − 1

A

∫
[V ]Ndσ33, (35)

respectively.
The integration in Eq. (35) requires knowledge of the excess

GB volume [V ]N as a function of σ33. This function has been
calculated and is illustrated in Fig. 7 with [V ]N normalized by
the GB area (which remains constant during the deformation).
The stress-free value of [V ]N/A is 0.316 Å; it increases
under tension and decreases under compression. The plot also
reveals a significant tension-compression asymmetry of the
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FIG. 7. (Color online) Excess GB volume per unit area, [V ]N/A,
as a function of normal stress σ33. The calculation was performed for
pure Cu at 0 K.

excess volume. Namely, the GB core is elastically stiffer under
compression and more compliant under tension.

Figure 8 shows the GB free energy computed directly from
Eq. (34) (discrete points) and by thermodynamic integration
using Eq. (35) (solid line). Again excellent agreement is ob-
served between the two calculation methods. It is noteworthy
that γ decreases under normal tension and increases under
normal compression, which is consistent with the positive sign
of the excess volume. The variations in γ are nearly linear
in stress, which is consistent with the fact that [V ]N varies
with σ33 by only a few percent. It should be noted, however,
that at the stress level of about 3 GPa neglecting the second
term in Eq. (34) would produce a 10% overestimate of the
GB free energy. This effect can be quite significant given that
in experiment (especially in polycrystalline materials) local
stresses produced in GB regions by nearby dislocations and
other defects, or arising due to the concentration of applied
loads, can readily reach GPa levels.

3. Shear deformation parallel to the tilt axis

Under a shear stress σ31, all atoms have a displacement
component in the x1 direction parallel to the tilt axis. An
example is shown in Fig. 9(a) where we plot the elastic
displacements u1 relative to the state with stress-free grains
versus the x3 coordinate for σ31 = 1.5 GPa. Each u1 was
averaged over atoms lying in the same (310) plane parallel
to the GB. Observe that inside the grains u1 is a linear function
of x3. The slope of this line represents the inverse of the
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FIG. 8. (Color online) GB free energy as a function of normal
stress σ33 for pure Cu at 0 K. The discrete points were obtained by
direct calculation, while the lines by thermodynamic integration.
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FIG. 9. (Color online) (a) Displacement u1 of atoms in the
direction parallel to the GB plane versus the distance normal to the
GB. The applied shear stress is σ31 = 1.5 GPa and the temperature is
0 K. The relative shift of the horizontal segments of the plot is
indicated. (b) Excess GB shear B1 as a function of applied shear stress
σ31. Note that the stress-free value of B1 is zero by the symmetry of
the GB studied in this work.

shear strain e31 and is the same in both grains by crystal
symmetry. Note the significant decrease of the slope in the
GB core. This decrease creates a relative shift of the two linear
segments and reflects the excess of shear in the GB. This
plot demonstrates how the excess shear contributes to elastic
response of the bicrystal. Weissmüller et al.30 have recently
developed a kinematic theory for the average excess shear in
polycrystalline materials.

For a GB subject to the shear stress σ31, Eq. (4) gives

γ = [U ]N/A − σ31B1, (36)

where the second term accounts for the work done by the
stress during the GB formation. The integrated form of the
adsorption equation (6) is

γ = γ0 −
∫

B1dσ31. (37)

The excess shear B1 is plotted in Fig. 9(b) versus the shear
stress σ31. The obvious linearity of the plot indicates that the
GB is deformed in a linear-elastic mode, with the stiffness
coefficient of about 150 GPa/nm. The respective compliance
coefficient is about 7 pm/GPa. By fitting a mechanical model
to experimental data for nanocrystalline Pd,31 Weissmüller
et al.30 have recently estimated the GB compliance coefficient
to be 18 pm/GPa. The comparison is reasonable given that
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FIG. 10. (Color online) GB free energy γ as a function of shear
stress σ31 parallel to the tilt axes at 0 K. The discrete points were
obtained by direct calculations while the line by thermodynamic
integration.

these numbers refer to different models, different materials,
and a specific GB in our case and a polycrystalline material in
the experiment.31

Figure 10 shows the GB free energy γ as a function of
σ31 computed directly from Eq. (36) and by integration of
Eq. (37). The symmetry of this GB dictates that γ should not
depend on the sign of σ31. It is therefore expected that γ should
reach a maximum or minimum in the stress-free state. For this
particular boundary, the stress-free state is a maximum, with γ

slowly decreasing under stress. Considering that this effect is
a higher order than linear, it is not surprising that γ is reduced
by only 0.88% under the maximum stress of 1.5 GPa tested in
this work.

4. Maxwell relations

There are six Maxwell relations that can be tested by
simulations of pure Cu at 0 K. Three of them are satisfied
automatically by the symmetry of the chosen GB, which
dictates that both derivatives must be zero. Three remaining
relations are nontrivial and permit testing by simulations. Each
of these relations has a physical and a Lagrangian formulation,
making the total of six relations. We will present tests of two of
them in detail. Test of other Maxwell relations are summarized
in Tables I (Lagrangian form) and II (physical form).

We first examine the Maxwell relation (18) in the physical
form. The derivatives in this relation correspond to different
uniaxial deformation paths described in Sec. IV A1. To

TABLE I. Derivatives involved in the Lagrangian form of the
Maxwell relations (18)–(21) computed at 0 K. The expressions in
the first row are the denominators of the partial derivatives, while the
first column contains the numerators. The derivatives were evaluated
for the state with stress-free grains. The table is symmetrical (within
the accuracy of our calculations) in accord with predictions of the
Maxwell relations. Some of the entries are zero due to the symmetry
of the GB.

∂τ ′
11 ∂τ ′

22 ∂B ′
1 ∂([V ]N/A′)

∂e11 ... 0.0376 J/m2 0.0 0.0114 nm
∂e22 0.0376 J/m2 ... 0.0 0.03749 nm
∂σ31 0.0 0.0 ... 0.0
∂σ33 −0.0113 nm −0.03771 nm 0.0 –

TABLE II. Derivatives involved in the physical form of the
Maxwell relations (18)–(21) computed at 0 K. The expressions in
the first row are the denominators of the partial derivatives, while the
first column contains the numerators. The derivatives were evaluated
for the state with stress-free grains. The table is symmetrical (within
the accuracy of our calculations) in accord with predictions of the
Maxwell relations. Some of the entries are zero due to the symmetry
of the GB.

∂(τ11 − γ ) ∂(τ22 − γ ) ∂B1 ∂([V ]N/A)

∂e11 ... 0.0159 J/m2 0.0 0.0203 nm
∂e22 0.0159 J/m2 ... 0.0 0.006086 nm
∂σ31 0.0 0.0 ... 0.0
∂σ33 0.0203 nm −0.006086 nm 0.0 –

compute these derivatives, we need to know τii and γ as
functions of e11 and e22 for these two paths. The calculations
were performed using Eqs. (29) and (33) for each deformed
state of the boundary. The obtained (τ11 − γ ) and (τ22 − γ )
are plotted as functions of the strains e22 and e11 in Figs. 11(a)
and 11(b), respectively. The discrete points correspond to
separate simulations for different strains. The dashed lines
are tangents to the plots representing the computed derivatives
at zero strain. The derivatives were found to be 0.0159 J/m2

for both plots. Thus the Maxwell relation (18) holds within the
accuracy of our calculations.

In the second example, we test the relation (19), this time in
the Lagrangian form. To evaluate the derivative in the left-hand
side, τ ′

11 was computed as a function of σ33 for the elastic
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FIG. 11. (Color online) Test of the Maxwell relation (18) in the
physical form. The points represent calculations for individual strains
at 0 K. The dashed lines are slopes to the plots of (a) (τ11 − γ ) versus
e22 and (b) (τ22 − γ ) versus e11 at zero stress. The right triangles with
the slopes of 0.0159 J/m2 are shown as a guide to eye.
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FIG. 12. (Color online) Test of the Maxwell relation (19) in the
Lagrangian form. The points represent calculations for individual
strains at 0 K. The dashed lines are slopes to the plots of (a) τ ′

11 versus
σ33 and (b) [V ]N/A′ versus e11. The right triangles with the slopes
of −0.0113 and 0.0114 nm, respectively, are shown as a guide to the
eye.

deformation described in Sec. IV A2. For the derivative in
the right-hand side, the excess GB volume was computed as
a function of e11 (see Sec. IV A1) and normalized by the
stress-free GB area A′. The respective plots are shown in
Fig. 12. The derivatives evaluated at zero stress were found
to be −0.0113 nm and 0.0114 nm, respectively, which is in
excellent agreement with prediction of Eq. (19).

B. Pure Cu at finite temperatures

For a single-component GB with stress-free grains at finite
temperatures, Eq. (4) gives the GB free energy

γA = [U ]N − T [S]N . (38)

Because the excess entropy [S]N cannot be easily computed
by MD simulations, γ was calculated by thermodynamic
integration of the Gibbs-Helmholtz equation (10), which does
not contain [S]N . We chose the integration path on which
temperature varies, σ31 and σ33 remain zero, and the lateral
strain is adjusted to accommodate the thermal expansion of
the lattice. For this path, the integrated form of Eq. (10) is

γA = (γ0A0)T

T0
− T

∫ T

T0

(
[U ]N
T 2

− (τ11 + τ22)A

T

de

dT

)
dT .

(39)

Here, e is the biaxial lateral strain and the derivative de/dT is
the thermal expansion coefficient of the stress-free Cu lattice.
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FIG. 13. (Color online) Excess GB energy [U ]N/A as a function
of temperature for stress-free grains in pure Cu. The points were
obtained by MD simulations and are connected by lines as a guide to
the eye.

The quantities γ0, A0, and T0 are the GB free energy, area, and
temperature corresponding to the reference state, respectively.
The excess quantities [U ]N and τii involved in Eq. (39) were
computed for a discrete set of temperatures along the path and
are presented in Figs. 13 and 14, respectively. Note that the
GB stress τii is anisotropic at all temperatures along the path,
with both components decreasing with temperature.

The solid line in Fig. 15 indicates the GB free energy γ

computed from Eq. (39) as a function of temperature. The
reference temperature T0 = 300 K was used and the integration
was performed to temperatures both below and above T0. The
two points on the plot indicate the values of γ at 0 K and at
300 K. The reference value γ0 was obtained by quasiharmonic
calculations,28 whereas the 0 K value was computed directly
by Eq. (29). Observe that the integration towards 0 K gives
exactly the number obtained by the direct calculation, which
validates our methodology. Over the entire temperature range
studied here, γ decreases from 0.905 J/m2 at 0 K to 0.660 J/m2

at 900 K. The trend for γ to decrease with temperature is
consistent with previous simulations.32,33

C. Cu-Ag alloys at finite temperatures

Figure 16 shows MC snapshots of the simulation block
with the grain compositions of 0.036%, 0.24%, and 0.58%
Ag at 800 K. These images demonstrate that Ag strongly
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FIG. 14. (Color online) GB stress components τ11 and τ22 as
functions of temperature for stress-free grains in pure Cu. The points
were obtained by MD simulations and are connected by lines as a
guide to the eye.
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FIG. 15. (Color online) GB free energy γ as a function of
temperature for stress-free grains in pure Cu. The line was computed
by thermodynamic integration while the points represent direct
calculations at the reference temperature of T0 = 300 K and at
0 K.

segregates to the GB and that the segregated amount and the
width of the segregation region both increase with temperature.
It is also apparent that at the highest Ag concentrations
studied here, the boundary becomes visibly disordered. In
Fig. 17, we plot the excess GB volume per unit area as a
function of grain composition. The discrete points on the
plot represent individual MC runs at particular values of
the imposed diffusion potential M21. The excess GB volume
monotonically increases with cAg and becomes nearly four
times the value in pure Cu when cAg reaches the maximum
concentration of 0.58%. This increase is consistent with the
larger size of Ag atoms in comparison with Cu atoms. Note
that the slope of the plot increases at high concentrations when
the boundary develops the atomic disorder.

For the simulation conditions discussed here, Eq. (4) gives
the GB free energy

γA = [U ]N − T [S]N − [N2]NM21. (40)

To circumvent a calculation of [S]N , γ was computed as a
function of cAg by integration of the adsorption equation with

FIG. 16. (Color online) Snapshots of the Cu-Ag simulation block
with the GB concentration of silver cAg (a) 0.036%, (b) 0.24%, and
(c) 0.58% at T = 800 K. Cu atoms are shown in yellow and Ag
atoms in dark blue. The images were produced with the ATOMEYE

visualization program.43
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FIG. 17. (Color online) Excess GB volume per unit area, [V ]N/A,
as a function of the silver concentration in the grains at a fixed
temperature of 800 K. The points were obtained by MC simulations
and are connected by lines as a guide to the eye.

respect to cAg from the pure copper state (cAg = 0) to the
current composition. The value of γ for pure Cu was taken
from the MD simulations discussed in Sec. IV B. On this
integration path, the temperature remains fixed at 800 K, the
grains are stress-free, and M21 is varied to gradually increase
the concentration of Ag. The lateral dimensions of the system
are also varied due to the compositional strain.6,7,34 For this
path, the integrated form of Eq. (6) is

γA = γ0A0

−
∫ cAg

0

{
[N2]N

dM21

dcAg
+ (τ11 + τ22)A

de

dcAg

}
dcAg,

(41)

where the derivative de/dcAg represents the change in the
stress-free lattice constant with composition.

The GB excesses entering Eq. (41) were computed as
functions of composition and are shown in Figs. 18 and 19.
As already expected from the images in Fig. 16, the GB
segregation [N2]N/A increases with the grain composition
(see Fig. 18). In the composition range where the boundary
preserves its relatively ordered structure, the shape of the seg-
regation curve is qualitatively consistent with the Langmuir–
McLean isotherm.1 At higher Ag concentrations when the
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FIG. 18. (Color online) GB segregation [N2]N/A as a function of
the grain composition cAg at a fixed temperature of 800 K. The points
were obtained by MC simulations and are connected by lines as a
guide to the eye.
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FIG. 19. (Color online) The components τ11 and τ22 of the GB
stress tensor as functions of the grain composition cAg at a fixed
temperature of 800 K. The points were obtained by MC simulations
and are connected by lines as a guide to the eye.

GB becomes more disordered, the slope of the segregation
isotherm increases, indicating an increased capacity of this GB
to absorb Ag atoms. Figure 19 shows the GB stress components
τ11 and τ22 as functions of cAg. Both components decrease with
concentration and eventually merge, making the GB stress
tensor virtually isotropic. Note the change of sign of τii at
cAg≈ 0.28%, indicating that the GB is under tension below this
composition and under compression above. A similar reversal
of sign of GB stress with alloy composition was observed
experimentally in the Pd-H system.35,36 The experiments also
revealed a correlation between the GB excess volume and
segregation.35 The two systems are very different in both
thermodynamics and the mechanism solubility (interstitial
mechanism in Pd-H, substitutional in Cu-Ag). It can be noted,
however, that the interstitial hydrogen and the “oversized”
substitutional Ag atoms both produce compressive stresses
in the lattice and can be expected to increase the GB excess
volume when segregation occurs.

Finally, the GB free energy γ computed by thermodynamic
integration (41) is plotted versus cAg in Fig. 20. The plot
shows the expected decrease of γ with alloying and is convex
at small concentrations in agreement with the Langmuir–
McLean isotherm. At higher concentrations the plot turns
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FIG. 20. (Color online) GB free energy γ computed by thermo-
dynamic integration as a function of the grain composition cAg at a
fixed temperature of 800 K. The point at cAg = 0 represents the GB
free energy in pure Cu used as the reference value.
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FIG. 21. (Color online) Test of the Lagrangian form of the
Maxwell relation (22) for the GB in the binary Cu-Ag solution at
800 K. The discrete points represent MC simulation data. (a) GB
segregation [N2]N/A′ as a function of biaxial strain parallel to the
boundary. (b) Sum of the principal components, τ ′

11 and τ ′
22, of the GB

stress tensor as a function of the diffusion potential M21. The
slopes of the dashed lines represent the derivatives appearing in the
Maxwell relation. The vertical dashed lines indicate the state in which
the derivatives are taken, i.e., stress-free grains with the chemical
composition of cAg = 0.036%. The right triangles with the slopes of
0.46 and −0.46 Å−2, respectively, are shown as a guide to the eye.

over and becomes concave. This change of shape reflects
the positive deviation of the segregation isotherm from the
Langmuir–McLean form (cf. Fig. 18), causing the more rapid
decrease of γ . Overall, the GB free energy decreases at this
temperature from γ = 0.70 J/m2 for pure Cu to γ = 0.54
J/m2 at cAg = 0.58%.

D. Effects of elastic deformation and temperature
on segregation

The MC simulations were also used to study the effect of
elastic deformation, parallel, and normal to the GB plane, and
temperature on GB segregation. These effects are expressed
by appropriate Maxwell relations, which were used in the
Lagrangian form in order to avoid a calculation of γ as a
function of respective intensive variables.

The effect of elastic deformation parallel to the GB plane
was modeled by applying a biaxial strain e. For this type of
deformation, the Maxwell relation (22) predicts

∂(τ ′
11 + τ ′

22)

∂M21
= −∂([N2]N/A′)

∂e
. (42)
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Figure 21(a) shows the GB segregation per unit reference area
as a function of strain e computed at constant M21 and zero σ31

and σ33. The total amount of segregation increases linearly with
strain in this deformation range. As expected, tension favors
the segregation of larger Ag atoms. Figure 21(b) shows that
the sum of the GB stress components decreases with M21 (i.e.,
with increasing cAg), which is again consistent with the atomic
size effect. The computed derivatives appearing in Eq. (42) are
−0.46 ± 0.08 Å−2 in the left-hand side and 0.46 ± 0.01 Å−2

in the right-hand side. They are opposite in sign and equal in
magnitude within the error bars in agreement with Eq. (42).

Secondly, we examined the effect of the normal stress
σ33 on segregation and tested the Maxwell relation (23).
According to this relation, the effect of σ33 on segregation
is related to the change in the GB excess volume with M21.
Figure 22(a) shows the segregation [N2]N/A′ as a function of
σ33 at fixed lateral dimensions of the simulation block, constant
value of M21 and zero σ31. As expected from the atomic
size effect, the segregation increases under tension (σ33 > 0)
and decreases under compression (σ33 < 0). Similarly, the
GB excess volume increases with increasing M21 (and thus
cAg) [see Fig. 22(b)]. The respective derivatives are found
to be 0.027 ± 0.004 Å−2GPa−1 in the left-hand side and
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Maxwell relation (23) for the GB in the binary Cu-Ag solution at
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FIG. 23. (Color online) Test of the Lagrangian form of the
Maxwell relation (28) for the GB in the binary Cu-Ag solution
at 800 K. The discrete points represent MC simulation data. (a)
GB segregation [N2]N/A′ as a function of temperature. (b) The
potential [�]N/A′T 2 as a function of the diffusion potential M21.
The slopes of the dashed lines represent the derivatives appearing
in the Maxwell relation. The vertical dashed lines indicate the state
in which the derivatives are taken, i.e., stress-free grains with the
chemical composition of cAg = 0.036%. The right triangles with the
slopes of −2.7 × 10−8 and −3.0 × 10−8 Å−2 K−2, respectively, are
shown as a guide to the eye.

0.030 ± 0.0006 Å−2 GPa−1 in the right-hand side. Within
the error bars, these derivatives are equal in agreement with
Eq. (23).

Finally, we tested Eq. (28) which involves the change in
segregation with temperature. Fig. 23 displays [N2]N/A′T
and [�]N/A′T 2 as a functions of T and M21, respectively.
These variations occur at zero σ31 and σ33 and fixed GB
area. According to Eq. (11), the potential � reduces to
[U ]N − [N2]NM21. Within the accuracy of our calculations,
the obtained derivatives, −(2.7 ± 0.1) × 10−8 Å−2 K−2 in
the left-hand side and −(3.0 ± 0.9) × 10−8 Å−2 K−2 in the
right-hand side, are equal as predicted by Eq. (28).

The effect of the shear stress σ31 on segregation is expected
to be a second- or higher-order effect for this GB and was not
studied here.

V. DISCUSSION AND CONCLUSIONS

Thermodynamic properties of GBs play an important role
in many materials processes. The GB free energy controls the
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driving force of grain coarsening and affects the barriers of
phase nucleation.1,2,37 The GB stress affects internal stresses
in nanocrystalline materials30,35,38,39 and their chemical reac-
tivity. GB segregation can drastically change mechanical prop-
erties of polycrystalline materials.1,2 Some phenomena can be
caused by cross effects, such as the effect of elastic stresses
on GB segregation and segregation on elastic compliance of
the material. Experimental studies of GB thermodynamics are
invaluable but rare, difficult and usually provide information
averaged over multiple GBs. Critical insights can be gained by
atomistic simulations of individual GBs with precisely known
crystallography, structure and chemical composition.

Although real materials are often subject to mechanical
loads, thermodynamic calculations are usually focused on GBs
between stress-free grains. It is straightforward to apply a stress
to a GB in atomistic simulations. The main obstacle has been
the absence of a thermodynamic framework for calculations
of GB properties under stress. The existing thermodynamic
theories either disregard the stresses altogether or consider
only a hydrostatic state of stress. In the latter case, the GBs are
treated essentially the same way as interfaces in fluid systems.
It has not been known how to compute, or even properly define,
the GB free energy, GB stress, and other excess properties
when the GB is subject to nonhydrostatic stresses.

In this work, we applied the thermodynamic theory of
coherent interfaces3 to coherent GBs in the presence of
nonhydrostatic stresses. The equations of Ref. 3 were adapted
to GBs in two ways. Firstly, the fact that the system contains
only one phase was taken into account. This significantly
simplified the calculations. In particular, the interface excess
quantities are now defined through 2 × 2 determinants which
can be transformed to simpler and more intuitive expressions.
Secondly, the GB theory recognizes that for the system to
remain a single phase under applied stresses, both the stress
tensor and the GB itself must possess certain symmetries. Such
symmetries must be identified and formulated as appropriate
constrains imposed on possible state variations.

The GB free energy γ has been defined as the reversible
work of GB formation under an applied nonhydrostatic stress.
Equation (4) expresses γ through appropriate excesses of
extensive properties and contains a term accounting for the
work of the applied stress. This term includes the work of the
shear stress parallel to the boundary plane, which exists only
for coherent GBs (i.e., when the shear stresses causes an elastic
response of the boundary and not GB sliding). Furthermore,
our definition of γ contains only the diffusion potentials of
substitutional components, avoiding chemical potentials that
are undefined quantities in nonhydrostatic solids. It is only for
hydrostatic grains that γ can be expressed through chemical
potentials as indicated in Eq. (5).

Two forms of the generalized adsorption equation have
been presented in this work: the standard (6) and the Gibbs-
Helmholtz (10) forms. The differential coefficients of these
equations define the GB excesses which are physically mean-
ingful and, in principle, measurable quantities. Along with
the already known excesses such as the GB segregation, GB
stress, and and GB excess volume, the generalized adsorption
equation introduces the excess GB shear. The additional term
containing the GB shear did not exist in previous formulations
of the adsorption equation for GBs.8 It has naturally appeared

in our formulation due to the incorporation of the applied shear
stress. As mentioned earlier, the existence of excess shear
was recognized in previous mechanical theories of interfaces
and was referred to as “slip.”30,35,38 However, this quantity
was not associated with an additional term in the adsorption
equation. (See Ref. 3 for a discussion of the thermodynamic
approach developed in this work in comparison with previous
mechanical theories of interfaces.30,35,38,40,41)

The Gibbs-Helmholtz form (10) of the adsorption equation
affords efficient numerical calculations of γ by thermody-
namic integration starting from a state for which γ is known.
This integration requires knowledge of the readily accessible
excess quantities along the integration path, such as the
excess energy, the amount of segregation and the GB stress.
Equation (7) provides a numerical recipe for calculations of
the GB stress as an appropriate excess of the lateral stress
components. Despite the critical importance of the GB free
energy, only a few previous calculations were performed for
finite temperatures32,33 and none for stressed grains.

The generalized adsorption equation generates a number of
Maxwell relations between its differential coefficients. These
relations describe a variety of cross effects between segrega-
tion, stresses, strains, temperature, and other parameters. They
describe physically measurable effects, some of which can
be practically important. As one example, Eq. (24) predicts a
relation between the effect of an applied shear stress on GB
segregation, on one hand, and the response of the excess shear
to changes in the diffusion potential, on the other hand. The
diffusion potential can be controlled by varying the chemical
composition of the material.

The proposed theory has been applied to atomistic sim-
ulations of the symmetrical tilt �5 (310) [001] GB in Cu
and Cu-Ag alloys. Accurate atomistic potentials have been
used, making these simulations relevant to real materials. A
combination of MD and MC methods has been applied to study
the effects of elastic deformation, chemical composition and
temperature on GB properties. Along with providing useful
information about typical orders of magnitude of the effects,
these simulations also served as a test bed of the theory.
A number of cross-checks have been made by comparing
different calculations of the same physical quantity. For
example, the GB free energy computed by thermodynamic
integration was compared with results of direct calculations at
0 K. As another example, several Maxwell relations have been
tested by separate calculations of the derivatives appearing
in the right-hand and left-hand sides. Excellent agreement
was invariably found in all tests, giving us confidence in the
correctness of the proposed thermodynamic equations and the
accuracy of our simulations.

The simulations have also demonstrated that the effects of
elastic stresses, temperature and segregation on the GB free
energy can be significant. These effects could compromise
the accuracy of many simplified theories involving GB pro-
cesses. For example, in the classical theory of heterogeneous
nucleation at GBs, γ is assumed to be constant. Variations
of γ with temperature, segregation and applied stresses can
significantly impact the nucleation barriers and thus the
predicted nucleation rates. It should be noted that some of
the GB properties are affected by variations in temperature
and chemical composition stronger than γ . For example, the
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excess GB volume increases a factor of four and the GB stress
changes its sign with the introduction of less than one atomic
percent of Ag in Cu.

Finally, it should be recognized that some aspects of our
simulations are specific to the particular �5 GB chosen for
this work. This boundary has a mirror symmetry across the
plane normal to the tilt axis, as do most of other symmetrical
tilt GBs. Due to this symmetry, (i) the stress-free value of the
excess GB shear along the tilt axis is zero [see Fig. 9(b)] and
(ii) thermodynamic properties of this GB do not depend on
the sign of the shear stress σ31 applied parallel to the tilt axis.
As a result, the effect of σ31 on γ and other GB properties is
quadratic in stress, see example in Fig. 10. This is in contrast
to the excess volume, which has a finite value for stress-free
grains (see Fig. 7) and produces a linear response of GB
properties to σ33 [see examples in Figs. 8 and 12(a)]. For
GBs that do not possess the mentioned mirror symmetry, the
response to the shear stress can be linear and thus stronger.

For example, the symmetrical tilt �13 (34̄1) [111] GB in Al
studied by atomistic simulations42 shows a 0.2 Å shift of one
grain relative to the other parallel to the tilt axis [111]. This
nonzero shift is an intrinsic structural property of this GB and
constitutes its stress-free excess shear. It preserves the twofold
symmetry of the GB structure around the x2 axis, so that the
boundary can still support an applied shear stress σ31. Due to
this nonzero shift, the response of the GB properties to σ31 is
expected to be linear, a prediction which could be tested by
simulations. The interplay between GB thermodynamics and
crystal symmetry is an interesting subject that deserves a more
detailed study in the future.

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy,
Office of Basic Energy Sciences, the Physical Behavior of
Materials Program, under Grant No. DE-FG02-01ER45871.

*tfrolov@gmu.edu
†ymishin@gmu.edu
1A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials
(Clarendon Press, Oxford, 1995).

2Y. Mishin, M. Asta, and J. Li, Acta Mater. 58, 1117 (2010).
3T. Frolov and Y. Mishin, Phys. Rev. B 85, 224106 (2012).
4J. W. Cahn, Y. Mishin, and A. Suzuki, Acta Mater. 54, 4953 (2006).
5J. W. Gibbs, The Collected Works of J. W. Gibbs (Yale University
Press, New Haven, 1948), Vol. 1.
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