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Physical properties of thermoelectric zinc antimonide using first-principles calculations
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We report first-principles calculations of the structural, electronic, elastic, and vibrational properties of the
semiconducting orthorhombic ZnSb compound. We study also the intrinsic point defects in order to eventually
improve the thermoelectric properties of this already very promising thermoelectric material. Concerning the
electronic properties, in addition to the band structure, we show that the Zn (Sb) crystallographically equivalent
atoms are not exactly equivalent from the electronic point of view. Lattice dynamics, elastic, and thermodynamic
properties are found to be in good agreement with the experiments and they confirm the nonequivalency of the
zinc and antimony atoms from the vibrational point of view. The calculated elastic properties show a relatively
weak anisotropy and the hardest direction is the y direction. We observe the presence of low energy modes
involving both Zn and Sb atoms at about 5–6 meV, similar to what has been found in Zn4Sb3, and we suggest
that the interactions of these modes with acoustic phonons could explain the relatively low thermal conductivity
of ZnSb. Zinc vacancies are the most stable defects, and this explains the intrinsic p-type conductivity of ZnSb.
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I. INTRODUCTION

Among the sustainable energy sources, thermoelectricity
has attracted attention in the last years because of the need to
solve the urgent energetic problems and because of recent ad-
vances in the search of more efficient thermoelectric materials.
Indeed, since the middle of the nineties, new thermoelectric
materials with large figures of merit Z have appeared, and
thus higher efficiencies could be obtained.1 However, for
high-temperature applications on a large scale, one should
take into account not only the thermoelectric efficiency but
also some other important factors, such as,

(1) the abundance, cost, and toxicity of the elements used
in the thermoelectric material;

(2) the thermodynamic and mechanical stability of the
material in the desired temperature; and

(3) the possibility to have both n and p-type conductors,
which is connected to the doping and to the role of the intrinsic
point defects.

Therefore, in the quest of new thermoelectric materials, it
is necessary not only to study the properties directly related to
their thermoelectric characteristics (electronic properties and
lattice dynamics) but also to study their elastic properties, their
thermodynamic properties, and their stability (both pure and
doped phases). This is the scope of the present paper for one
of the most promising thermoelectric materials already known
for quite some time: ZnSb.

ZnSb is one of the best thermoelectric compounds in the
important temperature range between 400 and 600 K for which
only a limited number of efficient thermoelectric materials is
known. With zT = 1.4 at 600 K, the most efficient material
known to us is Zn4Sb3,1,2; however, it is metastable3–5 and can
only be of p-type.1,6 Other possibilities concern tellurides such
as LAST and TAGS1; however, their use can only be very lim-
ited due to the weak abundance and the toxicity of tellurium.
Therefore, after excluding these compounds, the most efficient
material is orthorhombic ZnSb in this temperature range.1

This compound is a slightly anisotropic semiconductor with
a bandgap of about 0.5 eV.7–12 Several experimental studies

were dedicated to this material during the first period of intense
activity on thermoelectric materials.7–12 During this time, the
best zT was around 0.6 for the p-type doped material.1,7,8,10

Some studies of n-doped compounds with impurities such as
In, Te, or Se were also reported,9,11 but the zT was too low. In
parallel there were also several studies of the thermodynamic
properties of ZnSb and CdSb-ZnSb alloys with the same
structure.12–17 Since the nineties, due to the discovery of very
good thermoelectric properties in Zn4Sb3,2 the main studies of
Zn-Sb systems were dedicated to this last compound and the
study of orthorhombic ZnSb became confidential. The main
reason for which the thermoelectric properties of Zn4Sb3 are
better than in ZnSb is because it has two times smaller thermal
conductivity.1 However, after more than one decade of effort
it is still not possible to improve the stability of Zn4Sb3, and
no n-doped material has been found so far.1,6

It is therefore time to thoroughly study ZnSb in order to
improve its thermoelectric properties. Recently, it has been
reported that it is possible to successfully reduce the thermal
conductivity of ZnSb by nanostructuring18,19 it and increase
its zT up to about 1.19 It has also been reported that the
n-doped compound with tellurium can have similar electronic
properties (and hence zT ) to the p-doped material20 (recent
experimental studies have explored other n-type doping but
without significant success21). These recent results open new
perspectives for the orthorhombic ZnSb compound without
the stability and doping problems of Zn4Sb3. In the past
only a few papers have dealt with the numerical study of the
physical properties of ZnSb,22,23 but during the last two years
several studies have been devoted to this topic.24–27 In view
of possible application in high temperature thermoelectric
generation, it is thus necessary to deepen our understanding
of the overall physical properties of ZnSb and not limit our
understanding simply to its physical properties directly related
to its thermoelectric properties. The aim of the present paper is
to propose a full ab initio study of the electronic properties (in
addition to the study of Benson et al.27), the lattice dynamics,
the thermodynamic and elastic properties, and the stability
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of native point defects in ZnSb in order to better probe its
potential for future thermoelectric applications.

II. COMPUTATIONAL DETAILS

First-principles calculations are performed using the pro-
jector augmented-wave (PAW) method28,29 within the local
density approximation (LDA) and the generalized gradi-
ent approximation (GGA), as implemented in the highly-
efficient Vienna Ab initio Simulation Package (VASP).30 The
calculations employed the Perdew-Bucke-Ernzerhof (PBE)
exchange-correlation functional within the GGA.31 We have
used a plane-wave energy cutoff of 500 eV held constant
for all the calculations. For the relaxation and electronic
structure calculations in the primitive cell, Brillouin zone
integrations are performed using Monkhorst-Pack k-point
meshes,32 with a k-point sampling of 15 × 15 × 15; the
tetrahedron method with the Blöchl correction33 is used in the
present calculations. The total energy is converged numerically
to less than 1 × 10−6 eV/unit. After structural optimization,
the calculated forces are converged to less than 10−3 eV/Å. For
the calculation of the elastic constants of ZnSb, the procedure
is similar to the one described in detail in Ref. 37 and is
therefore not recalled here.

We use the Vinet EOS to obtain the equilibrium volume
(�0) and the total energy (E).34 Lattice dynamics calculations
were done using the frozen phonons method in the supercell
approach, as discussed by Parlinski.35 We calculate the
Hellmann-Feynman forces in a 2 × 2 × 2 supercell of 128
atoms with a precision better than 10−5 eV/Å after a first
step of ionic relaxation in the supercell; the dynamical matrix
is then diagonalized using Parlinski’s Phonon code.35 From
these phonon calculations the thermodynamic properties and
the atomic displacement parameter (ADP) tensors of each
atomic type are calculated (see Ref. 35 for more details).

For the defect calculations, we also used a 2 × 2 × 2
supercell with the accuracies on the energy and the forces
mentioned previously for the primitive cell but with a k-
point sampling of 3 × 3 × 3 (similar to the calculation of the
Hellmann-Feynman forces).

III. RESULTS AND DISCUSSION

A. Crystal structure and formation energy

ZnSb adopts an orthorhombic structure (space group Pbca,
n◦61) under ambient conditions with Zn and Sb atoms

occupying the 8c Wyckoff positions leading to a unit cell
containing 16 atoms. As stressed by other authors the structure
can be described as an arrangement of interconnected planar
rhomboid rings Zn2Sb2, as shown in Fig. 1. The calculated
lattice constants (a, b, c) and formation enthalpies have been
listed in Table I together with the available experimental
data.12,15,17,38

Globally the calculated lattice constants are overestimated
by at most 1.5%, which is certainly due to the use of the GGA
since it is well known that this approximation overestimates
the lattice constants or the equilibrium volume.39 The contrary
is true within the LDA, which does not improve the calculated
lattice constants (Table I). Nevertheless in both cases, the
calculated c/a and b/a ratio (1.31 and 1.246 for GGA and
1.307 and 1.241 for LDA) are very close to the experimental
ones (1.305 and 1.248).

The formation enthalpy of ZnSb in eV/atom can be
calculated with the following equation:

�H (ZnSb) = E (ZnSb) − (NZnE(Zn)/Ntot

+NSbE(Sb)/Ntot), (1)

where E(ZnSb), E(Zn), and E(Sb) are the equilibrium
first-principles calculated total energies (in eV/atom) of the
corresponding ZnSb compound, of Zn with hcp (P 63/mmc)
structure, and of Sb with rhombohedral structure (R − 3m),
respectively. NZn is the number of zinc atoms and NSb the
number of Sb atoms.

Concerning the formation enthalpy of ZnSb the experimen-
tal values (from − 0.07 to − 0.09 eV/atom)12,16,17 are rela-
tively small and the DFT-GGA calculations are overestimating
these results (about − 0.035 eV/atom). We have performed an
LDA calculation, but the agreement with experiment is even
worse ( − 0.002 eV/atom), so clearly LDA calculations do not
improve the structural results.

B. Electronic properties

We have done the full analysis of the electronic properties
(including the Bader charge analysis), but since our results
are similar to previously published results,23,26,27 we present
here only the band structure (Fig. 2) and the partial density of
states (DOS) of the different atoms (Fig. 3) since they either
provide new information or are necessary for the discussion of
the elastic and thermodynamic properties.

The calculated band structure shows an indirect band gap of
about 0.05 eV (similarly to what was found by Benson et al.27

with the PBE functional), which is notably smaller than the

FIG. 1. (Color online) ZnSb structure showing the Zn2Sb2 rhomboid rings projected along the three directions of the orthorhombic cell.
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TABLE I. Calculated and experimental lattice constants and formation enthalpies of ZnSb.

Lattice parameters (Å)

a b c Formation enthalpy (�H) eV/atom Atomic positions/remarks

GGA 6.2808 7.8246 8.2293 − 0.0346 Zn (0.0407, 0.1063, 0.1271)
Sb (0.3584, 0.417, 0.3907)

LDA 6.1086 7.5817 7.9859 − 0.002 Zn (0.039, 0.1034, 0.1261)
Sb (0.3568, 0.4148, 0.3893)
Zn (0.0414, 0.1128, 0.132)

Experiment 6.2016 7.7416 8.0995 Sb (0.358, 0.4188, 0.3923) (Ref. 38)
− (0.0814–0.0825) At 670 K (galvanic cell and emf method) (Refs. 16 and 17)
− 0.0665 At 298 K (vacuum block calorimetry) (Ref. 15)
− 0.0778 (calorimetry, Ref. 7 in Ref. 17)
− 0.0774 (dissociation pressure method, Ref. 8 in Ref. 17)
− 0.0934 Ref. 60 in Ref. 12

experimental gap of 0.53 eV.7 This is a known flaw of the
DFT-GGA description of semiconductors, which systemati-
cally underestimates the band gap. To improve this, other more
sophisticated exchange-correlation functionals should be used,
as shown in Ref. 26. However, the main features of the band
structure remain the same and can be related to the anisotropy
of the physical properties, as will be discussed later.

In order to correlate the structure build on Zn2Sb2 rings
and the DOS, we have analyzed the total DOS of the eight Zn
atoms and the eight Sb atoms in the orthorhombic unit cell.
A priori they should be equivalent for each atomic type since
they occupy the same Wyckoff positions, but this is not the
case, as shown in Fig. 3. We find four different zinc atoms
and four different antimony atoms corresponding to the four
different rings embedded in the unit cell (see Fig. 1). In each
ring the DOS of the two zinc atoms and the DOS of the two
antimony atoms are similar, but they are (slightly) different
from one ring to another. The differences are small but they
can a priori not be attributed to calculation errors since the
DOS of the equivalent atoms are strictly equal.

We have made several checks with different minimization
methods with different accuracies and with the experimental
(nonrelaxed and fully symmetric) atomic positions and we find
always the same result: the atoms go by pairs that have different
electronic properties. This shows that from the electronic point
of view the four rings to which the 16 atoms in the unit cell

FIG. 2. (Color online) Electronic band structure of ZnSb.

belong are not strictly equivalent. We will see below that these
differences are also detectable in the vibrational properties.

C. Elastic properties

The knowledge of the elastic constants (both experimen-
tally and theoretically) of a thermoelectric material is very
important since the thermomechanical constraints can be very
important during the lifetime of this material, and thus it can
be useful to predict its aging behavior.

We have determined the bulk modulus from the fit of the
E = f (V ) data using the Vinet equation, as we have done for
other materials previously.37 With this method we find a bulk
modulus BEOS of 47.18 GPa and a pressure derivative BEOS

′ of
5.35. We have also determined all the elastic constants of ZnSb
using the method described in detail in Ref. 37. The strains
used for the calculations together with the induced stresses are
shown in Table II. The obtained elastic constants are shown in
Table III together with experimental results from Ref. 14 and
Ref. 40. The mechanical stability of an orthorhombic system

FIG. 3. (Color online) DOS of the four inequivalent Zn and Sb
atoms in the unit cell.
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TABLE II. Irreducible strains, distortions, and corresponding elastic constants of an orthorhombic system.

Structure Strain Distortion �E/V [2nd order in δ]

orthorhombic ε1 e1 = δ C11δ
2/2

ε2 e2 = δ C22δ
2/2

ε3 e3 = δ C33δ
2/2

ε4 e4 = 2δ 2C44δ
2

ε5 e5 = 2δ 2C55δ
2

ε6 e6 = 2δ 2C66δ
2

ε7 e1 = (1 − δ2)−1/3(1 + δ) − 1 (C11 + C22 − 2C12)δ2/2
e2 = (1 − δ2)−1/3(1 − δ) − 1
e3 = (1 − δ2)−1/3 − 1

ε8 e1 = (1 − δ2)−1/3(1 + δ) − 1 (C11 + C33 − 2C13)δ2/2
e2 = (1 − δ2)−1/3 − 1
e3 = (1 − δ2)−1/3(1 − δ) − 1

ε9 e1 = (1 − δ2)−1/3 − 1 (C22 + C33 − 2C23)δ2/2
e2 = (1 − δ2)−1/3(1 + δ) − 1
e3 = (1 − δ2)−1/3(1 − δ) − 1

implies that41 C11 > 0, C22 > 0, C33 > 0, C44 > 0, C55 > 0,
C66 > 0, (C11 + C22 − 2C12) > 0, (C22 + C33 − 2C13) > 0,
and [C11 + C22 + C33 + 2(C12 + C13 + C23)] > 0. As can
be seen in Table III, all these conditions are indeed fulfilled in
our case.

The bulk modulus BH and the shear modulus GH are
the arithmetic averages for powder samples from the Reuss
and Voigt values obtained following the Hill’s procedure,
as described in our previous work in the case of other
symmetries37 and by Ravindran et al. for the orthorhombic
case.41 In the literature we have found two sets of experimental
values.14,40 Our results agree best with the ones of Ref. 40. This
is not surprising since the resonant ultrasonic spectroscopy
measurements in Ref. 40 are more accurate [error estimated to
0.5% for the diagonal (Cii) tensor components and 3% for the
nondiagonal (Cij ) tensor components] than the determinations
made in Ref. 14 (error estimated to 2% for the longitudinal
velocity and 10% for the transverse velocity). In addition,
the authors in Ref. 14 note that the ultrasound is markedly

TABLE III. Calculated elastic constants, bulk modulus, shear
modulus, Young’s modulus, Poisson’s ratio, and BH/GH of ZnSb
compared with experimental results (Refs. 14 and 40).

GGA Experiment (T = 300 K)

C11 (GPa) 80.2 92.4 (Ref. 40)
C22 (GPa) 93.3 103 (Ref. 40)
C33 (GPa) 84.4 93.6 (Ref. 40)
C12 (GPa) 29.5 32.9 (Ref. 40)
C23 (GPa) 26 31.1 (Ref. 40)
C13 (GPa) 29 38.4 (Ref. 40)
C44 (GPa) 18.5 21.6 (Ref. 40)
C55 (GPa) 37.6 46.3 (Ref. 40)
C66 (GPa) 30.2 36 (Ref. 40)
Bulk modulus BH (GPa) 47.35 54.75 (Ref. 40)
Shear modulus GH (GPa) 28.03 32.16 (Ref. 40), 45 (Ref. 14)
Young’s modulus E (GPa) 70.2 80.6 (Ref. 40), 105 (Ref. 14)
Poisson’s ratio ν 0.252 0.253 (Ref. 40)
BH/GH 1.69 1.7 (Ref. 40)

damped in the sample they have investigated. Therefore,
in the following, we will consider only the experimental
results of Ref. 40. We note that these experimental results
agree qualitatively well with our computed results notably
for the different directions, but we observe a systematic
underestimation of the calculated elastic constants BH, GH,
and EH of about 15%. This is mostly related to the larger
calculated lattice parameters compared to the experimental
ones and the fact that our calculated c/a and b/a ratios are
identical to the experimental ones. This is why our calculations
reproduce well the experimental tendency. We note that BH,
the powder-averaged bulk modulus of about 54.75 GPa found
from the experimental data of Balaziuk et al.,40 is larger than
the value of 50.5 GPa found for Zn4Sb3.42 This shows that
the naı̈ve use of a weighted sum of the bulk modulus of zinc
and antimony as proposed by Triches et al.,42 which would
give a bulk modulus of only 49.05 GPa for ZnSb, does not
work. However, if we keep in mind that the bulk modulus
increases with the melting temperature43 and that ZnSb has a
larger formation energy than Zn4Sb3,5,23 it becomes obvious
why the bulk modulus of ZnSb is larger than the one of
Zn4Sb3: indeed, the melting point of ZnSb is higher than the
decomposition temperature of Zn4Sb3.5 This could also be
one of the explanations why the elastic constants of ZnSb are
smaller than in antimony-based skutterudites such as CoSb3,
for which B = 82–90 GPa and G = 57–61 GPa44 and for which
the peritectic temperature is higher than in ZnSb.5,45 We note
also that the bulk modulus of ZnSb is smaller than the one of
Mg2Si, whereas its shear modulus is larger than in Mg2Si (B =
70 GPa and G ∼= 21 GPa46). Mg2Si is a compound intensively
studied for its thermoelectric properties during the last years.
Therefore, the mechanical properties of ZnSb are comparable
to those of other good thermoelectric materials for medium to
high temperature applications.

Our calculated Poisson coefficient and BH/GH ratio are
similar to the experimental values. The BH/GH ratio is slightly
lower than 1.75, the limit between brittle and ductile behavior,
as proposed by Pugh,47 and thus ZnSb is slightly brittle. This
is not surprising since most of the semiconductors have such
behavior. Indeed ductile materials are generally metallic48 even
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though some metals can be brittle (see the example of TiSi241

or Iridium49). It is worth noting that we have recently found a
transition from ductile behavior (in the metallic Tl5Te3) to
a slightly brittle behavior in the small gap semiconductor
Tl9XTe6 (with X = Sb or Bi), which is also a very good
thermoelectric material.50 The fact that the BH/GH ratio is
close to the boundary between ductile and brittle behavior for
ZnSb could thus be due to the small width of its band gap.

Now we discuss the consequences of our results on
the anisotropy of the elastic properties. The case of one
orthorhombic material, TiSi2, has been discussed by Ravindran
et al.41 Following their procedure and using the same labelling,
we have calculated the bulk modulus, the shear anisotropy
factors A for the different directions (A1:x, A2:y, and A3:z),
the anisotropies of the bulk modulus along the a axis and c axis
with respect to the b axis (ABa and ABc), and the percentage
anisotropy in compressibility and shear (AB and AG). The
anisotropic Young’s moduli for the different directions have
also been determined (Ei = 1/Sii , with i = 1, 2, or 3, where
Sii are the diagonal elements of the compliance matrix) and
compared with the experimental values given in Ref. 40.
We have also calculated the shear moduli for the different
directions51: Gxy = C66, Gxz = C55, and Gyz =C44. Finally, we
have determined the Poisson coefficient for the three directions
x, y, and z as follows51:

νij = −Sij /Sii , with i,j = 1, 2 or 3.

When the experimental counterparts of the calculated
quantities were not directly available in the experimental work
of Balaziuk et al.,40 we have deduced them from the published
experimental data.

In case of orthorhombic systems, the Cauchy relations are
C12 = C66, C13 = C55, and C23 = C44 for, respectively, the x,
y, and z direction. In most of the solids, these relations are not
fulfilled because the conditions are very restrictive and rely on
the following assumptions:52,53

(1) anharmonicity must be absent,
(2) forces have to be central, and
(3) the material has to be spatially isotropic.
In the real world no material can fulfil all of these conditions

even though some cubic materials can get close. In order to
quantify the deviations from these conditions, it is usual to
define the Cauchy pressure as P Cauchy = C12 − C44 in the case
of cubic materials. In orthorhombic materials we can define
as well the Cauchy pressure for the three different directions:
Px

Cauchy = C23 − C44, Py
Cauchy = C13 − C55, and Pz

Cauchy =
C12 − C66 (see Table IV).

Most of the quantities measuring the anisotropy are either
close to 1 (A1, A2, A3, ABa, ABc) or very small (AB, AG):
all these results indicate a relatively small anisotropy of the
elastic properties of ZnSb and are in good agreement with
experiments.

From the results of the mechanical properties, we can
extrapolate some conclusions on the character of the bonding
in ZnSb. It is well known that purely ionic compounds like
alkaline halides have higher Poisson coefficients than purely
covalent compounds such as Si or C-diamond.48 However,
only recently this common affirmation has been confirmed
more quantitatively by Ledbetter in a review paper.54 Using

TABLE IV. Calculated and experimental anisotropic elastic con-
stants (Ref. 40).

Experiment (Ref. 40)
GGA (T = 300 K)

Ba (GPa) 133.4 162.4
Bb (GPa) 158.6 170.8
Bc (GPa) 136.2 160.9
Gyz (GPa) 37.6 46.3
Gxz (GPa) 18.5 21.6
Gxy (GPa) 30.2 36
Ex (GPa) 65.3 72.4
Ey (GPa) 79.2 87.3
Ez (GPa) 71.1 74.3
νyz 0.207 0.224
νzy 0.186 0.19
νxz 0.269 0.337
νzx 0.293 0.346
νxy 0.242 0.216
νyx 0.293 0.261
A1 0.695 0.79
A2 1.2 1.38
A3 1.055 1.11
ABa 0.84 0.95
ABc 0.859 1.01
AB (%) 0.14 0.24
AG (%) 2.83 3.37
Px

Cauchy = C23 − C44 − 0.66 − 3.11
(GPa)
Py

Cauchy = C13 − C55 − 8.63 − 7.94
(GPa)
Pz

Cauchy = C12 − C66 7.44 9.5
(GPa)

Pauling’s definition of the ionicity, Ledbetter was able to show
strong evidence that the Poisson coefficient increases with the
ionicity in body-centered cubic compounds with tetrahedral
coordination. We can notably see in his review that ZnTe has
a larger ionicity than GaSb and that the Poisson coefficient
of the first compound is close to 0.3 compared to 0.247 in
the second compound.54 As can be seen in Table III, we have
found a slightly larger powder-averaged Poisson coefficient
in ZnSb (0.252) than the one of GaSb. This observation
strongly supports the bonding analysis done by Benson et al.,27

who have shown that the bonding characteristics of ZnSb
are closer to those of GaSb than to those of the more ionic
compound ZnTe, indicating that the bonding in ZnSb is much
more covalent than ionic. This last result is also supported by
recent spectroscopic data.55 Our finding also indicates that the
II–V family is very close to the III–V family concerning the
chemical bonding but with a lower directional character since
the bulk moduli are similar, but the shear modulus of ZnSb is
smaller than the one of GaSb.

The larger value of C22 compared to C11 and C33 indicates
that the bonding is strongest in the y direction. Therefore,
the previous data indicate that the y direction is the “hardest”
direction for stretching processes but the “softest” direction
for the shearing. Conversely, the x direction is the softest
direction for stretching stresses but the hardest direction for
shearing. The z direction has an intermediate behavior with a
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bulk modulus slightly larger than the one along the x direction
and a shear modulus slightly smaller than the one along the y

direction. The Cauchy pressure can also give some information
about the nature of the bonding. However, the situation is still
not completely clear when discussing the relation between the
Cauchy pressure and the nature of the bonding. Indeed, if it
has first been shown theoretically that the Cauchy pressure
induced by an electron gas has to be positive, at least in the
cubic case56,57 (this has been confirmed in most of the cubic
metals). Experimental works have also shown the possibility of
a slightly or strongly negative Cauchy pressure in, respectively,
Iridium44,49 and rare-earth or actinide metals.53 However, this
is certainly related to the f electrons for these last metals,
whereas for Iridium, it has been suggested that its unusual
properties are related to the presence of strongly directional
bonds.49 It is well known also that semiconductors with
diamond structure such as Si, C, and Ge have a large and
negative Cauchy pressure,58 which is related to the highly
directional character of the bonds in these materials.56

Thus, the suggestion by Pettifor56 that compounds with
a positive Cauchy pressure tend to have metalliclike bonds
and that compounds with a negative Cauchy pressure have
directional bonds is still qualitatively true. Concerning the
ionic compounds, they can have both a large positive Cauchy
pressure (AgI) or a large negative Cauchy pressure (MgO).58,59

However, it should be noted that in the case of more covalent
intermetallic compounds, the Cauchy pressure has a strong
tendency to decrease when ionicity decreases (see, e.g.,
Refs. 54 and 58). Therefore, from the previous discussion,
it seems that for cubic intermetallic tetrahedral covalent
compounds, the smaller the Cauchy pressure is, the smaller the
Poisson coefficient is. This behavior occurs when the ionicity
decreases and the Poisson coefficient and the Cauchy pressure
are the smallest for highly directional bonds.

If this analysis of the Cauchy pressure can be extended to
lower symmetry compounds, as suggested elsewhere,60 this
could be helpful for a better understanding of the nature of
bonds in low symmetry complex materials such as ZnSb.
However this analysis should be taken with care. In ZnSb, the
Px

Cauchy is slightly negative and the Py
Cauchy is negative and

relatively large, whereas the Pz
Cauchy is positive and relatively

large. It is interesting to note that the Cauchy pressure is
slightly negative in GaSb ( − 3.1 GPa), whereas it is relatively
large and positive in the more ionic ZnTe compound (9.7 GPa).
Thus, the previous comparisons confirm the conclusion drawn
previously that ZnSb is a relatively covalent compound like
GaSb. It is also worth noting that when the directions y and z

(with the negative Cauchy pressure) are implied, one observes

the lowest values of the Poisson coefficients. This observation
confirms that the Cauchy pressure and the Poisson coefficients
are related.

If, as discussed previously, the observation of a negative
Cauchy pressure means that the bonds are more directional
and less metallic, then the bonds in the y direction have a
higher angular character than the bonds in the other directions.
Conversely the bonds in the z direction have a more metallic
character. It is interesting to see that the electrical conductivity
σz in the z direction is the largest, whereas the electrical
conductivity σy and hole mobility μhy in the y direction are
the smallest.8,12 This is consistent with the previous discussion
and can also be related to the electronic band structure shown
in Fig. 2. Indeed, in the �Y direction, the band gap is much
larger than in the �X and �Z directions, and in addition the
band dispersion is smaller in the �Y direction. Therefore, the
mobility must be lower in the �Y direction, in agreement
with experiments, and the effective mass of the charge carriers
along that direction must be larger. We note that in CdSb, which
has a similar band structure than ZnSb, it was found that the
m∗

y effective mass is significantly larger than the other two
effective masses.12 Thus the anisotropy in the band structure
can explain naturally the lower electrical conductivity and can
also be related to the higher angular character in the y direction.
However, it is more difficult to discuss the differences between
the x and z directions solely from the band structure.

D. Lattice dynamics and thermal properties

As ZnSb crystallizes in a primitive orthorhombic structure
with eight ZnSb formula units per primitive unit cell, there are
48 different types of vibrational modes in the primitive unit
cell. At � point, these vibrational modes can be decomposed
in irreducible modes as follows:

�vib = �ac + �opt, (2)

with �ac = B1u + B2u + B3u and �opt = 6 Ag + 6 B1g + 6
B2g + 6 B3g + 6 Au + 5 B1u + 5 B2u + 5 B3u.

Since the Ag, B1g, B2g, and B3g are Raman active modes,
there are 24 Raman modes; since the B1u, B2u, and B3u are
infrared active modes, there are 15 infrared modes. The Au

modes are silent modes.
In Tables V and VI, we report, respectively, the Raman and

infrared modes calculated at the � point. We also show the
experimental results of Smirnov et al.61 Our results agree rea-
sonably well with these results for the infrared TO (transverse-
optic) modes, with nevertheless a frequency downshift of about
5–10%. This is essentially due to the overestimation of the

TABLE V. Energies of the calculated Raman-active vibrational modes compared with the experimental
values (Ref. 61) (in wave number).

Symmetry modes (cm−1) Ag B1g B2g B3g

Calculations 55.26, 76.13, 61.92, 87.27, 48.34, 99.71, 76.26, 86.06,
82.32, 161.96, 120.22, 159.66, 121, 143.92, 113.93, 155.21,
165.98, 189.64 172.82, 177.04 169.13, 188.73 162.45, 183.45

Experiment (Ref. 61) 37.5 (very weak), 53, 66, 53, 107, 179 52, 175
53, 61, 82, 107, 173 150 (shoulder), 178
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TABLE VI. Energies of the calculated infrared-active and silent vibrational modes compared with the experimental values of the
infrared vibrational modes (Ref. 61) (in wave-number).

Symmetry modes (cm−1) Au B1u B2u B3u

Calculations 34.67, 45.56, 58.87, 52.41, 54.64, 38.79, 57.57, 58.66, 62.2,
91.99, 152.61, 118.62, 141.63, 109.83, 120.04, 153.96,
184.81 175.87 140.4,183.9 172.55

Experiment (Ref. 61) Silent mode 58, weak shoulder above 58, 121, 154, 189 44, 61, 119, 195 66, 123, 166, 184

cell volume in the relaxation calculations. Concerning the
comparison with Raman experiments, the agreement is not as
good. Above 150 cm−1 it is clear that the observation of broad
peaks at about 170–180 cm−1 in the calculated spectrum can
be easily explained by the combination of two or three peaks
expected in that energy range. We note the presence of a very
low energy Ag mode with a weak intensity at about 37.5 cm−1

in the experiment, which is absent in the calculations. However,
the calculations predict a silent mode at about this energy.
Also, we note the experimental observation of Raman modes
at about 53 cm−1 for the B1g and B3g symmetry and that no
modes with these symmetries are predicted by the calculations
at these energies. For these three cases, our best explanation is
that the selection rules are probably relaxed by the presence of
defects and particularly Zn vacancies (see next section). Recent
Raman experiments on polycrystalline samples42 confirm the
presence of a low energy peak at 40 cm−1. Other peaks are
observed at 47 and 54 cm−1 and also a broad and asymmetric
peak at about 173 cm−1: this can be easily deduced from our
calculations. New polarized Raman experiments and inelastic
neutron scattering (INS) experiments on ZnSb are needed
to definitely conclude about this low energy Raman mode
observed at about 40 cm−1 (5 meV).

In Fig. 4 we show the phonon dispersion curves and the
phonon DOS obtained in our calculations for ZnSb. As can be
seen from Tables V and VI, the optic mode with the lowest
energy has Au symmetry and is optically silent and therefore
has a different symmetry than the acoustic modes close to
the Brillouin zone center. However, the three following modes
have B2u, Au, and B2g symmetry and the first mode is the most
susceptible to mix with the acoustic mode that has the same
symmetry. The acoustic modes at the Brillouin zone boundary
and these four low energy optic modes are at the origin of the
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FIG. 4. (Color online) Phonon dispersion curves (different colors
correspond to different symmetries) and total phonon density of states
of ZnSb.

two low-energy peaks at 5.3 and 5.8 meV found in the phonon
DOS.

Belash et al.62 in their INS study of amorphous Zn-Sb
compounds have also studied a sample in which they have es-
timated to have 86%-at. of orthorhombic ZnSb. In this sample
they see a clear peak in the INS spectrum at about 6.5 meV.
Given that the instrumental resolution is about 2 meV in their
experiment, their result agrees well with our calculations. Here
again, we see that our calculations seem to underestimate
slightly the energy of the lattice vibrations by about 10%,
as discussed previously for the IR experiments. However it
is necessary to make new INS experiments with both higher
instrument resolution and broader energy range to confirm that
and to permit a fine comparison between the phonon DOS and
the lattice dynamics of ZnSb and Zn4Sb3 in order to understand
the main reason of the very small thermal conductivity of
this last compound (about 1 W/m.K).2 However, we note
that the thermal conductivity of ZnSb is already relatively
small (about 3 W/m.K) and even comparable with the ones of
filled skutterudites.1,4 As in these last compounds, we observe
the presence of low energy optic modes, but in ZnSb the
presence of these modes is simply due to the complex crystal
structure of orthorhombic ZnSb. Schweika et al.63 have done
INS experiments on Zn4Sb3 and found that this compound
has also a feature slightly above 5 meV, as in ZnSb. Recently,
a more accurate position of this peak at about 7 meV was
found by a combination of INS experiments and inelastic x-ray
scattering on the 121Sb nucleus.64 This is interesting given
the high similarity between the two crystalline structures and
the presence of Sb2 dimers in both cases, as has been noted
by several other authors23,65 and also confirmed for ZnSb in
Sec. III B, where we find a strong bonding between Sb atoms.
Since these Sb2 dimers and the low energy modes at about
5–7 meV are present in both compounds, the very small
thermal conductivity in Zn4Sb3 must have a different origin
and is probably due to the large amount of disorder and
defects in this last compound, as suggested in the literature.1,4,6

However, as can be seen in Fig. 5 where the partial phonon
DOS is plotted, one sees that the low energy peaks imply
equally the Zn atoms and the Sb atoms. This excludes the
possibility that the low energy modes at about 5 meV are due
to the rattling of the Sb2 dimers, at least for ZnSb. This is also
confirmed by our preliminary mode analysis: clearly, the origin
of the features at 5–7 meV in the phonon DOS is much more
complicated. This calls for further experimental investigation
in both Zn-Sb compounds, but we believe that our conclusion
can also be extended to Zn4Sb3.

From the knowledge of the phonon DOS, we are able
to calculate the thermodynamic properties and notably the
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FIG. 5. (Color online) Partial phonon density of states for Sb and
Zn atoms of ZnSb.

vibrational heat capacity at constant volume CV and the
vibrational entropy S. The results are reported in Figs. 6 and 7
together with experimental results from Refs. 13 and 14. Below
150 K, the calculations agree very well with the experiments,
and above 150 K most of the difference can be accounted
for by a contribution that grows linearly with the temperature
[the a1T (fit of the data of Ref. 13) and a2T (fit of the data of
Ref. 14) contributions to the experimental heat capacity curves
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to the temperature is needed to reproduce the experiments (see text
for details). Inset: plot of the calculated CV /T 3 and experimental
CP /T 3 vs T .
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FIG. 7. Calculated entropy compared to experimental results
[full squares (Ref. 13), hollow circles (Ref. 14)].

in Fig. 6]. In our calculations only the harmonic contribution at
constant volume (CV ) has been considered, which explains the
disagreement with constant pressure (CP ) experiments above
150 K. Indeed other contributions to CP have to be taken into
account:

CP = Charm
V + C

QH
V + Canharm

V + Cdefects
V , (3)

where the first term, Charm
V , is the harmonic contribution

at constant volume and this is the contribution we have
calculated; the second term, C

QH
V , is the contribution due to

volume change, i.e., the quasiharmonic contribution; the third
term, Canharm

V , is the purely anharmonic contribution; the last
term, Cdefect

V , is the contribution from the defects. The second
term can be calculated from66

C
QH
V = (

BMV α2
V

)
T , (4)

where BM is the bulk modulus, V is the molar volume, and
αV is the volume thermal expansion. The thermal expansion
is necessary to evaluate this term but there is no report of its
value. However, the lattice Grüneisen parameter, �, is related
to the thermal expansion by the following relation:66

� = BMαV V/CV . (5)

From our ab initio calculations it is possible to evaluate �

and thus αV (because we have already determined BM and CV )
from the fit of the EOS with two different analytical formulas.
In the first case we are using a relation implying dB/dP

determined by fitting the energy vs volume curve with the
Vinet EOS (see previous discussion). In that case we can use
the crude Dingdale and Mcdonald approximation as follows:66

�DM = −1/2 + (1/2)dB/dP. (6)

This way, we find �DM = 2.175. We can also use
the semiphenomenological EOS determined by Anton and
Schmidt:67

E(V ) = E∞ + βV0

n + 1

(
V

V0

)n+1 (
ln

(
V

V0

)
− 1

n + 1

)
, (7)

with β being the bulk modulus at equilibrium and n = 1/6
− �AS. In that case, we find �AS = 1.99 and the same value
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of the bulk modulus than when using the Vinet EOS. We note
that these two values are significantly higher than for most
of the thermoelectric materials and even than for Zn4Sb3 for
which Caillat et al. found � = 1.572 [in a recent work an
even smaller value (� = 1.35) has been found64]. In the case
of filled skutterudites such as RFe4Sb12 that have roughly the
same lattice thermal conductivity than ZnSb above 300 K,
we have found previously � = 1.5 for the lattice Grüneisen
parameter close to room temperature.68

Thus, it seems that our calculated �DM and �AS are
probably overestimated and are the upper bounds for the
lattice Grüneisen parameter. This is certainly due to the
very crude approximation used to determine the Grüneisen
parameter: the relatively large errors in the determination of
the fitting parameters in the fit of the EOS, the overestimation
of the lattice parameters, and the anisotropy of the Grüneisen
parameter that we have not taken into account. Therefore, we
will overestimate the thermal expansion in Eq. (5) as well as
C

QH
V in Eq. (4). Since �AS has a smaller value and closer to

the one found in other thermoelectric materials, we think it is
more realistic than �DM, and we will therefore use �AS in the
following. Finally using the calculated heat capacity at 300 K
together with the bulk modulus obtained from the EOS, we
find αV = 6.5 × 10−5 K−1 from Eq. (5). Experimental data
are not available for the thermal expansion of ZnSb to permit a
comparison. However, we note that the previous value is much
larger than the value found for Zn4Sb3 (αV = 3 × 10−5 K−1)
by Nakamoto et al.,69 and this is again an indication that we
probably overestimate the thermal expansion by determining
it using Eqs. (5) and (6). If we try to calculate the value of
C

QH
V in using the thermal expansion calculated from Eq. (5),

we find a high temperature slope of 0.053, which is too small
compared to the slope extracted from the data of Ref. 13 (the
slope is 0.08) and almost three times smaller than the slope
obtained from Ref. 14 (the slope is 0.15). Because the value of
the thermal expansion we have used is an upper boundary of
the thermal expansion, as discussed previously, we can infer
that in all cases there must be an additional linear contribution
to the heat capacity above 150 K.

We have tried to estimate the contribution from the defects
(in our case the vacancies, see the next section) using the
following semiphenomenological formula that was found to
work well in the case of aluminium:70

Cdefects
V = Nkbe

�S/kb(E/kbT )2eE/kbT , (8)

where E and �S are, respectively, the formation energy and
the formation entropy of a zinc vacancy. We consider only this
defect as it is the most stable one (see following section). Even
by considering unreasonably high values for �S, we find that
the contribution of Cdefects

V is negligible at room temperature
and below.

Having eliminated the other possibilities, we have to
examine the case of the anharmonic contribution, which is
given as follows for the two smallest order terms70–72:

Canharm
V = −T δ2(F3 + F4)/δT 2 = 3RBT, (9)

where F3 is the first-order cubic term of the free energy and F4

is the first-order quartic term of the free energy. Because both

terms have a T 2 temperature dependence, their contribution
to the specific heat is linear with the temperature. At least in
metals, the F3 term is generally negative, whereas the F4 term is
generally positive. Therefore, when one finds a large positive
linear term due to anharmonicity in the specific heat above
room temperature after subtraction of the quasiharmonic term,
this means that the cubic term F3 is larger than the quartic
term F4. We believe that this is the case here in ZnSb and
that the observation of a large anharmonic contribution to the
heat capacity has to be related to its low thermal conductivity.
However, in order to estimate with reliability the value of the
anharmonic term B, it is necessary to have much more accurate
heat capacity data and also to perform thermal expansion
experiments in order to estimate both � and C

QH
V .

For the entropy, the agreement is better than for the
heat capacity because the calculated harmonic entropy alone
reproduces very well the experimental data. It is interesting to
note that if we plot our calculated heat capacity as CV /T 3 vs
T , we find a maximum at about 13 K (see inset in Fig. 6). This
is what would be expected in the case of a simple Einstein
model with an Einstein energy of about 5.4 meV. This energy
corresponds to the two low energy peaks found in the phonon
DOS at about 5.5 meV, as discussed previously. Therefore, in
the case of ZnSb, the observation of an Einsteinlike behavior
in the heat capacity has nothing to do with the presence of
an Einstein mode. Note that a similar value for an Einstein
mode has been found for Zn4Sb3 in fitting the experimental
heat capacity with combined Debye and Einstein models.63

This is probably due to the similarities between the phonon
DOS of ZnSb and Zn4Sb3 at low energy, which are related to
the proximity of the crystal structure of the two compounds, as
discussed previously. From the knowledge of the phonon DOS,
it is possible to calculate the tensor of the ADP Uij (i, j = x, y,
z) of the different atom types in a given crystal structure.35 We
show the averaged Uij for the zinc and antimony atoms in the
ZnSb structure at 300 K in Table VII. It is worth noting that
the diagonal elements of the ADP tensor are the same for all
the atoms of a given type, whereas this is not the case for the
three off-diagonal elements Uzx , Uyz, and Uxy . Indeed, exactly
as in the case of the electronic properties, the ADP off-diagonal
elements are the same only for pairs of Zn and Sb atoms.

How can we interpret these results concerning the off-
diagonal elements of the ADP? The observation of different
off-diagonal elements of the ADP and the observation of
different electronic DOS for atoms that are in equivalent
Wyckoff positions could mean that in fact the symmetry of our
ZnSb sample is lower than orthorhombic and that there could
be a very small internal distortion that lowers the symmetry.
Since the atoms are located in sites of very low symmetry
(in fact they are located in the general Wyckoff positions
of the Pbca space group, which explains why off-diagonal
elements of the ADP can be nonzero), the distortion should
probably lead to a triclinic symmetry. We cannot exclude a
possible calculation artefact, but as mentioned previously, we
have carefully checked our calculations and we systematically
find that the atoms go by pairs that have different properties:
ADPs, electronic, and vibrational properties [we find indeed
also small differences in the phonon DOS (not shown) for the
different atomic pairs]. From an experimental point of view,
this possibility could be checked only with high precision
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TABLE VII. Averaged anisotropic atomic displacement parameters Uij = 〈uiuj 〉(i,j = x, y, z) of zinc and antimony
atoms for the ZnSb structure.

Atom type Uxx (Å2) Uyy (Å2) Uzz (Å2) Uyz (10−4Å2) Uzx (10−4Å2) Uxy (10−4Å2)

Zn 0.0229 0.0184 0.02 − 0.34 1.12 0.29
Sb 0.0121 0.0134 0.0141 − 0.35 1.14 0.29

diffraction experiments on single crystals. Actually, there is
only one experimental work in which the ADPs have been
determined.73 This was done from a Rietveld refinement of an
x-ray pattern of a powder sample in which only the isotropic
ADPs Biso (Biso = 8π2Ueq with Ueq = 1/3 �Uii) have been
determined and assuming full occupancy of the atom sites.
Therefore this experimental result has to be taken with caution
when comparing with our calculations. At room temperature,
Mozharivskyj et al. have found Biso = 1.5(1) Å2 for the Zn
atoms and Biso = 1.28(5) Å2 for the Sb atoms,73 whereas
we find Biso = 1.58 Å2 for the Zn atoms and Biso = 1.02
Å2 for the Sb atoms. This is a reasonable agreement between
experiments and simulations taking into account the previous
comments. Better experiments, such as high resolution neutron
diffraction experiments, are needed in order to make an
in-depth comparison with our results, especially concerning
the anisotropy of the ADP parameters.

To further explore the properties of the phonons in ZnSb
and to compare with the ones of Zn4Sb3, we have calculated
the Debye temperature (D) from the averaged sound velocity
(vD) obtained with our calculations and also with the experi-
mental data of Ref. 40 by using the following equation:

D = h

kB

(
3

4πVa

)1/3

vD, (10)

where h and kB are, respectively, Planck’s and Boltzmann’s
constant and Va is the atomic volume. The average sound
velocity in polycrystalline systems, vm, is evaluated by

1

v3
D

= 1

3

(
1

v3
l

+ 2

v3
t

)
, (11)

where vl and vt are the mean longitudinal and transverse sound
velocities, which can be related to the shear and bulk moduli:

vl =
(

3B + 4G

3ρ

)1/2
and vt =

(
G

ρ

)1/2
. (12)

In this equation we are using the powder-averaged shear
and bulk moduli, GH and BH , as determined previously with
Hill’s procedure. As can be seen in Ravindran’s work,41 this
procedure gives correct values in the case of the orthorhombic
structure.

We have also calculated the Debye temperature from the
zero-point vibrational energy E0 per unit cell by using the
following relation:66

0
D = (9E0/8nR), (13)

where R is the gas constant and n the number of atoms per
unit cell.

From our calculated heat capacity, we can also calculate the
Debye temperature C

D from the T 3 dependence of the heat

capacity at low temperatures and using74

C
D = (12π4R/5β)1/3, (14)

where β is the coefficient of the T 3 term of the heat capacity
at low temperature. We find a value of 209.3 K. This value
is smaller than the one obtained from the elastic constants
(236.1 K) and much smaller than the one obtained from
the zero point vibrational energy E0 = 0.0209 eV/at. (i.e.,
0

D = 272.8 K). Ravindran et al.41 have already observed
the same tendency between C

D and D obtained from the
elastic constants in the case of orthorhombic TiSi2. These
differences are not unexpected since the values of the Debye
temperatures obtained from different definitions/experiments
are expected to be different although close (a discussion of
this aspect is beyond the scope of the present paper and the
reader can find more information about this observation in the
review of Barron et al.66). The important point is to compare
experiments and calculations of the same Debye temperature,
as is done below in the case of the one calculated from the
elastic constants.

The experimental values from Ref. 40 (D = 253 K) and
Ref. 14 (D = 208 K) are respectively larger and smaller than
the calculated value obtained from the elastic constants (D =
236.1 K). As discussed previously, the value found in Ref. 40 is
the most reliable. We would like to stress that our calculations
are done at 0 K, while the Debye temperature D is obtained
from ultrasonic experiments performed at room temperature;
this can explain a part of the difference between calculations
and experiments. However, as we have seen previously, the
main origin of the differences between our calculations and
the experiments is the larger volume found in our relaxation
calculations, which decreases the value of the sound velocity
and also of the Debye temperature.

In the next step we aim to estimate the thermal conductivity,
κ , using a very simple model considering only Umklapp
scattering in order to see if this mechanism can be the
dominant scattering mechanism of the phonons. We use
the following formula employed in the case of Zn4Sb3 by
Caillat et al.:2

κ = AMat(Vat)
1/32

D

/
(n1/3�)2, (15)

where Mat is the average atomic mass, Vat is the atomic
volume, D is the Debye temperature, A is a constant equal
to 3.17 × 107 s−3 K−3, n is the number of atoms in the
unit cell, and � is the Grüneisen parameter. If we want to
determine the thermal conductivity from our calculations, we
need the Grüneisen parameter. Thus, we use the Grüneisen
parameter estimated from Eq. (7) with the fit of the EOS
with the Anton-Schmidt formula for the reasons discussed
previously.
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TABLE VIII. Calculated longitudinal, transverse, average sound velocities, and Debye temperature of ZnSb compared
to the experimental values of ZnSb and Zn4Sb3 (Refs. 2, 40, and 74).

vl [m/s] vt [m/s] vD [m/s]  [K]

ZnSb (calculation, this work) at 0 K 3643.92 2095.87 2370.65 236.1
ZnSb (experiment) 3911.67 2245 2538.17 253 (Ref. 40)
Zn4Sb3 (experiment) 3590 2080 2310 237 (Ref. 2)

3952 2190 2470 249 (Ref. 74)

Using this value of �AS = 1.99 and the Debye temperature
calculated from the elastic constants, we find κ = 1.93 W/m.K.
If we use the experimental volume and the Debye temperature
derived from the experimental elastic constants,40 we find κ =
2.21 W/m.K. These values are about two times smaller than
the measured values (κ = 3–4 W/m.K).4,8,10 However, as
discussed previously, we have used an overestimated value
of the Grüneisen parameter determined in an unusual manner,
and therefore we need to have a more reliable determination
of the Grüneisen parameter for ZnSb. If we use the same
Grüneisen parameter as for Zn4Sb3 (i.e., � = 1.57 [Ref. 2] or
1.35 [Ref. 65]), we find κ = 3.1 or 4.19 W/m.K if the other
parameters are the calculated parameters and we find κ = 3.51
or 4.75 W/m.K if we use the experimental parameters. As
can be seen, a better agreement with the experimental thermal
conductivity is found in the last cases and this confirms that �

is probably closer to 1.5 than to 2. Therefore, we think that it
is necessary to determine with a good accuracy the Grüneisen
parameter of ZnSb in order to definitely make a conclusion.
Nevertheless, we note that we find the good order of magnitude
when we calculate the thermal conductivity using the Umklapp
mechanism and a Grüneisen parameter similar to the one of
Zn4Sb3, and this shows that this mechanism is a good candidate
to explain the relatively low thermal conductivity of ZnSb.
Finally, it is worth noting that from the comparison between
Balazyuk’s ultrasonic results for ZnSb and recent ultrasonic
experiments for Zn4Sb3

75 (see Table VIII ), the sound velocity
and the Debye temperature of ZnSb and Zn4Sb3 are very
similar. This observation together with the very similar phonon
DOS below 10 meV in the two materials suggests the following
reason to explain the lower thermal conductivity of Zn4Sb3. If
the previously suggested Umklapp mechanism was the main
mechanism of phonon scattering, it would mean that the main
reason for the lower thermal conductivity in Zn4Sb3 is the
larger number of atoms in its unit cell. However, the disorder
and the number of defects are much higher in Zn4Sb3 than in
ZnSb.1,4,73 Since this disorder and these defects induce an ad-
ditional scattering mechanism of the heat-carrying phonons in
Zn4Sb3 compared to ZnSb, this provides a natural explanation
of the lower thermal conductivity observed in Zn4Sb3.

This last proposal also explains naturally why nanostructur-
ing ZnSb is very efficient to reduce the thermal conductivity of

ZnSb towards values observed in Zn4Sb3, as shown recently
by several groups.18,19 Indeed, these groups were able to obtain
thermal conductivities as low as 1.4–2 W/m.K with a grain size
of a few tens of nanometers. There is, however, still a potential
to further decrease the lattice thermal conductivity of ZnSb by
decreasing further the grain size and/or increasing the point
defect scattering because these values are still three to four
times larger than the minimum lattice thermal conductivity
κmin, which is about 0.51 W/m.K at room temperature (κmin =
1/3 CV vm d with d = 2.732 Å being the mean calculated
interatomic distance76).

E. Defect stability

Defects such as vacancies, antisites, and interstitial atoms
were inserted in the 2 × 2 × 2 supercell. The formation energy
of a particular defect in ZnSb in eV/defect can be calculated
from the following equation:

ED = �HD(ZnSbD) − �H0(ZnSb)

xD

, (16)

where �HD(ZnSbD), �H0(ZnSb), and xD are, respectively,
(1) the formation enthalpy calculated (in eV/atom) for the

2 × 2 × 2 supercell of ZnSb containing the corresponding
defect,

(2) the formation enthalpy calculated (in eV/atom) for the
2 × 2 × 2 supercell of ZnSb without the defect, and

(3) the concentration of the defects in the 2 × 2 × 2 supercell
of ZnSb.
The first two values are calculated using Eq. (1).

With this procedure we have determined the stability of the
different types of intrinsic defects in ZnSb. Since ZnSb is a
p-type intrinsic semiconductor, its most stable defects should
be either zinc vacancies V Zn, antisites SbZn (Sb on a zinc site),
or interstial Sb, I Sb. The results of our calculations are reported
in Table IX. We find that the most stable defect is indeed V Zn.
This result agrees well with Calphad assessment of the ternary
Zn-Cd-Sb phase diagram recently done in our group5,77 and by
experimental observations done by Mozharivskyj et al.73 We
find that the most stable (Zn,Cd)Sb phases are rich in Sb and
have Zn/Cd vacancies. The domain of existence of the Sb-rich

TABLE IX. Calculated formation energy of the native point defects of ZnSb.

Defect type V Zn V Sb SbZn ZnSb I Sb IZn

Defect formation energy (eV/def.) 0.8 1.82 1.37 1.5 2.31 1.41
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FIG. 8. (Color online) Total electronic DOS of Zn64Sb64

(supercell without defect) and Zn63Sb64 (supercell with one Zn
vacancy).

(Zn,Cd)Sb phases is found to be larger when the temperature is
increased. To confirm that Zn vacancies induce a p-type doping
in ZnSb, we have calculated the corresponding electronic
DOS. As can be seen in Fig. 8, the effect of one vacancy
in the Zn sublattice (in a supercell containing 127 atoms) is to
down shift the Fermi level 0.32 eV below the Fermi level of
the perfect supercell, confirming thus that the presence of V Zn

induces p-doping in ZnSb. Note that from the aforementioned
Calphad study, it seems that this conclusion can be extended
to all the compounds with Zn1−xCdxSb composition. We
therefore claim that the most stable defects in CdSb are Cd
vacancies, and this is confirmed experimentally.78 In the search
of optimized thermoelectric properties of ZnSb (and related
compounds) by doping, one has to consider the possible effect
of these vacancies that can compensate the effect of the inserted
impurities. This is particularly true for donor-type impurities,
which can explain the difficulty to design n-type ZnSb-based
materials.

IV. CONCLUSION

Our first-principles calculations of the physical properties
of orthorhombic ZnSb are in good agreement with previous
calculations done recently in the literature. We show that
electronically not all Zn (Sb) atoms are strictly equivalent.
This is confirmed by the vibrational properties and the atomic
displacement parameters.

The analysis of the Poisson coefficient and the Cauchy
pressure is in agreement with the relatively strong covalent
character of the bonding in ZnSb. We find that the elastic
properties have a relatively small anisotropy in good agreement
with experiments and that the bonds along the b-direction are
the strongest. The elastic constants are comparable to those
of other good high temperature thermoelectric materials, and,
therefore, from a mechanical point of view, ZnSb can be used
for high temperature thermoelectric applications. We have
found the presence of low energy vibrational modes in the
phonon DOS whose interactions with the acoustic phonons
could explain the relatively low thermal conductivity of ZnSb.
The thermal conductivity could be further decreased to values
observed in Zn4Sb3 by nanostructuring ZnSb, as some first
results have shown.18,19 Finally, we have shown that the most
stable defect in orthorhombic ZnSb is the Zinc vacancy, which
explains naturally why it is intrinsically p-doped. This must
be taken into account when ZnSb is doped, especially for
n-doping, in order to avoid undesirable compensation effects.

The “good” physical properties listed previously added to
its better stability, and its ability to be n-doped in contrast
to Zn4Sb3 explains why orthorhombic ZnSb is a promising
thermoelectric material even though still underestimated.
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64A. Möchel, I. Segueev, H.-C. Wille, F. Juranyi, H. Schober,
W. Schweika, S. R. Brown, S. M. Kauzlarich, and R. P. Hermann,
Phys. Rev. B 84, 184303 (2011) and references therein.
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