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Thermodynamics of coherent interfaces under mechanical stresses. I. Theory
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We present a thermodynamic theory of plane coherent solid-solid interfaces in multicomponent systems
subject to nonhydrostatic mechanical stresses. The interstitial and substitutional chemical components are treated
separately using chemical potentials and diffusion potentials, respectively. All interface excess quantities are
derived using Cahn’s (1979) generalized excess method without resorting to geometric dividing surfaces. We
present expressions for the interface free energy as an excess quantity and derive a generalized adsorption equation
and an interface Gibbs-Helmholtz equation that does not contain the interface entropy. The interface stress tensor
emerges naturally from the generalized adsorption equation as an appropriate excess over bulk stresses and is
shown to be generally nonunique. Another interface property emerging from the generalized adsorption equation
is the interface excess shear. This property is specific to coherent interfaces and represents the thermodynamic
variable conjugate to the shear stress applied parallel to the interface. The theory reveals a number of Maxwell
relations describing cross effects between thermal, chemical, and mechanical responses of coherent interfaces.
In Part II of this work, this theory will be applied to atomistic computer simulations of grain boundaries.
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I. INTRODUCTION

Thermodynamics properties of interfaces can have a strong
impact on microstructure development in materials by con-
trolling phase nucleation, growth, coarsening, and many other
processes.1,2 The interface thermodynamics developed by
Gibbs3 was formulated in terms of interface excesses relative
to an imaginary geometric dividing surface separating the
coexisting phases. Gibbs defined the interface free energy
γ as the reversible work expended to create a unit area of
the interface. He showed that, while other excess quantities
generally depend on the choice of the dividing surface, γ is
unique and thus a meaningful and measurable quantity. Gibbs’
work was focused on interfaces in fluid systems for which he
derived the adsorption equation expressing the differential dγ

in terms of differentials of temperature and chemical potentials
of the components present in the system.

Gibbs3 also discussed solid-fluid interfaces and pointed out
that their interface area can change in two different ways: when
a new area of the interface is formed at fixed thermodynamic
states of the phases and when the solid phase is elastically
stretched parallel to the interface. The second process leads
to the definition of the interface stress τij , a tensor quantity
whose components are generally different from γ and can be
positive or negative.4 Using a thought experiment with a solid
equilibrated with three different fluids, Gibbs demonstrated
that chemical potential of a nonhydrostatically stressed solid
is not well defined.3 At the time, solid solutions were unknown
and Gibbs considered only single-component solids. When
introducing γ for solid-fluid interfaces, he specifically placed
the dividing surface so that the interface excess of the solid
component would vanish and there would be no need to talk
about its chemical potential. As was recently pointed out,5 this
approach would not work for a multicomponent solid.

Cahn6 proposed a more general form of the adsorption
equation for hydrostatic systems by solving a system of
Gibbs-Duhem equations for the bulk phases and for a layer
containing the interface. By eliminating the Gibbsian construct
of dividing surface, Cahn’s method offers a greater freedom

of choice of intensive variables in the adsorption equation.
In particular, Cahn’s formalism rigorously introduces the
interface excess volume, a quantity which is by definition
zero in Gibbs’ thermodynamics. Cahn6 also proposed a
Lagrangian (L) formulation of the Shuttleworth equation4

for phase boundaries, τLij = ∂γL/∂εLij , and pointed to the
importance of computing the derivative with respect to the
elastic strain εLij along a phase coexistence path. For solid-
fluid interfaces subject to nonhydrostatic mechanical stresses,
τij has been formulated as an interface excess quantity7–10 and
computed by atomistic methods for several crystallographic
orientations.7,8,10,11

In comparison with solid-fluid interfaces, thermodynamics
of solid-solid interfaces is more challenging for at least two
reasons. Firstly, such interfaces are capable of supporting shear
stresses parallel to the interface plane. The interface response
to such stresses depends on the degree of coherency and can
vary from perfect sliding for fully incoherent interfaces to
perfectly elastic response for fully coherent interfaces.12–15

The elastic response should obviously lead to additional terms
in the adsorption equation, with coefficients representing what
can be called “interface excess shears.” Such terms do not ap-
pear in existing formulations of interface thermodynamics.3,6

Secondly, because of the undefined chemical potentials in
nonhydrostatically stressed solids, a different treatment is
needed for the −�idμi terms appearing in the adsorption
equation for fluid systems.3 In the analysis of equilibrium
between bulk solid phases, this problem was circumvented
by using chemical potentials for interstitial components but
diffusion potentials for substitutional components.13–15 It will
be shown below that the same approach can be transferred to
interface thermodynamics.

Elastic response of coherent interfaces was also analyzed
within mechanical theories of interfaces.16–18 In such theories,
the interface is treated as a surface separating two elastic
media subject to applied stresses. Mechanical equilibrium
conditions have been derived and possible excess deformations
and stresses at both plane and curved interfaces have been
identified. By contrast to thermodynamic theories,12–15 the
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mechanical theories do not impose the chemical or phase
equilibrium conditions between the adjoining media. As a
result, the interface free energy γ cannot be defined as the
work of interface formation, which blocks the route to the
formulation of the adsorption equation.

In this paper, we present a thermodynamic treatment of
plane coherent solid-solid interfaces subject to mechanical
stresses. Our analysis employs Cahn’s generalized excess
method6 and the solid-solid equilibrium theory developed by
Robin12 and Larchè and Cahn.13–15 As the authors before
us,3,12–15 we do not rely on a priori chosen thermodynamic
potentials; instead, all equations are derived directly from
the first and second laws of thermodynamics. It is only
after the derivation is complete that some of the equations
can be rewritten in simpler and/or more intuitive forms by
introducing appropriate thermodynamic potentials. We start
the paper by reviewing thermodynamics of a single solid
phase (see Sec. II) and then formulate the coherent phase
equilibrium conditions (see Sec. III) in a form that prepares
us for the subsequent thermodynamic analysis of interfaces.
Section IV is central to this paper. In it, we define the free
energy γ of a coherent interface, reformulate it as an excess of
appropriate thermodynamics potentials, introduce a number
of other interface excess quantities, and finally derive the
generalized adsorption equation and the interface version of
the Gibbs-Helmholtz equation. These equations identify and
define the interface excess shear, a property specific to coherent
interfaces and conjugate to the shear stress applied parallel to
the interface. They also define the interface stress tensor as
an excess quantity and demonstrate that it is not unique. We
derive a number of Maxwell relations describing interesting
cross effects between different interface properties. In Sec. V,
we discuss how the proposed coherent interface theory can be
applied to incoherent interfaces and grain boundaries. Finally,
in Sec. VI, we summarize our work and outline possible future
developments.

II. THERMODYNAMICS OF A SOLID PHASE

A. The network solid

Our treatment of a solid phase is based on the concept of a
network solid introduced by Robin12 and Larchè and Cahn.13,14

We assume that the solid contains a penetrating network that
is preserved inside the solid and can be created or destroyed
only at its boundaries. The network serves three functions: (1)
enables a description of finite deformations of the solid19 by
associating physical points with network sites (or their small
groups), (2) is capable of carrying mechanical loads, allowing
the solid to reach mechanical equilibrium under nonhydrostatic
conditions, and (3) provides a conserved set of sites, called
substitutional, which are completely, or almost completely,
occupied by atoms.35 Accordingly, all chemical components
can be divided into substitutional (residing on substitutional
sites) and interstitial (otherwise).36

In a crystalline solid, its lattice is formed by substitutional
sites and satisfies all three network properties. Since our theory
is intended primarily for applications to crystalline solids, we
will adopt the terminology in which we refer to the network
as “lattice” and to the network sites as “lattice sites.” It

should be noted, however, that our results are of more general
validity and do not require that the solid have a long-range
atomic ordering. The theory should be equally applicable to
nonperiodic structures such as network glasses or network
polymers.

B. Kinematics of deformation of a solid phase

We will analyze the general case of finite deformations of
a solid using the concept of a reference state.19 The choice of
the reference state is arbitrary, although it is often convenient
to choose a stress-free state. We will use the same Cartesian
coordinate system for both the reference and deformed states.
For any physical point defined by coordinates x ′

i (i = 1,2,3)
in the reference state, its coordinates xi in the deformed state
are functions of the reference coordinates, x = x

(
x′). Any

infinitesimal vector dxi connecting two physical points in
the deformed state is related to the infinitesimal vector dx ′

j

connecting the same two physical points in the reference state
by the linear transformation

dxi =
∑

j=1,2,3

Fijdx ′
j , (1)

where tensor F is the deformation gradient with components

Fij = ∂xi

∂x ′
j

. (2)

It is assumed that J := det F �= 0 and thus the reference
coordinates can be expressed as functions of the deformed
ones, x′ = x′ (x). The respective infinitesimal vectors are
related by the inverse deformation gradient F−1,

dx ′
i =

∑
j=1,2,3

F−1
ij dxj . (3)

Only six components of F are needed to completely
describe all deformations (strains) of a solid. Without loss
of generality, we will set all subdiagonal components of F to
zero,

F =
⎛
⎝F11 F12 F13

0 F22 F23

0 0 F33

⎞
⎠ , (4)

with the Jacobian

J = F11F22F33. (5)

It can be shown that F−1 also has an upper-triangular form
with diagonal elements

F−1
ii = 1/Fii, i = 1,2,3. (6)

The upper-triangular form of F implies that for any small
volume element with the shape of a parallelepiped, its bottom
and top faces remain normal to the x3 axis. Furthermore, the
edge of the parallelepiped that is initially parallel to the x1 axis
remains parallel to it during the deformation. Deformation of
small volume element described by Eq. (4) is illustrated by a
two-dimensional schematic in Fig. 1.
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FIG. 1. (Color online) Two-dimensional schematic of a volume
element undergoing a finite deformation. In the reference state
(dashed lines), the volume element is a unit square. The components
of the deformation gradient F correspond to the new lengths and
projections of the edges of the reference square in the deformed state
(solid lines).

C. Thermodynamic description of a homogeneous solid phase

Consider a homogeneous multicomponent solid containing
K substitutional and L interstitial chemical components in a
state of thermodynamic equilibrium. The defining property
of the substitutional components is that their atoms fill a
conserved set of lattice sites. Vacancies, i.e., unoccupied
substitutional sites, are neglected for the time being and will
be discussed separately in Sec. VI. Thus the total number N

of substitutional atoms in any given reference region remains
constant in all thermodynamic processes. Interstitial atoms
occupy otherwise empty positions between the lattice sites and
their number in any given reference region can vary. Diffusion
of both substitutional and interstitial atoms is allowed as long
as it preserves the substitutional sites.

Consider a homogeneous region of the solid containing a
total of N substitutional and n interstitial atoms and obtained
by elastic deformation of a homogeneous reference region of
volume V ′. Suppose the reference region, and thus V ′ and
N , are fixed. Then the internal energy U of the region is a
function of its entropy S, the amounts of individual chemical
components Nk and nl , and the deformation gradient F:

U = U (S,N1, . . . ,NK,n1, . . . ,nL,F) (fixed N). (7)

Due to the imposed substitutional constraint
∑

k Nk = N =
const, only (K − 1) independent variations of Nk are possible.
To implement this constraint, we can arbitrarily choose one
of the substitutional components as the reference component
and assume that each time we add to the solid an atom of
a different substitutional component k, we simultaneously
remove an atom of the reference component.13–15 Let us choose
component 1 as the reference and treat the amounts of all
other substitutional components as independent variables. The
amounts of the interstitial components can be varied without
constraints.

Consider a reversible variation of state of the solid, with
a fixed reference region, when it exchanges heat with its
environment, changes its chemical composition, and performs
mechanical work. The differential of energy of the region is

given by13,14

dU = T dS +
K∑

k=2

Mk1dNk +
L∑

l=1

μldnl +
∑

i,j=1,2,3

V ′PijdFji,

(8)

where T is temperature, μl are chemical potentials of the
interstitial atoms, and Mk1 are (K − 1) diffusion potentials of
the substitutional atoms. According to Eq. (8), the diffusion
potential Mk1 is the energy change when an atom of the
substitutional component k is replaced by an atom of the
reference component 1 while keeping all other variables fixed:

Mk1 = ∂U

∂Nk

− ∂U

∂N1
, k = 2, . . . , K. (9)

In the last term in Eq. (8), P is the first Piola-Kirchhoff
stress tensor, which is generally not symmetrical and is related
to the symmetrical Cauchy stress tensor σ by19

P = JF−1 · σ (10)

(the dot denotes the inner product of tensors and vectors).
Because F−1 is an upper-triangular matrix, the components
P31, P32, and P33 are proportional to the respective components
of σ :

P3i = F11F22σ3i = (J/F33) σ3i , i = 1,2,3, (11)

where we used Eqs. (4), (5), and (6).
In preparation for the analysis of interfaces in Sec. IV, we

will rewrite the mechanical work term in Eq. (8) by separating
the differentials dF11, dF12, and dF22 from dF13, dF23, and
dF33:

dU = T dS +
K∑

k=2

Mk1dNk +
L∑

l=1

μldnl

+
∑

i=1,2,3

V ′F11F22σ3idFi3 +
∑

i,j=1,2

V ′PijdFji . (12)

The (K + L + 6) differentials in the right-hand side of this
equation are independent and their number gives the total
number of degrees of freedom of a homogeneous solid phase.

D. Relevant thermodynamic potentials

Various thermodynamic potentials can be derived from
Eq. (12) by Legendre transformations. As will become clear
later, the potential relevant to coherent interfaces is

�1 : = U − T S −
K∑

k=2

Mk1Nk −
L∑

l=1

μlnl

−
∑

i=1,2,3

(V Fi3/F33) σ3i , (13)

where subscript 1 indicates the reference substitutional com-
ponent and V = JV ′ is the physical (deformed) volume of the
homogeneous solid. For a fixed reference volume (and thus
N ),

�1 = �1(T ,M21, . . . ,MK1,μ1, . . . ,μL,σ31,σ32,σ33,

F11,F12,F22). (14)
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Using Eq. (12), we obtain

d�1 = −SdT −
K∑

k=2

NkdMk1 −
L∑

l=1

nldμl

−
∑

i=1,2,3

(V Fi3/F33) dσ3i +
∑

i,j=1,2

V ′QijdFji, (15)

where we denote

Q := JF−1 ·
(

σ −
∑

m=1,2,3

Fm3

F33
σ3mI

)
(16)

(I ≡ δij is the identity tensor). Although Q is a 3 × 3 tensor,
only its components Q11, Q21, and Q22 appear in Eq. (15).

While the potential �1 will prove to be useful in interface
thermodynamics, its role in thermodynamics of a bulk phase
is less obvious. Unless the state of stress is hydrostatic, this
potential depends on the choice of the coordinate axes through
the stress-strain variables σ31, σ32, σ33, F11, F12, and F22. In
addition, �1 depends on the choice of the reference state of
strain.

Equation (13) defines �1 for a homogeneous solid region
containing a given number N of substitutional sites. We can
also define an intensive potential φ1 as �1 per substitutional
atom:

φ1 : = �1/N = U/N − T S/N

−
K∑

k=2

Mk1Ck −
L∑

l=1

μlcl −
∑

i=1,2,3

(�Fi3/F33) σ3i . (17)

Here, Ck := Nk/N and cl := nl/N are concentrations of
substitutional and interstitial components per substitutional
site, U/N , S/N , and � are the energy, entropy, and volume
per substitutional site, respectively.

Similarly, we can introduce K different potentials �m, and
accordingly, φm, by choosing other substitutional components
m as the reference species:

φm : = �m/N = U/N − T S/N

−
K∑

k=1

MkmCk−
L∑

l=1

μlcl−
∑

i=1,2,3

(�Fi3/F33) σ3i . (18)

Note that we have extended the summation with respect
to k from 1 to K using the property Mkk ≡ 0. Combining
Eq. (18) with known properties of diffusion potentials,13–15

namely, Mik = −Mki and Mij = Mik + Mkj , the following
relationship between different φ potentials can be derived:

φm − φn = Mmn, m,n = 1, . . . K. (19)

It also follows that

K∑
k=1

MkmCk =
K∑

k=1

(φk − φm) Ck =
K∑

k=1

φkCk − φm. (20)

Using Eqs. (18) and (20), we obtain the following ther-
modynamic relation for a homogeneous nonhydrostatic solid

phase:

U − T S −
∑

i=1,2,3

(V Fi3/F33) σ3i =
K∑

k=1

φkNk +
L∑

l=1

μlnl.

(21)

This equation closely resembles Gibbs’ equation U − T S +
pV = ∑

n μnNn for hydrostatic systems (p being external
pressure),3 with φk playing the role of chemical potentials.
When the solid is in a hydrostatic state of stress, σij = −δijp,
the left-hand side of Eq. (21) reduces to the Gibbs free
energy U − T S + pV . Accordingly, φk become real chemical
potentials of the substitutional components.

E. The Gibbs-Duhem equation

We can now derive a Gibbs-Duhem equation for a multi-
component nonhydrostatically stressed solid. To this end, we
again consider a variation of state in which the solid region
exchanges heat with its environment, performs mechanical
work, and changes its chemical composition by switching
chemical sorts of substitutional atoms (at fixed N ) and
changing the amounts of interstitial atoms. Differentiating
Eq. (13) and using the relation d�1 = Ndφ1 and dU from
Eq. (12), we obtain the following Gibbs-Duhem equation:

0 = −SdT −
K∑

k=2

NkdMk1 − Ndφ1 −
L∑

l=1

nldμl

−
∑

i=1,2,3

(V Fi3/F33) dσ3i +
∑

i,j=1,2

V ′QijdFji . (22)

Applying Eq. (19), this equation can be rewritten as

0 = −SdT −
K∑

k=1

Nkdφk −
L∑

l=1

nldμl

−
∑

i=1,2,3

(V Fi3/F33) dσ3i +
∑

i,j=1,2

V ′QijdFji . (23)

In the particular case of hydrostatic processes, Qij ≡
0 while

∑
i=1,2,3 (V Fi3/F33) dσ3i = −V dp. In this case,

Eq. (23) reduces to the classical Gibbs-Duhem equation
derived for fluids,3

0 = −SdT −
K+L∑
k=1

Nkdμk + V dp, (24)

where μk are chemical potentials of chemical components and
Nk are their amounts.

Equation (23) is a relation between differentials of the
intensive variables that characterize thermodynamic states
of solids in equilibrium. By contrast to the standard Gibbs-
Duhem equation (24), it contains nonhydrostatic variations.

III. COHERENT EQUILIBRIUM BETWEEN
SOLID PHASES

A. Definition of coherency and coherent interface

We next discuss coherent equilibrium between two homo-
geneous solid phases whose thermodynamic properties were
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FIG. 2. (Color online) Two-dimensional schematic of phases α

and β separated by a coherent interface. When the interface moves
down, the striped region of phase α shown in (a) transforms the
striped region of phase β shown in (b). In (c), the reference volume
element V ′ (shaded unit square) transforms to the coherent phases
α (dashed lines) and β (solid lines). The differences between the
deformation-gradient components F13 and F33 in the phases form the
transformation vector t .

introduced in Sec. II. We assume that the two phases, which
we refer to as α and β, contain the same K substitutional and
L interstitial components and are separated by an infinitely
large, plane coherent interface normal to the x3 direction (see
Fig. 2). Our definition of phase coherency follows the works
of Robin12 and Larchè and Cahn.13–15 Namely, a coherent
transformation of a region of phase α to a region of phase β

is accomplished by deformation of the lattice without creation
or destruction of lattice sites. Thus a coherent transformation
fully preserves the reference region of the phase. All chemical
components are allowed to diffuse during the transformation
as long as the lattice sites remain intact. A more detailed
discussion of the concept of coherency and examples of
coherent transformations can be found in Refs. 12–15.

If a coherent transformation occurs on one side of a plane
selected inside a single-phase region, it produces a coherent
interface between the old and new phases. Advancement of
the transformation front occurs by interface migration. For
coherent phases, there is a single network of lattice sites
penetrating through both phases and deformed during the
interface motion. In other words, the two-phase system can
be described as a deformation map of the same reference
region as each of the phases. Due to the lattice continuity
across the interface, sliding is prohibited and the two-phase
system responds to applied shear stresses elastically. (This is
in contrast to incoherent interfaces, which do not support static

shear stresses and do not preserve the lattice sites during their
motion.)

We will adopt the following kinematic description of
coherent two-phase systems. The deformation gradients of the
phases, Fα and Fβ , are taken relative to the same reference
state and have the upper-triangular forms:

Fα =

⎛
⎜⎝

F11 F12 Fα
13

0 F22 Fα
23

0 0 Fα
33

⎞
⎟⎠ , (25)

Fβ =

⎛
⎜⎝

F11 F12 F
β

13

0 F22 F
β

23

0 0 F
β

33

⎞
⎟⎠ , (26)

where the superscripts indicate the phases. These forms ensure
that the x3 direction in both phases remains normal to the
interface plane during all deformations. In addition, the lateral
deformation components F11, F12, and F22 are common to
both phases, which is a necessary condition for the absence of
sliding. Thus the two deformation gradients differ only in the
components Fi3. The differences between these components
form a vector,

t := (
F

β

13 − Fα
13,F

β

23 − Fα
23,F

β

33 − Fα
33

)
, (27)

which we call the transformation vector. Its geometric mean-
ing is illustrated by the two-dimensional schematic in Fig. 2(c).

B. Coherent phase equilibrium conditions

The conditions of coherent phase equilibrium were derived
for a single-component system by Robin12 and generalized
to multicomponent systems containing both substitutional and
interstitial atoms by Larchè and Cahn13,14 (see Voorhees and
Johnson20 for review). The equilibrium conditions can be
summarized as follows.(i) Temperature is uniform throughout
the system. (ii) Diffusion potentials Mk1 of all substitutional
components and chemical potentials μl of all interstitial
components are uniform throughout the system. (iii) The inter-
nal mechanical equilibrium condition, ∇′ · P = 0, is satisfied
inside each phase (the divergence is taken with respect to the
reference coordinates). (iv) The traction vector is continuous
across the interface,

n′α · Pα = −n′β · Pβ, (28)

where vectors n′α and n′β = −n′α are unit normals to the
phases in the reference state.37 This condition reflects the
continuity of the displacement vector across the interface.
From Eqs. (28) and (11), it follows that the Cauchy stress
components σ31, σ32, and σ33 are also continuous across the
interface. (v) Finally, the so-called phase-change equilibrium
condition13,14 must be satisfied. This condition expresses
equilibrium with respect to virtual displacements of the
interface in which a layer of one phase reversibly transforms
to a layer of the other. Rewritten in our notations, the phase
change equilibrium condition derived by Larchè and Cahn13,14
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reads

Uα−T Sα −
K∑

k=2

Mk1N
α
k −

L∑
l=1

μln
α
l −

∑
i=1,2,3

(V Fi3/F33)α σ3i = Uβ − T Sβ−
K∑

k=2

Mk1N
β

k −
L∑

l=1

μln
β

l −
∑

i=1,2,3

(V Fi3/F33)β σ3i . (29)

Here U , S, and V are the energy, entropy, and volume of
the phases obtained by deformation of the same reference
region, respectively. The total number of substitutional atoms
is equal in both phases, Nα = Nβ , whereas the total number
of interstitial components can be different (nα �= nβ).

The equilibrium conditions (i)–(iii) are common to all types
of interfaces. The differences between the coherent, incoherent
and other types of interfaces lie in the remaining conditions
(iv) and (v).

C. Derivation of the phase-change equilibrium condition

The phase-change equilibrium condition (29) was obtained
from Eq. (41) of Larchè and Cahn14 by inserting our
upper-triangular deformation gradients (25) and (26) and the
interface normal n = (0,0,1). Note that Eq. (29) contains
the terms (V βF

β

13/F
β

33 − V αFα
13/F

α
33)σ31 and (V βF

β

23/F
β

33 −
V αFα

23/F
α
33)σ32 proportional to the shear stresses σ31 and σ32.

These terms are specific to coherent interfaces and vanish for
incoherent, solid-fluid and fluid-fluid systems, which do not
support such stresses. To elucidate the meaning of these terms
and set the stage for the analysis of interface thermodynamics,
we will present an alternate derivation of Eq. (29) that assumes
that the equilibrium conditions (i) through (iv) are already
satisfied.

At fixed values of the intensive variables T ,M21, . . . ,

MK1,μ1, . . . ,μL,σ31,σ32,σ33,F11,F12,F22,38 equilibrium be-
tween the phases is neutral, i.e., the interface can reversibly
migrate up and down without altering thermodynamic states
of the bulk phases. The phase change equilibrium condition
expresses the neutrality of this equilibrium with respect to
interface displacements. Consider a homogeneous layer of
phase α parallel to the interface and containing a total of
N substitutional atoms. Suppose the interface traveling down
passes through this layer and transforms it completely to a layer
of phase β. The initial and transformed states of the layer are
shown schematically in Figs. 2(a) and 2(b). In both states,
the layer contains the same total number of substitutional
atoms, whereas the total number of interstitial atoms can be
different.

Let us compute the change in internal energy of this layer.
Because the transformation is reversible, this change depends
only on the initial and final states (i.e., homogeneous phases
α and β) and not on the transformation path. As the interface
traverses the layer, it creates intermediate states that are not
homogeneous. Instead of examining this actual transformation
process, we will consider another, imaginary path on which the
transformation occurs by homogeneous deformation of the
layer with a simultaneous change in its chemical composition.
Since the layer remains homogeneous during this process, its
energy change can be obtained by integrating Eq. (12) derived
previously for homogeneous variations. Remembering that the

intensive parameters are fixed, the integration gives

Uβ − Uα

= T (Sβ − Sα) +
K∑

k=2

Mk1
(
N

β

k − Nα
k

) +
L∑

l=1

μl

(
n

β

l − nα
l

)
+

∑
i=1,2,3

(
V βF

β

i3/F
β

33 − V αFα
i3/F

α
33

)
σ3i . (30)

The last term in Eq. (12) does not contribute to this equation
because F11, F12, and F22 are not varied. Equation (30)
recovers the phase-change equilibrium condition (29).

This derivation emphasizes that the last term in Eq. (30)
represents the mechanical work Wm done by the stress
components σ3i during the phase transformation. This work
term can be rewritten as

Wm =
∑

i=1,2,3

F11F22V
′(Fβ

i3 − Fα
i3

)
σ3i = F11F22V

′σ · t, (31)

where t is the transformation vector defined by Eq. (27)
and illustrated in Fig. 2(c). It is important to note that,
while V αFα

i3/F
α
33 and V βF

β

i3/F
β

33 individually depend on
the choice of the reference state of strain, vector t is an
invariant and, in principle, measurable quantity character-
izing the geometry of the transformation.39 For incoherent
and other interfaces incapable of supporting static shear
stresses, Wm reduces to F11F22V

′σ33t3 = (V β − V α)σ33. For
coherent interfaces, additional work is done by the shear
stresses along the components of t projected on the interface
plane.

Using the thermodynamic potential φ1 defined by Eq. (17),
the phase-change equilibrium condition (29) can be formulated
as simply φα

1 = φ
β

1 . Furthermore, by choosing other substi-
tutional components as reference species, the following K

relations can be obtained

φα
m = φβ

m := φm , m = 1, . . . , K. (32)

Thus, in a system with K substitutional chemical components,
there are K potentials that have the same value in coexisting
phases. This result resembles Gibbs’ condition of equilibrium
between fluid phases,3 with φm playing the role of chemical
potentials.

D. The equation of coherent phase coexistence in the
parameter space

The Gibbs-Duhem equation (22) establishes a relation
between the differentials of (K + L + 7) intensive parameters
characterizing a single-phase solid under stress. When two
solid phases coexist, their equilibrium imposes an additional
constraint on possible variations of state of the phases. This
constraint can be formulated by writing down the Gibbs-
Duhem equation for each phase in terms of the same set of
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intensive parameters and requiring that the two equations hold
simultaneously:

0 = −SαdT −
K∑

k=2

Nα
k dMk1 − Nαdφ1 −

L∑
l=1

nα
l dμl

(33)
−

∑
i=1,2,3

(
V αFα

i3/F
α
33

)
dσ3i +

∑
i,j=1,2

V ′αQα
ij dFji,

0 = −SβdT −
K∑

k=2

N
β

k dMk1 − Nβdφ1 −
L∑

l=1

n
β

l dμl

(34)
−

∑
i=1,2,3

(
V βF

β

i3/F
β

33

)
dσ3i +

∑
i,j=1,2

V ′βQ
β

ij dFji .

Note that these equations are written for arbitrarily chosen
amounts of the phases, i.e., generally, Nα �= Nβ . They can
be combined into one equation by eliminating one of the
differentials. This elimination leads to the equation

0 = −{S}XdT −
K∑

k=2

{Nk}XdMk1 − {N}Xdφ1 −
L∑

l=1

{nl}Xdμl

−
∑

i=1,2,3

{V Fi3/F33}Xdσ3i +
∑

i,j=1,2

{V ′Qij }XdFji,

(35)

where X is one of the extensive properties S, Nk (k =
2, . . . ,K), N , nl (l = 1, . . . ,L), V Fi3/F33 (i = 1,2,3), or
V ′Qij (i,j = 1,2). The curly braces are defined by

{Z}X := Zα − ZβXα/Xβ (36)

for any pair of extensive properties Z and X. The physical
meaning of {Z}X is the difference between the property Z

of the two phases when they contain the same amount of X.
For example, {S}N is the difference between entropies of two
homogeneous regions of the phases containing the same total
number of substitutional atoms.

For any choice of X out of the above list, the respective
differential coefficient in Eq. (35) vanishes because {X}X = 0.
The remaining (K + L + 6) terms form a differential equation
defining the coherent phase coexistence hypersurface in the
configuration space of intensive parameters. Thus a system
of two coexisting coherent phases is capable of (K + L + 5)
independent variations, which is one degree of freedom less
than for each phase taken separately. Knowing one equilibrium
state of the two-phase system, all other states can be found
by integrating Eq. (35) along different paths on the phase
coexistence hypersurface.

Equation (35) is an important result of this paper. It provides
the phase rule for equilibrium between coherent phases
and offers flexibility in choosing the independent variables
corresponding to the available degrees of freedom through the
choice of X. It generalizes the equation of phase coexistence
derived by Gibbs for solid-fluid interfaces3 by incorporating
shears parallel to the interface. Such shears are represented
by the additional terms {V Fi3/F33}Xdσ3i with i = 1,2. To
further elucidate the physical meaning of these terms, consider
coherent equilibrium between two binary substitutional solid
solutions. For variations of the shear stress at a constant

temperature and fixed lateral dimensions of the system,

dM21

dσ3i

= −{V Fi3/F33}N
{Nk}N , (37)

where we chose X = N . This relation predicts that to main-
tain the equilibrium, variations in the diffusion potential in
response to variations in the shear stress must be proportional
to the transformation shear and inversely proportional to the
difference between the phase compositions. In other words,
this relation describes changes in the phase compositions
caused by applied shear stresses.

It should be emphasized that Eq. (35) has been derived
under the assumption of interface coherency. One might think
that the phase coexistence equation for incoherent interfaces
could be obtained as simply a particular case of Eq. (35) when
σ31 and σ32 are zero. This is not so. In the absence of coherency,
the lateral deformations of the phases (Fα

ij and F
β

ij , i,j = 1,2)
are not required to be equal and can be varied independently.
For example, one of the phases can be stretched in a
certain direction parallel to the incoherent interface while the
other compressed in the opposite direction. This deformation
produces interface sliding, which is a possible process for
incoherent interfaces. Furthermore, because the lattice sites
can now be created or destroyed when one phase transforms
to the other, the deformation gradients Fα and Fβ must be
defined relative to different reference states. The incoherent
phase coexistence equation would have to be rederived from
the start, which is beyond the scope of this paper.

IV. INTERFACE THERMODYNAMICS

A. The interface free energy γ

We are now ready to analyze thermodynamics of coherent
interfaces. In this section, we derive expressions for the
interface free energy γ defined as the reversible work expended
for creation of a unit interface area. As above, we imagine
two coexisting phases α and β separated by a coherent plane
interface (see Fig. 2), but we now include the interface region as
part of the system. Recall that the deformation gradients Fα and
Fβ were previously introduced for homogeneous phases and
remain undefined within the highly inhomogeneous interface
region. We therefore need to devise a method for introducing
γ and other interface excess quantities without defining a
deformation gradient inside the interface region.

As discussed earlier, the coherent two-phase equilib-
rium is neutral when the intensive parameters T ,M21, . . . ,

MK1,μ1, . . . ,μL,σ31,σ32,σ33,F11,F12,F22 are fixed.40 Con-
sider a homogeneous region of phase α in the shape of a
parallelepiped with a reference volume V ′. Two faces of the
parallelepiped are parallel to the interface and one edge is
parallel to the x1 axis. This is illustrated by a two-dimensional
schematic in Fig. 3(b), where the parallelepiped is represented
by a parallelogram. Suppose the interface spontaneously
migrates and enters this region, turning it into an equilibrium
two-phase system [see Fig. 3(c)]. Due to the coherency
condition, the cross section of the region parallel to the
interface remains the same at every height. However, the
shape of the region changes due to the phase transformation
strain. Consider a particular position of the interface inside the
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FIG. 3. (Color online) Two-dimensional schematic of coherent
transformation of a region of phase α to a two-phase region containing
phases α and β separated by an interface. (a) Reference state of the
region. (b) Deformed phase α. (c) Two-phase region. (d) Overlapping
shapes of phase α and the two-phase region, showing the displacement
vector B. The open circles mark selected physical points labeled
a through d with the prime indicating the reference state and the
asterisk indicating the two-phase state. The parallelogram defined by
the vertices a, b, c∗, and d∗ is shown separately in (e).

two-phase region such that the upper and lower boundaries
of the region are deep inside the homogeneous phases not
perturbed by the presence of the interface. Suppose the lower
boundary of the region is fixed. Then the position of the
upper boundary generally changes as as result of the phase
transformation. Denote the displacement vector of the upper
boundary B.

The geometric meaning of vector B is illustrated by the
two-dimensional schematic in Fig. 3. The initial region abcd

is a deformation map of a reference region a′b′c′d ′ with the
deformation gradient Fα [see Figs. 3(a) and 3(b)]. After the
upper part of the region transforms to phase β, it becomes a
map of the corresponding upper part of the reference region
with the deformation gradient Fβ . The reference corners c′
and d ′ are thus mapped to some physical points c∗ and d∗
within the β phase [see Fig. 3(c)]. Vector B is defined as
cc∗, or equivalently, dd∗ [see Fig. 3(d)]. Note that due to the
conservation of sites by coherent interfaces, the two-phase
region contains the same number N of substitutional sites as
the initial region of phase α.

Vector B is used for calculation of the mechanical work Wm

performed by stresses when the discussed region transforms
to the two-phase state. Since the cross section of the region
remains fixed, the mechanical work is done only by the stress
components σ3i when the upper boundary is displaced by
vector B. Thus Wm = Anα · σ · B, where nα is the unit normal
to the interface pointing into phase β, nα · σ is the traction
vector, and A is the cross-sectional area.

To keep similarity with the mechanical work terms derived
previously for homogeneous phases [e.g., Eq. (30)], we
want to express Wm through some deformation gradient. To
this end, we formally define a homogeneous deformation
gradient F relative to the same reference state as used for
the homogeneous phases:

F :=

⎛
⎜⎝

F11 F12
(
Fα

13 + B1A
′/V ′)

0 F22
(
Fα

23 + B2A
′/V ′)

0 0
(
Fα

33 + B3A
′/V ′)

⎞
⎟⎠ , (38)

where A′ is the cross-sectional area of the interface in the
reference state. We will refer to F as the “average” deformation
gradient of the region. The geometric meaning of F is the affine
transformation that carries the parallelepiped representing the
reference region of phase α to the parallelepiped formed
by the corners of the two-phase region after the phase
transformation. In the two-dimensional schematic shown in
Fig. 3, F transforms the reference region a′b′c′d ′ to the
parallelogram abc∗d∗. The latter is shown separately in
Fig. 3(e). It should be noted that both B and F generally depend
on the choice of the reference thickness V ′/A′ of the α phase
region and on the position of the interface within the two-phase
region. In terms of F, the mechanical work term can now be
rewritten as

Wm = A
∑

i=1,2,3

σ3iBi =
∑

i=1,2,3

(
V F i3/F 33 − V αFα

i3/F
α
33

)
σ3i ,

(39)

where V α = F11F22F
α
33V

′ and V = F11F22F 33V
′ are physical

volumes of the α phase region and the two-phase region,
respectively.41

We next calculate the change in internal energy of the region
when it reversibly transforms from phase α to the two-phase
state [see Figs. 3(b) and 3(c)]. Instead of tracking the actual
motion of the interface into the region, we will consider only
the initial and final states and imagine a different reversible
process between them. Specifically, consider a process of
homogeneous phase transformation α → β in the upper part
of the region at fixed N and fixed intensive parameters
T ,M21, . . . ,MK1,μ1, . . . ,μL,σ31,σ32,σ33,F11,F12,F22. Since
the transformation occurs in an open system, its energy
changes due to the following processes: (i) heat exchange
with the environment, (ii) diffusion of atoms in and out of the
system (at constant N ), (iii) mechanical work Wm performed
by stresses applied to the boundaries of the region, and
(iv) nonmechanical work Wnm associated with local atomic
rearrangements leading to the formation of the interface. Using
Eq. (39) for Wm, we have

U−Uα = T (S −Sα)+
K∑

k=2

Mk1
(
Nk−Nα

k

)+ L∑
l=1

μl(nl − nα
l )

+
∑

i=1,2,3

(
V F i3/F 33 − V αFα

i3/F
α
33

)
σ3i + Wnm,

(40)

where the extensive quantities with and without superscript α

refer to the initial and final states, respectively.
We define the interface free energy γ as the nonmechanical

work done per unit interface area, i.e., γA := Wnm. Using
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Eq. (17) for the α phase, Eq. (40) can be simplified to

γA = U − T S −
K∑

k=2

Mk1Nk − φ1N

−
L∑

l=1

μlnl −
∑

i=1,2,3

(V F i3/F 33)σ3i , (41)

or expressing the diffusion potentials through the φ potentials
using Eq. (19),

γA = U − T S −
K∑

k=1

φkNk −
L∑

l=1

μlnl

−
∑

i=1,2,3

(V F i3/F 33)σ3i . (42)

These equations can be rewritten in a shorter form by
introducing the �1 potential of a two-phase region by analogy
with Eq. (13):

�1 := U − T S −
K∑

k=2

Mk1Nk −
L∑

l=1

μlnl

−
∑

i=1,2,3

(V F i3/F 33)σ3i . (43)

Then,

γA = �1 − Nφ1, (44)

so that γ is an excess of the �1 potential per unit interface area.
Of course, instead of component 1, we could have chosen any
other substitutional component as a reference.

Equations (41) and (42) express the total interface free
energy γA through properties of an arbitrary region containing
the interface. While γA is uniquely defined by these equations,
the individual terms appearing in the right-hand side depend
on the location of the boundaries of the region. To express
these terms through interface excesses that are independent
of the boundaries, we need to subtract the contributions of
the homogeneous phases. To this end, we select two arbitrary
regions inside the homogeneous phases. Such single-phase
regions can be chosen either inside or outside the two-phase
region. The latter case is illustrated in Fig. 4. Let the total
numbers of substitutional atoms in the single-phase regions be
Nα and Nβ , respectively (generally, Nα �= Nβ). Equation (17)
applied to these regions gives

0 = Uα − T Sα −
K∑

k=2

Mk1N
α
k − φ1N

α

−
L∑

l=1

μln
α
l −

∑
i=1,2,3

(V Fi3/F33)ασ3i (45)

and

0 = Uβ − T Sβ −
K∑

k=2

Mk1N
β

k − φ1N
β

−
L∑

l=1

μln
β

l −
∑

i=1,2,3

(V Fi3/F33)βσ3i . (46)

FIG. 4. (Color online) The two-phase region used in the deriva-
tion of expressions for the total interface free energy γA. The
single-phase regions used in the derivation are chosen outside the
two-phase region.

Equations (41), (45), and (46) form a system of three linear
equations with respect to the same intensive variables. We
solve this system of equations for γA using Cramer’s rule of
linear algebra.8 The solution has the form

γA = [U ]XY − T [S]XY −
K∑

k=2

Mk1[Nk]XY − φ1[N ]XY

−
L∑

l=1

μl[nl]XY −
∑

i=1,2,3

[V F i3/F 33]XY σ3i , (47)

where X and Y �= X are any two of the extensive quantities U ,
S, Nk (k = 2, . . . ,K), N , nl (l = 1, . . . ,L), or V F i3/F 33 (i =
1,2,3). Note that the last member of this list, corresponding
to i = 3, is simply volume V . Using Eq. (19), we obtain the
equivalent form of γA:

γA = [U ]XY − T [S]XY −
K∑

k=1

φk[Nk]XY −
L∑

l=1

μl[nl]XY

−
∑

i=1,2,3

[V F i3/F 33]XY σ3i . (48)

The coefficients [Z]XY are computed as ratios of two
determinants:6

[Z]XY :=

∣∣∣∣∣∣
Z X Y

Zα Xα Yα

Zβ Xβ Y β

∣∣∣∣∣∣∣∣∣∣Xα Yα

Xβ Y β

∣∣∣∣
. (49)

The quantities in the first row of the numerator are computed
for the region containing the interface, whereas all other
quantities are computed for arbitrary homogeneous regions
of phases α and β. By properties of determinants,

[X]XY = [Y ]XY = 0, (50)

so that two terms in each of the Eqs. (47) and (48) automatically
vanish.
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The coefficient [Z]XY has the meaning of the interface
excess of extensive property Z when the region containing
the interface contains the same amounts of X and Y as the
two single-phase regions combined; in other words, when the
excesses of X and Y are zero. Thus the excess of any property
Z is not unique; it generally depends on the choice of the
reference properties X and Y . If either X or Y is a volume,
then [Z]XY has the meaning of the excess of Z relative to
a dividing surface similar to Gibbs’ formulation of interface
thermodynamics.3

The excesses [Nk]XY and [nl]XY characterize the segregated
amounts of substitutional and interstitial components, respec-
tively. The terms [V ]XY , [V F 13/F 33]XY , and [V F 23/F 33]XY

define the excess volume and two excess shears, respectively.
For example,

[V F i3/F 33]SV =

∣∣∣∣∣∣
V F i3/F 33 S V

(V Fi3/F33)α Sα V α

(V Fi3/F33)β Sβ V β

∣∣∣∣∣∣∣∣∣∣Sα V α

Sβ V β

∣∣∣∣
, i = 1,2.

(51)

In this case, the excess shears are taken with respect to a
dividing surface for which the excess of entropy is zero. The
excess shears are properties specific to coherent interfaces.
They have no significance for incoherent solid-solid, solid-
fluid, or any other interfaces that cannot be equilibrated under
applied shear stresses. By contrast, the excess volume [V ]XY

is common to all types of interfaces.6 The numerical values of
the excess volume and excess shears depend on the choice of
the reference properties X and Y . In the Gibbian formalism of
dividing surface, the excess volume is zero by definition.

The total interface free energy γA can be expressed through
excesses of different thermodynamic potentials corresponding
to possible choices of X and Y . As already noted, γA can
be expressed as an excess of potential �1. Using our square
bracket notation,

γA = [U − T S −
K∑

k=2

Mk1Nk −
L∑

l=1

μlnl

−
∑
i=1,2

(V F i3/F 33)σ3i]NV ≡ [�1]NV , (52)

i.e., the excess of �1 must be taken relative to the dividing sur-
face for which the excess of the total number of substitutional
atoms is zero. As another example,

γA = [U −
K∑

k=2

Mk1Nk −
L∑

l=1

μlnl

−
∑

i=1,2,3

(V F i3/F 33)σ3i]NS, (53)

i.e., γA is an excesses of the potential appearing in the
square brackets when the excesses of the total number of
substitutional atoms and entropy are zero. The flexibility in
expressing the same quantity γA through excesses of different
thermodynamic potentials can be useful in applications of this
formalism to experimental measurements and simulations.

B. The adsorption equation

Having introduced the interface free energy, we are now
in a position to derive the generalized adsorption equation
for coherent interfaces. As the first step, we will compute the
energy differential dU for a two-phase region containing the
interface. We will take a region in the shape of a parallelepiped
as shown schematically in Fig. 3(e). Recall that this shape
is a map of the reference region of phase α containing the
same number of substitutional atoms as in the parallelepiped.
This deformation map is formally defined by the deformation
gradient F given by Eq. (38). Consider a reversible variation
in which this region exchanges heat and atoms with its
environment (at fixed N ) and performs mechanical work by
elastically changing its shape and dimensions. The mechanical
work dWm is done by the stresses applied to all faces of the
parallelepiped and equals the sum of the total forces exerted
on the faces times their displacements. The calculations give

dWm =
∑

i=1,2,3

V ′F11F22σ3idF i3 +
∑

i,j=1,2

V ′P ijdFji, (54)

where P := J̄ F
−1 · σ is a formal analog of the first Piola-

Kirchhoff stress tensor, σ is the true stress tensor averaged
over the volume of the parallelepiped, J̄ := det F, and V ′
is the reference volume of the phase α region. Because the
stress components σ3i are coordinate independent and
the lateral stress components σij (i,j = 1,2) depend only on
the coordinate x3, it is only the lateral stress components that
must be averaged over x3 in order to obtain σ . Using the above
expression for dWm, the energy differential equals

dU = T dS +
K∑

k=2

Mk1dNk +
L∑

l=1

μldnl

+
∑

i=1,2,3

V ′F11F22σ3idF i3 +
∑

i,j=1,2

V ′P ijdFji . (55)

This equation looks similar to the previously derived Eq. (12)
and constitutes its generalization to inhomogeneous systems
containing a coherent interface.

At the next step, we take the differential of Eq. (41) and
insert dU from Eq. (55). After some rearrangement we obtain

d (γA) = −SdT −
K∑

k=2

NkdMk1 − Ndφ1 −
L∑

l=1

nldμl

−
∑

i=1,2,3

(V F i3/F 33)dσ3i +
∑

i,j=1,2

V ′QijdFji

= d�1 − Ndφ1, (56)

where we introduced the tensor

Q := J̄ F
−1 ·

(
σ −

∑
m=1,2,3

Fm3

F 33
σ3mI

)
. (57)

For a homogeneous phase, Q reduces to the earlier introduced
tensor Q, see Eq. (16).

The differentials in the right-hand side of Eq. (56) are
not independent. There are two constraints imposed by the
Gibbs-Duhem equations (33) and (34) containing the same
differentials. Solving the system of equations (56), (33), and
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(34) by Cramer’s rule, we finally obtain the generalized
adsorption equation

d(γA) = −[S]XY dT −
K∑

k=2

[Nk]XY dMk1 − [N ]XY dφ1

−
L∑

l=1

[nl]XY dμl −
∑

i=1,2,3

[V F i3/F 33]XY dσ3i

+
∑

i,j=1,2

[V ′Qij ]XY dFji, (58)

where X and Y are two of the extensive properties S, Nk

(k = 2, . . . ,K), N , nl (l = 1, . . . ,L), V F i3/F 33 (i = 1,2,3),
or V ′Qij (i,j = 1,2).

Note the significant difference between Eqs. (56) and (58)
written for the same differential d(γA). In Eq. (56), the
differential coefficients are properties of the entire region
containing the interface. These properties depend on the choice
of the boundaries of the region and thus have no physical
significance. In the adsorption equation (58), on the other
hand, the differential coefficients are interface excesses [Z]XY

defined by Eq. (49). For a given choice of the reference
properties X and Y , such excesses are independent of the
boundaries of the region. Furthermore, the number of differ-
entials in the right-hand side of Eq. (56) exceeds the number
(K + L + 5) of degrees of freedom of a coherent two-phase
system predicted by Eq. (35). By contrast, due to the property
(50) of determinants, two terms in Eq. (58) automatically
vanish, leaving exactly (K + L + 5) independent differentials.
Each of the remaining excesses [Z]XY can be expressed as a
partial derivative of γA with respect to the corresponding
intensive variable and is therefore a measurable physical
quantity. In terms of the φ potentials, the adsorption equation
takes the form

d(γA) =−[S]XY dT −
K∑

k=1

[Nk]XY dφk −
L∑

l=1

[nl]XY dμl

−
∑

i=1,2,3

[V F i3/F 33]XY dσ3i +
∑

i,j=1,2

[V ′Qij ]XY dFji .

(59)

The adsorption equation corresponding to Gibbs’ for-
malism of the dividing surface is obtained as a particular
case of our adsorption equation when either X = V or
Y = V . Although the excess volume [V ]XY disappears, the
excess shears [V F i3/F 33]XY and [V F i3/F 33]XY still remain.
These additional terms are not present in Gibbs’ interface
thermodynamics3 or in Cahn’s work.6

C. The interface stress

The terms in the adsorption equation that contain dif-
ferentials of the lateral deformation components F11, F12,
and F22 represent contributions to γA coming from elastic
deformations of the interface. These terms define the interface
stress, the quantity that was first discussed by Gibbs in the
context of solid-fluid interfaces.3

To formally define the interface stress tensor, choose the
current state of one of the phases as the reference state of

strain. Then F11 = F22 = 1, F12 = 0, and Eq. (58) becomes

d(γA) = −[S]XY dT −
K∑

k=2

[Nk]XY dMk1 − [N ]XY dφ1

−
L∑

l=1

[nl]XY dμl −
∑

i=1,2,3

[V F i3/F 33]XY dσ3i

+
∑

i,j=1,2

τXY
ij Adeji, (60)

where

τXY
11 : = 1

A
[V ′Q11]XY , τXY

22 := 1

A
[V ′Q22]XY ,

τXY
12 = τXY

21 := 1

A
[V ′Q12]XY . (61)

In Eq. (60), de is a (2 × 2) small-strain tensor with components
de11 = dF11, de22 = dF22, and de12 = de21 = 1

2dF12. The
(2 × 2) symmetrical tensor τ defined by Eq. (61) is the
interface stress tensor describing changes in the interface free
energy due to its elastic deformations.

As other interface excess quantities, τ generally depends
on the choice of the reference properties X and Y and is
therefore not unique. However, in the particular case when
both phases are in a hydrostatic state of stress under a pressure
p, τ becomes independent of X and Y and is given by

τij = V

A
(σ ij + pδij ). i,j = 1,2. (62)

This equation immediately follows from the definition of the
square bracket [V ′Qij ]XY and the fact that for hydrostatic

phases Q
α

ij = Q
β

ij = 0.
Equation (61) provides a recipe for interface stress calcu-

lation when the phases are subject to nonhydrostatic stresses,
particularly, when such stresses are different in the two phases
(e.g., when one phase is under lateral tension while the
other under lateral compression). Previous calculations of
interface stresses were focused on unstressed or hydrostatically
stressed phases. For solid-fluid interfaces, the calculations for
hydrostatic phases employed equations similar to Eq. (62).
Nonhydrostatic stresses were included only in surface stress
calculations in single-phase systems.7 Calculations of τ

between nonhydrostatic solid phases using Eq. (61) is an
uncharted territory and could be addressed in future work.

In the remainder of this paper, the lateral deformations
of a two-phase system will be described by the small-strain
tensor de instead of the lateral components of the deformation
gradient. As mentioned above, this implies that the current state
of one of the phases is chosen as the reference state of strain.
It should be emphasized that (i) this assumption only reflects a
particular choice of the kinematic description of deformations,
not a physical approximation, and (ii) the normal and shear
components Fi3 describing the transformation strain between
the two phases can still be finite.

D. Lagrangian and physical forms of the adsorption equation

Until this point we dealt with total excess quantities related
to the entire interface with an area A. It is often useful to define
specific excesses, i.e., excesses per unit interface area in either
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the current state or the reference state of strain. In the former
case, the excess quantity is referred to as physical while in
the latter case as Lagrangian. For example, γ is the physical
specific excess of the interface free energy. The interface stress
defined by Eq. (61) is the physical specific excess of the tensor
quantity V ′Qij . One can also define the Lagrangian interface
free energy, γL := (γA)/A′, and the Lagrangian interface
stress,

τXY
L11 : = 1

A′ [V
′Q11]XY , τXY

L22 := 1

A′ [V
′Q22]XY ,

τXY
L12 = τXY

L21 := 1

A′ [V
′Q12]XY . (63)

Using Eq. (63) and the adsorption equation (58), we obtain the
relation

τXY
Lij =

(
∂γL

∂eij

)XY

. (64)

A similar relation involving the Lagrangian γ was proposed
by Cahn.6 Here, the superscript XY in the right-hand side
indicates that the partial derivative is taken at fixed intensive
parameters, other than eij , that appear in the adsorption
equation when X and Y are chosen as the reference properties.

The Lagrangian form of the adsorption equation is obtained
by dividing Eq. (60) by A′:

dγL = − [S]XY

A′ dT −
K∑

k=2

[Nk]XY

A′ dMk1 − [N ]XY

A′ dφ1

−
L∑

l=1

[nl]XY

A′ dμl −
∑

i=1,2,3

[V F i3/F 33]XY

A′ dσ3i

+
∑

i,j=1,2

τXY
Lij deji , (65)

where the differential coefficients are Lagrangian specific
excesses. The physical form of the adsorption equation is
obtained by differentiating γA in Eq. (60) and using the
relation dA = A

∑
i,j=1,2 δij deij :

dγ = − [S]XY

A
dT −

K∑
k=2

[Nk]XY

A
dMk1 − [N ]XY

A
dφ1

−
L∑

l=1

[nl]XY

A
dμl −

∑
i=1,2,3

[V F i3/F 33]XY

A
dσ3i

+
∑

i,j=1,2

(
τXY
ij − δij γ

)
deji . (66)

Now the differential coefficients give physical specific ex-
cesses. From this equation, we immediately obtain the gener-
alized form of the Shuttleworth equation:4(

∂γ

∂eij

)XY

= τXY
ij − δij γ . (67)

The original Shuttleworth equation4 was derived for an open
surface of a stress-free single-component solid deformed
isothermally. Equation (67) has been derived for coherent
interfaces in multicomponent systems in an arbitrary state of
stress. It actually represents a set of equations corresponding

to different choices of X and Y and thus different deformation
paths.

Just as the Shuttleworth equation describes the effect of
lateral strains on the interface free energy, the following
equations describe the effect of the shear and normal stresses
of γ and γL in the physical and Lagrangian forms, respectively:(

∂γ

∂σ3i

)XY

= [V F i3/F 33]XY

A
, i = 1,2,3, (68)(

∂γL

∂σ3i

)XY

= [V F i3/F 33]XY

A′ , i = 1,2,3. (69)

E. Thermodynamic integration

We will now derive another version of the adsorption
equation that can be useful in applications. In principle,
the interface free energy γ can be computed by integration
of the adsorption equation along a phase coexistence path
knowing an initial value. However, the excess entropy [S]XY

appearing in this equation is rarely accessible by experiments
or simulations. To avoid calculation of [S]XY , we can eliminate
it by combining Eqs. (47) and (60) to obtain

d

(
γA

T

)
= − [�]XY

T 2
dT −

K∑
k=2

[Nk]XY

T
dMk1 − [N ]XY

T
dφ1

−
L∑

l=1

[nl]XY

T
dμl −

∑
i=1,2,3

[V F i3/F 33]XY

T
dσ3i

+ 1

T

∑
i,j=1,2

τXY
ij Adeji, (70)

where the thermodynamic potential � is defined by

� : = U −
K∑

k=2

NkMk1 − Nφ1 −
L∑

l=1

nldμl

−
∑

i=1,2,3

σ3iV F i3/F 33. (71)

It is straightforward to derive physical and Lagrangian forms
of this equation, whose left-hand sides will contain d (γ /T )
and d (γL/T ), respectively.

In the particular case when only temperature is varied,
Eq. (70) gives (

∂ (γA/T )

∂T

)XY

= − [�]XY

T 2
. (72)

This equation is similar to the classical Gibbs-Helmholtz
equation21 (

∂ (G/T )

∂T

)
p

= −U + pV

T 2
(73)

for single-component fluid systems. Equation (70) can be
viewed as a generalization of the Gibbs-Helmholtz equation
to interfaces in multicomponent systems.

Equation (70) can be used to compute γ by integration of
γA/T along a trajectory on the phase coexistence hypersur-
face in the configuration space of variables. The advantage
of this integration is that it does not require knowledge
of [S]XY . Free-energy calculations for solid-solid interfaces
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in multicomponent elastically stressed systems are presently
nonexistent and could be initiated by applying the proposed
thermodynamic integration approach.

F. Maxwell relations

Because the adsorption equation contains the perfect
differential of γA, it generates a number of Maxwell relations
between partial derivatives of the excess quantities. Similarly,
the Gibbs-Helmholtz equation (70) is the perfect differential
of γA/T and also generates Maxwell relations. We will focus
on Maxwell relations that involve the effects of mechanical
stresses and strains on interface properties. For hydrostatic
precesses, such relations were discussed by Cahn.6 The
additional terms in the adsorption equation introduced in this
work, such as the variations in the shear stresses σ31 and
σ32, lead to a number of additional Maxwell relations. The
Lagrangian and physical forms of the adsorption equation
produce different Maxwell relations, which will be presented
below side by side. In the partial derivatives appearing in these
relations, the variables which are held constant are dictated by
the particular choice of the extensive variables X and Y . Thus
each Maxwell relation actually represents a set of relations
corresponding to different choices of X and Y .

1. Mechanical relations

The first set of Maxwell relations examines how the lateral
deformations deij and the stresses σ3k affect the interface
excess volume, excess shears, and interface stress. Using the
Lagrangian and physical forms of the adsorption equation, we
obtain

∂τXY
Lij

∂ekl

= ∂τXY
Lkl

∂eij

,
∂
(
τXY
ij − δij γ

)
∂ekl

= ∂
(
τXY
kl − δklγ

)
∂eij

,

i,j,k,l = 1,2,

(74)

∂τXY
Lij

∂σ33
= −∂([V ]XY /A′)

∂eij

,
∂
(
τXY
ij − δij γ

)
∂σ33

= −∂([V ]XY /A)

∂eij

, i,j = 1,2, (75)

∂τXY
Lij

∂σ3k

= −∂([V Fk3/F33]XY /A′)
∂eij

,
∂
(
τXY
ij − δij γ

)
∂σ3k

= −∂([V Fk3/F33]XY /A)

∂eij

, i,j,k = 1,2, (76)

∂([V Fk3/F33]XY /A′)
∂σ33

= ∂([V ]XY /A′)
∂σ3k

, k = 1,2. (77)

Equation (74) represents the effect of lateral deformations on
the interface stress. Equation (75) describes the interfacial
Poisson effect in which lateral deformations of the interface
produce changes in the “interface thickness” (excess volume
per unit area). Because Eqs. (74)–(76) involve changes
in interface area, their Lagrangian and physical forms are
different. The physical form of Eq. (77) contains the physical
area A instead of the reference area A′.

2. Mechanochemical relations

Elastic deformations parallel or normal to the interface
affect interface segregation. In turn, changes in segregation can
produce changes in interface stress, interface excess volume,

and interface excess shears. We will present only Maxwell
relations for substitutional components when the diffusion
potentials Mk1 are varied. For interstitial components, the
relations have a similar form but with the diffusion potentials
replaced by the chemical potentials μl . The effect of defor-
mations parallel to the interface on the interface segregation is
described by the relations

∂τXY
Lij

∂Mk1
=−∂([Nk]XY /A′)

∂eij

,
∂
(
τXY
ij −δij γ

)
∂Mk1

= − ∂([Nk]XY /A)

∂eij

,

i,j = 1,2; k = 2, . . . ,K. (78)

Because the interface area changes, the Lagrangian and
physical forms of this relation are different. The effect of the
stress components σ31, σ32, and σ33 on segregation is described
by the relations

∂([V ]XY /A′)
∂Mk1

= ∂([Nk]XY /A′)
∂σ33

, k = 2, . . . ,K, (79)

∂([V Fi3/F33]XY /A′)
∂Mk1

= ∂([Nk]XY /A′)
∂σ3i

,

i = 1,2, k = 2, . . . ,K. (80)

The physical forms of these equations contain the physical
area A instead of the reference area A′.

3. Thermomechanical relations

Such relations describe the effects of temperature on
interface stress, excess volume and excess shears. The relations
generated by the adsorption equation would contain the excess
entropy [S]XY which is not easily accessible. Instead, we will
use the Gibbs-Helmholtz equation (70), which does not contain
[S]XY . The following Maxwell relations are obtained

∂
(
τXY
Lij /T

)
∂T

= −∂([�]XY /A′T 2)

∂eij

,
∂
{(

τXY
ij − δij γ

)
/T

}
∂T

= −∂([�]XY /AT 2)

∂eij

, i,j = 1,2, (81)

∂([V ]XY /A′T )

∂T
= ∂([�]XY /A′T 2)

∂σ33
, (82)

∂([V Fk3/F33]XY /A′T )

∂T
= ∂([�]XY /A′T 2)

∂σ3k

, k = 1,2.

(83)

where the potential � is given by Eq. (71).

4. Thermochemical relations

Using the Gibbs-Helmholtz equation (70), we can eval-
uate the effect of temperature on interface segregation of
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substitutional and interstitial components. The corresponding
derivatives involve the excess [�]XY instead of [S]XY and read

∂([Nk]XY /A′T )

∂T
= ∂([�]XY /A′T 2)

∂Mk1
, k = 2, . . . ,K,

(84)

∂([nl]XY /A′T )

∂T
= ∂([�]XY /A′T 2)

∂μl

, l = 1, . . . ,L.

(85)

For substitutional components, the derivatives are taken
with respect to diffusion potentials, whereas for interstitial
components with respect to chemical potentials. The physical
form of these equations is identical except that the reference
area A′ is replaced by the physical area A.

V. RELATION TO OTHER TYPES OF INTERFACES

A. Incoherent solid-solid interfaces

Incoherent solid-solid interfaces differ from coherent in two
ways: (1) lateral deformations of the two phases are allowed
to be different and independent of each other, as long as they
preserve the orientation of the interface plane. Accordingly,
the deformation gradients of the phases must still have the
upper-triangular form but need not satisfy Eqs. (25) and
(26) with equal lateral components. (2) Incoherent interfaces
do not support static shear stresses applied parallel to the
interface plane, responding to such stresses by sliding. These
conditions can be reconciled with the coherent interface theory
by considering only processes in which the shear stresses σ31

and σ32 are identically zero and the lateral deformations of the
phases remain equal. Under these constraints, the incoherency
of the interface does not manifest itself and all equations
derived for coherent interfaces are valid for incoherent ones.
The number of independent variables reduces to (K + L + 3)
and all equations are significantly simplified. In particular,
the equations no longer contain the components F i3 of the
deformation gradient F [Eq. (38)] and the latter need not
be introduced. The shapes of the two-phase and single-phase
regions used in the thought experiments become unimportant;
only their volumes appear in the final equations.

For example, the total interface free energy γA is given by
the simplified form of Eq. (48),

γA = [U ]XY − T [S]XY −
K∑

k=1

φk[Nk]XY

−
L∑

l=1

μl[nl]XY − [V ]XY σ33. (86)

The potentials φm defined by Eq. (18) reduce to

φm = U/N − T S/N −
K∑

k=1

MkmCk −
L∑

l=1

μlcl − σ33�. (87)

The adsorption equation becomes

d(γA) = −[S]XY dT −
K∑

k=1

[Nk]XY dφk −
L∑

l=1

[nl]XY dμl

− [V ]XY dσ33 +
∑

i,j=1,2

τXY
ij Adeji, (88)

where we use the current state of one of the phases as the
reference state of lateral strain. The interface stress tensor
simplifies to

τXY
ij = 1

A
[V (σ ij − σ33δij )]XY , (89)

where σ ij is the Cauchy stress tensor averaged over a region
of volume V .

It should be emphasized, however, that the above equations
describe only some of the possible state variations of an
incoherent two-phase systems. They do not include variations
in which the phases undergo different lateral deformations
and thus slip against each other. Due to such variations,
an incoherent two-phase system possesses more degrees of
freedom than a coherent one with the same number of
substitutional and interstitial components. Thus incoherent
interfaces cannot be considered a particular case of coherent
interfaces. They require a separate treatment, which will be
presented elsewhere.

B. Grain boundaries

Grain boundary (GB) is an interface between regions of the
same crystalline phase with different lattice orientations. As
other solid-solid interfaces, GBs can be coherent or incoherent.
Coherent GBs can support not only stresses normal to the GB
plane but also shear stresses parallel to it. When temperature22

and/or chemical composition23 change, some coherent GBs
can change their structure to one that permits GB sliding. The
GB becomes incoherent.

Two different cases must be distinguished: when the grains
are thermodynamically identical and when they are not.
By definition, the grains are considered thermodynamically
identical when the phase-change equilibrium condition (30)
is satisfied as a mathematical identity once the equilibrium
conditions (i)–(iv) formulated in Sec. III B are satisfied. In
other words, the phase-change equilibrium condition need not
be imposed as a separate equation of constraint. This can be
the case when the grains are stress free and uninfluenced
by electric, magnetic, or other fields. Thermodynamically
identical grains can be treated as parts of the same single-phase
system. On the other hand, in the presence of mechanical
stresses or applied fields, the equilibrium thermodynamic
states of the grains can be different. For example, when the
solid is elastically anisotropic and the grains are subject to
mechanical stresses, they either never reach equilibrium or
can reach an equilibrium state in which their elastic strain
energy densities and chemical compositions are different.
In the latter case, the phase-change equilibrium condition
(30) is not satisfied automatically and must be imposed as
a separate constraint. Such cases should be formally treated
as if the grains were two different phases. Accordingly, all
thermodynamic equations developed in Secs. III and IV for
phase boundaries directly apply to this case.

There are situations when, due to crystal symmetry, the
grains remain thermodynamically identical even in the pres-
ence of certain mechanical stresses. As an example, consider
a coherent symmetrical tilt GB. In the unstressed state, the
grains are identical and form a single-phase system. Due to
the mirror symmetry across the boundary plane, the lateral
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deformations deij (i,j = 1,2) and the normal stress σ33 leave
the grains identical. Moreover, due to the twofold symmetry
around the axis x2 normal to the tilt axis, the shear stress
σ31 also leaves the grains identical. Thus when the system is
subject to these deformations, it continues to be a single-phase
system.42 That Eq. (30) is satisfied in this case as an identity
can be seen from the fact that the differences (Uβ − Uα),
(Sβ − Sα), (Nβ

k − Nα
k ), and (nβ

l − nα
l ) related to grain regions

containing the same total numbers of substitutional atoms
are zero by the symmetry. The remaining terms in Eq. (30)
represent the mechanical work Wm and are given by Eq. (31).
For a symmetrical tilt boundary F

β

13 = Fα
13 and F

β

33 = Fα
33, only

the shear components Fα
23 and F

β

23 are different. But the term
(Fβ

23 − Fα
23)σ32 vanishes due to σ32 = 0 resulting in Wm ≡ 0.

Generalizing this example, it can be stated that the grains
remain thermodynamically identical during a variation of state
of the system when (i) the differences (Uβ − Uα), (Sβ − Sα),
(Nβ

k − Nα
k ), (nβ

l − nα
l ), and (V β − V α) remain zero for all

grain regions with Nβ = Nα and (ii) the work Wm of the
transformation of one grain to the other, given by Eq. (31),
remains identically zero.

The term in Wm with i = 3 equals (V β − V α)σ33 and thus
vanishes. As a result, the condition Wm ≡ 0 reduces to the
identity ∑

i=1,2

F11F22V
′(Fβ

i3 − Fα
i3

)
σ3i ≡ 0. (90)

As discussed in Sec. III C, the left-hand side of this expression
is the work of the shear stress along the transformation vector t
projected on the interface plane. This identity is satisfied term
by term when the components Fi3 are equal (Fβ

i3 ≡ Fα
i3) for

the directions i in which the stress component σ3i is nonzero.
In fact, Eq. (90) reduces to this case after an appropriate
rotation of the coordinate axes. Note that coupled GBs24 can
be equilibrated under stress as long as the relevant component
of σ3i is zero.

Under the above conditions, the phase-change equilibrium
equation (30) is satisfied as an identity. Furthermore, it can be
shown that when conditions (i) and (ii) are satisfied, Eqs. (45)
and (46) become identical to each other and only one of them
should be solved simultaneously with Eq. (41). As a result, γA

is obtained by solving a system of only two equations, giving

γA = [U ]X − T [S]X −
K∑

k=2

Mk1[Nk]X − φ1[N ]X

−
L∑

l=1

μl[nl]X −
∑

i=1,2,3

[V F i3/F 33]Xσ3i , (91)

where

[Z]X :=

∣∣∣∣ Z X

Zα Xα

∣∣∣∣
Xα

= Z − ZαX/Xα. (92)

Index α refers to one of the grains. By specifying X, one term
in Eq. (91) is eliminated. The coefficients [V F i3/F 33]X are
the excess shears (i = 1 or 2) and excess volume [V ]X (i = 3)
of the GB.

Similarly, if conditions (i) and (ii) are satisfied, then the
Gibbs-Duhem equations (33) and (34) for the grains become
identical to each other and the adsorption equation is obtained
by solving a system of only two equations:

d (γA) = −[S]XdT −
K∑

k=2

[Nk]XdMk1 − [N ]Xdφ1

−
L∑

l=1

[nl]Xdμl −
∑

i=1,2,3

[V F i3/F 33]Xdσ3i

+
∑

i,j=1,2

τX
ij Adeji . (93)

Again, one variable in Eq. (93) is eliminated by specifying
the extensive property X, which reduces the number of
independent differentials to (K + L + 6). The actual number
of independent variations is less due to the symmetry-related
constraints imposed for preservation of the identity of the
grains. In the absence of shear stresses, the last but one term in
Eq. (93) reduces to [V ]Xdσ33. In this particular case, Eq. (93)
can be applied to both coherent and incoherent symmetrical
tilt boundaries. We emphasize again that for Eqs. (91) and (93)
to be valid, the condition F

β

i3 = Fα
i3 must be satisfied for the

directions i in which σ3i �= 0.
The last term in Eq. (93) contains the GB stress τX

ij .
Assuming that grain α is the reference state of strain, it is
straightforward to derive

τX
ij = 1

A
[V ′Qij ]X

= 1

A

(
σ ijV − δij σ33V − ABiσ3j − δij

∑
k=1,2

ABkσ3k

)

− X

AXα

(
σα

ijV
α − δij σ33V

α
)
, i,j = 1,2. (94)

Here, V is the bicrystal of volume, B is the displacement
vector of the upper boundary of the bicrystal during the GB
formation [cf. Fig. 3(d)], σ ij is the volume-averaged stress
tensor in the bicrystal, and all quantities with superscript α

refer an arbitrarily chosen homogeneous region of grain α. In
the particular case when X = N , we have

τN
ij = 1

A

(
σ ijV − δijσ33V − ABiσ3j − δij

∑
k=1,2

ABkσ3k

)

− N

ANα

(
σα

ijV
α − δij σ33V

α
)
, i,j = 1,2. (95)

For this choice of X, expression (91) for γA takes the form

γA = [U ]N − T [S]N −
K∑

k=2

Mk1[Nk]N −
L∑

l=1

μl[nl]N

− σ33[V ]N − A
∑
i=1,2

Biσ3i . (96)

Equations (95) and (96) will be used in Part II of this work.25
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VI. DISCUSSION AND CONCLUSIONS

We developed a thermodynamic theory of coherent solid-
solid interfaces in multicomponent systems under a general
nonhydrostatic state of stress. All equations were derived
directly from the first and second laws of thermodynamics.
No Hooke’s law or any other constitutive laws of elastic defor-
mation were invoked. No assumptions were made regarding
the interface structure other than the conservation of sites and
elastic response to applied shear stresses.

To circumvent the problem of undefined chemical potentials
of substitutional components, we treat such components sep-
arately from interstitial components using diffusion potentials
introduced by Larchè and Cahn.13–15 Diffusion potentials in
nonhydrostatic solids are well-defined quantities and, similar
to chemical potentials, are uniform throughout an equilibrium
system. Because a system containing K substitutional compo-
nents has only (K − 1) diffusion potentials [see Eq. (9)], the
requirement of their equality in coexisting phases (Mα

k1 = M
β

k1,
k = 2, . . . ,K) must be augmented by one more condition,
namely, the phase-change equilibrium equation discussed in
Secs. III B and III C.

As an alternative to diffusion potentials, one can formulate
the equilibrium conditions in terms of the φ potentials
introduced in this work [see Eq. (18)]. Equilibrium with respect
to substitutional components is then expressed by K relations
φα

k = φ
β

k (k = 1, . . . ,K), which subsume the phase-change
equilibrium condition. Written in terms of the φ potentials,
many equations of phase equilibrium and interface thermody-
namics look similar to the familiar equations for fluid systems,3

with the φ potentials playing the role of chemical potentials.
In the particular case of hydrostatically stressed solids, the
φ potentials coincide with real chemical potentials, which
are well-defined thermodynamic quantities under hydrostatic
conditions. It should be emphasized, however, that the φ

potentials do not solve the problem of undefined chemical
potentials in nonhydrostatic solids in general. If we choose
a differently oriented interface plane between the same two
phases, the φ potentials will need to be redefined and will
generally take on different numerical values.

An important result of this paper is the coherent phase
coexistence equation derived in Sec. III D. It can be written as

0 = −{S}XdT −
K∑

k=1

{Nk}Xdφk −
L∑

l=1

{nl}Xdμl

−
∑

i=1,2,3

{V Fi3/F33}Xdσ3i +
∑

i,j=1,2

{V ′Qij }XdFji (97)

and is a generalization of the Clapeyron-Clausius equation to
nonhydrostatically stressed multicomponent systems. In the
particular case when the phases are hydrostatic, we have Qij =
0, φk = μk , and this equation reduces to

0 = −{S}XdT −
K+L∑
k=1

{Nk}Xdμk + {V }Xdp, (98)

where we use the same symbol Nk for the amounts
of substitutional and interstitial components. For single-
component phases, this equation recovers the classical
Clapeyron-Clausius equation 0 = −{S}N1dT + {V }N1dp.21

Equation (97) predicts a rich variety of relations between
temperature, stress, and chemical compositions of coexisting
phases, which call for testing by experiments and simulations
in the future.

Hydrostatic phase coexistence conditions and the
Clapeyron-Clausius equation have been extensively tested by
experiment and simulations. The conditions of coherent equi-
librium between nonhydrostatic phases12–14 (see Sec. III B)
and the phase coexistence equation (97) derived in this work
call for a similar verification. An analog of Eq. (97) for solid-
fluid systems has been recently tested by atomistic simulations
which implemented strongly nonhydrostatic conditions in
the solid.9,10 A similar analysis and simulations could be
performed for solid-solid interfaces. In particular, it should
be possible to test Eq. (37) by studying the relation between
variations in the diffusion potential and the shear stress.

We defined the interface free energy γA as the reversible
nonmechanical work performed in a thought experiment in
which the interface was formed by transforming a part of a
single-phase system into a different phase. We have shown that
γA can be expressed as excesses of different thermodynamic
potentials, depending on the choice of the reference properties
X and Y in Eq. (48). Two examples of such potentials are given
by Eqs. (52) and (53).

Despite the freedom of choice in expressing γA as an
excess, it still remains the work of interface formation and
therefore must be unique. The following comment is due in
this connection. The last sum in Eqs. (47) and (48) is the
mechanical work performed by the applied stress during the
phase transformation. This work depends on the transforma-
tion strain, which we assumed to be known. However, crystal
symmetry may lead to multiplicity of possible transformation
paths between the same two phases. In other words, given
the same reference state there can be different deformation
gradients Fα and Fβ producing exactly the same physical
states of the phases. Some of such alternate transformation
paths can actually be implemented in experiments or atomistic
simulations. The situation is similar to the existence of
symmetry-dictated multiple modes of coupled GB motion.
Depending on the temperature and other factors, a moving
GB can produce different shear deformations of the receding
grain, each corresponding to a different mode of coupling.
The existence of multiple coupling modes was confirmed by
both simulations24,26–28 and experiments29–32 on symmetrical
tilt grain boundaries.

The multiplicity of possible transformation strains seems to
create the following paradox: given a two-phase system in its
current state, how does one know which of the transformation
strains should be plugged in Eq. (48) to obtain the correct
value of γA? The answer lies in the fact that the phase
equilibrium equation (35) also depends on the transformation
strain through the coefficients in front of dσ3i . As discussed in
Sec. III C, one of the equilibrium conditions is the neutrality
with respect to spontaneous interface displacements in an
open system. The actual deformations of the phases occurring
during such displacements determine the equilibrium states
of the phases. Different deformation gradients will lead to
different equilibrium states. The equilibrium states of the
phases, in turn, affect the interface free energy and all
other interface properties. If the actual transformation strain
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realized in a given experiment or simulation changes, so will
the equilibrium states of the phases and thus γA. Thus,
knowing the current state of the two-phase system, one
should be able to tell which of the symmetrically possible
strains is actual and thus correctly predict the interface
properties.

Larchè and Cahn13–15 realized that thermodynamic equi-
librium between solid phases depends on the degree of
coherency of the interface. The above discussion suggests
that, for a coherent interface, the equilibrium also depends
on the particular coherent transformation strain (out of several
possible by crystal symmetry), which is realized during the
interface displacements. So do all thermodynamic properties
of the interface. Mathematically, the hypersurface of phase
coexistence in the parameter space can have multiple sheets
corresponding to different transformation strains between the
same two phases. Switches between the transformation strains
can cause abrupt changes in states of the phases and thus
in interface properties, and are similar to interface phase
transformations. The strain multiplicity and its consequences
for interface thermodynamics are worth exploration in future
work. One way to do so would be to use Eq. (37) and
apply the stress in different directions which activate different
transformation paths.

The generalized adsorption equation derived in this paper
expresses the differential of the interface free energy in terms
of a set of independent intensive parameters characterizing the
equilibrium state of a coherent two-phase system. Different
forms of this equation are given by Eqs. (58), (59), (60), (65),
(66), and (70). The adsorption equation can be considered
as the differential form of the fundamental equation of the
interface, whereas Eq. (48) the fundamental equation is a
functional form. The differential coefficients in the adsorption
equation define those interface excesses which are measurable
physical quantities. In particular, the interface stress tensor τ

emerges from the coefficients in front of the lateral strains eij

and is formally defined by Eq. (61). It should be emphasized
that the excess formulation of the interface stress presented
in this work is not as trivial as for hydrostatic systems. In
the latter case, the lateral stresses in the phases are equal and
their interface excess is unique. In nonhydrostatic systems,
the lateral stresses in the phases are different and their
excess, if calculated relative to a dividing surface, depends
on its placement. In terms of Cahn’s generalized excesses,6 τ

depends on the choice of the reference properties X and Y . In
this sense, the interface stress between two nonhydrostatically
stresses solids in not unique.

To understand the origin of this nonuniqueness, it is
instructive to consider its Lagrangian formulation (63). As
indicated by Eq. (64), τL is the response of the interface free
energy γL (per unit reference area) to elastic deformations
of the interface. Such deformations must be implemented
in such a way that to preserve the phase equilibrium. In
other words, the derivative in Eq. (64) must be taken along
a certain direction on the phase coexistence hypersurface
in the parameter space. Derivatives taken along different
directions give generally different values of the interface stress,
resulting in its multiplicity. The direction in which we take the
derivative is controlled by the choice of the reference properties
X and Y .

Another excess quantity appearing in the generalized ad-
sorption equation is the interface excess shear. It characterizes
the local elastic shear deformation of the interface region in
response to a shear stress applied parallel to the interface. The
excess shears [V F 13/F 33]XY and [V F 23/F 33]XY are conju-
gate to the shear stress components σ31 and σ32, respectively.
Clearly, the excess shears are specific to coherent interfaces
and are undefined for interfaces that do not support shear
stresses. This explains why they did not appear in previous
versions of the absorption equation existing in the literature.
For practical purposes, the excess shears can be normalized by
the physical or Lagrangian interface area, giving the specific
shears [V F i3/F 33]XY /A and [V F i3/F 33]XY /A′, respectively.
These quantities are similar to the GB “slip” introduced
in the context of the effective elastic response of GBs in
polycrystalline materials.33 Excess shears of individual GBs
in copper calculated by atomistic methods will be reported in
Part II of this work.25

The analysis presented in this work is limited to a plane
interface between semi-infinite homogeneous phases. In the
future, some of these constraints could be lifted by including,
for example, the effect of curvature or inhomogeneity. Such
generalizations appear to be extremely challenging but could
benefit from the ideas and methods developed previously in the
mechanical theories of interfaces.16–18 As already mentioned,
the mechanical theories consider only mechanical equilibrium
between the phases and do not impose the conditions of
chemical or phase equilibrium. They consider deformations
of an already existing interface and disregard the process of
its formation, which, as we saw above and will see again
in Part II,25 can be accompanied by finite transformation
strains. This prevents the mechanical approach from properly
defining γ and deriving the adsorption equation. Nevertheless,
various interface excess stresses and strains were identified,
and carefully described mathematically, under much more
general conditions than in the present work. Besides the excess
shear and excess volume considered here, the mechanical
analysis reveals a few other excess strains arising, for example,
when the phases are curved and/or capable of relative rotation
and/or tilt.17

Finally, we note that our analysis neglects the existence of
vacancies, which is justified by their small concentration in
most solids. In the absence of vacancy sources and sinks in the
system, the total number of vacancies is conserved and they
could be included in our analysis as simply one of the substitu-
tional components. In this case, the number of vacancies could
be treated as one of the independent parameters alongside the
amounts of real substitutional components. As an alternate
model, the vacancies can be assumed to be in equilibrium with
some sources and sinks existing far away from the interface.
In this case, the number of vacancies in any reference region
of the system is a dependent parameter, whose value can
be determined from the condition of equilibrium with the
sources and sinks. It should be noted, however, that the vacancy
equilibrium depends on specific properties of the sources and
sinks. For example, one can assume that the phases terminate
at surfaces parallel to the interface. Suppose the surfaces are in
contact with an inert atmosphere exerting a pressure p and are
capable of absorbing and creating vacancies. The number of
vacancies in such a system is readily predictable and depends
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on p (see Ref. 34). However, the shear stresses σ31 and σ32 have
to be zero because of the presence of surfaces. Thus this model
will not capture the interesting interface properties associated
with the shear stresses.

On the other hand, a uniform distribution of vacancy sources
and sinks inside the phases, e.g., in the form of climbing
dislocations, would require a radical revision of the underlying
assumptions of the present analysis, particularly regarding the
conservation of sites. This would also raise the questions of
possible creep deformation of the stressed phases and the legit-
imacy of using the reference state formalism for the description

of elastic deformations. In view of these complications, analy-
sis of the possibility of incorporation of equilibrium vacancies
in thermodynamics of coherent interfaces is left for future
work.
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