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Role of strong spin-orbit coupling in the superconductivity of the hexagonal pnictide SrPtAs
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In clean inversion symmetric materials, spin-orbit coupling is not thought to have a pronounced effect on
spin-singlet superconductivity. Here we show that, for the recently discovered pnictide superconductor SrPtAs,
this is not the case. In particular, for spin-singlet superconductivity in SrPtAs, strong spin-orbit coupling leads to
a significant enhancement of both the spin susceptibility and the paramagnetic limiting field with respect to that
usually expected for spin-singlet superconductors. The underlying reason for this is that, while SrPtAs has a center
of inversion symmetry, it contains weakly coupled As-Pt layers that do not have inversion symmetry. This local
inversion-symmetry breaking allows for a form of spin-orbit coupling that dramatically effects superconductivity.
These results indicate that caution should be used when interpreting measurements of the spin susceptibility and
the paramagnetic limiting field if superconductivity resides in regions of locally broken inversion symmetry.
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Spin-orbit coupling (SOC) has emerged as a central
interaction in condensed matter physics. It plays an important
role in creating topological insulators1 and in understanding
spin transport.2 Furthermore, it has been found to play a role
in superconductivity in three contexts: SOC appears relevant
to the recently observed increase of the superconducting Tc

of thin films by a magnetic field3 (the origin of this increase
is not yet understood); impurity spin-orbit scattering has been
shown to lead to a finite spin susceptibility in dirty spin-singlet
superconductors at zero temperature;4 and in materials that
lack a center of inversion symmetry, SOC is important to
understand the response of superconductors to magnetic fields.
However, when inversion symmetry is present, the role of
SOC on clean spin-singlet superconductors is not thought
to be particularly noteworthy. In this Rapid Communication
we show that this is not the case. In particular, we show
that in the recently discovered inversion-symmetric pnictide
SrPtAs,5 SOC has a pronounced effect on the superconducting
properties.

The superconducting pnictides6 present a fascinating class
of materials that highlight the interplay between electronic
correlations, superconductivity, and magnetism in a multi-
orbital system.7 SrPtAs is a member of this family with a
unique feature: The As-Pt atoms in a single layer form a
honeycomb lattice (see Fig. 1). This is in contrast to previously
studied pnictide superconductors that contain square lattices.
Unlike the square lattice pnictides, the honeycomb lattice
layers in SrPtAs do not have inversion symmetry. The broken
inversion symmetry inherent to a single As-Pt layer has
nontrivial consequences. In particular, assuming that SrPtAs
is a spin-singlet superconductor, we predict a nonvanishing
spin susceptibility at zero temperature with a magnitude that
is a significant portion of the normal state spin susceptibility.
We further show that it is likely to have a critical field that
is larger than the paramagnetic limiting field. This behavior
is not expected for tetragonal pnictide superconductors, for
which the individual As-Fe layers contain a center of inversion

symmetry. Our results highlight that such measurements are
not sufficient to distinguish spin-triplet and spin-singlet pairing
in materials for which superconductivity resides in regions that
do not locally have inversion symmetry.

SrPtAs has a superconducting transition temperature Tc =
2.4 K and the resistivity shows metallic behavior.5 The unit
cell of SrPtAs contains two inequivalent As-Pt layers that are
related by inversion symmetry (see Fig. 1). As mentioned
above, a single As-Pt layer does not have a center of inversion
symmetry. This allows for a particular form of SOC that exists
in each layer. As shown below, this SOC is larger than the
interlayer coupling. We therefore consider SrPtAs to be a
superconductor with local inversion-symmetry breaking. We
use this term to refer to the fact that physical properties usually
associated with noncentrosymmetric superconductivity appear
in SrPtAs, despite the presence of a center of inversion
symmetry. For spin-singlet superconductors, these properties
include an enhanced paramagnetic depairing field and a
nonvanishing spin susceptibility at zero temperature.8–18 In
the following, we initially present the electronic structure of
SrPtAs and then turn to an examination of the superconducting
state in this material.

First-principles calculations were performed using the
highly precise full-potential linearized augmented plane wave
(FLAPW) method.19 We have used the experimental lattice
constants a = 4.24 Å and c = 8.98 Å (Ref. 20) and a cutoff of
186 eV for basis functions. The local density approximation
(LDA) is used for the exchange correlation as parametrized by
Hedin and Lundqvist,21 and SOC has been calculated using
a second-variational treatment.22 Figures 2 and 3 show the
results of LDA calculations with and without SOC. Energy
bands near the Fermi level originate from Pt 5d and As 4p

orbitals. Specifically, the Fermi surface sheets labeled a and b

in Fig. 3(a) stem from Pt dxy , dx2−y2 , As px , and py orbitals
while that labeled c stems from Pt dxz, dyz and As pz orbitals.
Our results without spin-orbit coupling agree with those of
Ref. 23. Note the qualitative changes when SOC is added. In
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FIG. 1. (Color online) (a) Structure and (b) Brillouin zone in
SrPtAs. Red, blue, and gray spheres denote Pt, As, and Sr atoms,
respectively.

particular, the spin-orbit coupling leads to appreciable changes
in the band structure along the symmetry lines of H -A and
L-H . Also of relevance is the difference between the bands
along the symmetry lines H -A-L and K-�-M when there is
no SOC (Fig. 2). This difference is due to interlayer coupling
between the As-Pt layers. This coupling vanishes for symmetry
reasons in the plane given by kz = π/c. The band structure
reveals that the band splittings due to SOC are comparable to
or larger than those due to interlayer coupling. This fact plays
an important role in the superconducting state.

To understand the bands stemming from the LDA calcula-
tions, it is useful to consider initially a single As-Pt layer. A
key point is that this layer does not have a center of inversion
and, therefore, a SOC of the form

Hi
so = αi

∑
k,s,s ′

gk · σ ss ′c
†
ksicks ′i (1)

exists, where c
†
ksi (cksi) creates (annihilates) an electron with

momentum k and pseudospin s in layer i, σ denote the Pauli
matrices, and αi is the layer i SOC energy. Time-reversal
symmetry imposes gk = −g−k. Invariance of the Hamiltonian
under the mirror symmetries with normals along the z axis and
along the Pt-Pt bond imply that g(kx,0,0) = g(kx,0,π/c) = 0
(here a Pt-Pt bond is taken to be along the y axis). This reveals
itself for bands along the A to L direction in the Brillouin
zone, where there is no spin-orbit splitting [see Fig. 3(b)].
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FIG. 2. (Color online) Energy bands of SrPtAs (a) without and
(b) with SOC. Zero energy represents the Fermi level. Indices a, b,
and c in (a) represent the three bands crossing the Fermi level.

FIG. 3. (Color online) Cross sections of the Fermi surface of
SrPtAs with and without SOC. (a) [(b)] is for kz = π/c and no SOC
(with SOC), while (c) [(d)] is for kz = 0 and no SOC (with SOC).
Indices a, b, and c in (a) represent the three bands crossing the Fermi
level.

Within a tight-binding approach, we find gk = ẑ
∑

i sin(k ·
T i), where T i are the translation vectors T 1 = (0,a,0), T 2 =
(
√

3a/2,−a/2,0), and T 3 = (−√
3a/2,−a/2,0). This form of

SOC can be found for all bands stemming from Pt d orbitals
by including hopping to neighboring As p orbitals and by
including on-site SOC for both As and Pt sites. Symmetry
also allows for gx and gy to be nonzero. However, these must
be odd in kz and, within a tight-binding analysis, are only
found by including hopping along the z axis. Given the much
weaker dispersion of the bands along kz relative to the in-plane
dispersion, we expect that gx and gy are much smaller than gz

and we will only include gz in the following.
The analysis above applies to a single As-Pt layer. The two

inequivalent As-Pt layers are related by inversion symmetry,
and consequently αi is of opposite sign for the two layers,
i.e., αi = (−1)iα. To complete the description for the solid,
a coupling between the two inequivalent layers is required.
We take this to be εc(k) (symmetry requires this to vanish for
kz = π/c). Provided there are no band degeneracies other than
spin and layer degeneracies, a generic Hamiltonian for SrPtAs
is then

H0 =
∑

k

�†(k){[ε1(k) − μ]σ0τ0 + α(k)σzτz

+ Re[εc(k)]σ0τx + Im[εc(k)]σ0τy}�(k), (2)

where �(k) = (ck↑1,ck↓1,ck↑2,ck↓2)T , σi (τi) are Pauli
matrices that operate on the pseudospin (layer) space,
and α(k) = αgz(k). This Hamiltonian can be diagonal-
ized with the resulting dispersion relations ε±(k) = ε1(k) ±√

|εc(k)|2 + α2(k) and each state has a twofold Kramers
degeneracy. To gain an intuition for the terms appear-
ing in this Hamiltonian, we state the results for a sim-
ple tight-binding theory (note that below we keep these
terms arbitrary). This yields ε1(k) = t1(cos k · T1 + cos k ·
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T2 + cos k · T3) + tc2 cos(ckz) and εc(k) = tc cos(kzc/2)(1 +
e−ik·T3 + eik·T2 ) with Ti and α(k) given above.

Now we turn to the superconducting state for which we
show that the strong SOC is important. In the limit that the
interlayer coupling vanishes, we have two uncoupled noncen-
trosymmetric systems. It is known that in noncentrosymmetric
spin-singlet superconductors the spin susceptibility and the
paramagnetic limiting field are significantly enhanced, if
the SOC strength is much larger than the superconducting
gap.8–11,13,15 Given the large SOC compared to the interlayer
coupling, it is conceivable that the behavior of superconducting
SrPtAs resembles that of a noncentrosymmetric material.
For this reason we calculate both the spin susceptibility
and the limiting field assuming that SrPtAs is a spin-singlet
superconductor (this is a reasonable assumption comparing
with other pnictide superconductors).7 To be concrete we
assume intralayer s-wave pairing with an interaction

Hsc = −V
∑

k,k′,i,s,s ′
c
†
ksic

†
−ks ′ic−k′s ′ick′si, (3)

where, as is usual in the weak-coupling limit, the sums over k

and k′ are restricted to electronic states within an energy range
ωc of the Fermi energy and V is determined by the observed
transition temperature. Note that our results do not depend
qualitatively on the choice of s-wave pairing.

For a system described by the Hamiltonians (2) and (3), the
susceptibility in the superconducting and normal state can be
calculated using24

χs
ij = −μ2

BT
∑

n

∑
k

tr
[
σiG(k,ωn)σjG(k,ωn)

− σiF (k,ωn)σT
j F †(k,ωn)

]
, (4)

with G(k,ωn) and F (k,ωn) the normal and anomalous Green’s
functions in the Matsubara formulation. Note that even for this
“one-band” formulation, the Green’s functions are 4 × 4 matri-
ces, so that the trace runs over both layer and spin indices. In the
notation of the Hamiltonian (2) there are three bands crossing
the Fermi energy in SrPtAs [labeled a, b, and c in Figs. 2(a)
and 3(a)] and we can generalize the above expression to

χij =
∑

ν

χij (ν), (5)

where the sum runs over the three orbital bands ν = a,b,c.
Below we calculate the susceptibility χij (ν) separately for
each band ν using Eq. (4).

In the normal state, Fν(k,ωn) = 0, and we find for fields
parallel to ẑ,

χ0
z (ν) = 2μ2

B

∑
k,i=±

∂nF

[
εν
i (k)

]
∂εν

i

=
∑

k

χ0
P (k,ν), (6)

where nF (ε) is the Fermi distribution function as a function
of energy ε and χ0

p(k,ν) denotes a Pauli susceptibility for
band ν. This susceptibility describes intraband processes and
at low temperatures is proportional to the density of states at
the Fermi level. For fields in plane, we find

χ0
⊥z(ν) =

∑
k

{∣∣εν
c (k)

∣∣2
χ0

P (k,ν) + [αν(k)]2χ0
vV (k,ν)∣∣εν

c (k)
∣∣2 + [αν(k)]2

}
, (7)
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FIG. 4. (Color online) Spin susceptibility at T = 0 in the su-
perconducting state normalized with respect to the normal state
susceptibility for the three bands crossing the Fermi surface as a
function of αν/tν

c . The black squares denote approximate values for
these three bands. The tight-binding parameters used are (t1, tc, tc2,
μ): Band a (1.25,0.1,0.05,0.5); band b (1,0.1,0.05,2.5); and band c

(−0.48,0.075,−0.03,0.6).

where we introduced

χ0
vV (k,ν) = 2μ2

B

⎧⎨
⎩nF [εν

+(k)] − nF [εν
−(k)]√∣∣εν

c (k)
∣∣2 + [αν(k)]2

⎫⎬
⎭ . (8)

This contribution describes processes between the two pseu-
dospin and layer bands stemming from a single orbital band
(labeled by ν) and is thus referred to as the van Vleck
susceptibility. For the superconducting states in the limit√|εν

c (k)|2 + [αν(k)]2 � ν , we recover the expressions given
in Eqs. (6) and (7), where for the Pauli susceptibility, we
have to replace εν

±(k) with Eν
±(k) = √

[εν±(k)]2 + [ν]2. The
Pauli susceptibility contribution thus vanishes due to the
opening of the superconducting gap, while the van Vleck
susceptibility is unchanged by superconductivity, even at
T = 0. Consequently, χSC

z will behave as that expected for a
conventional spin-singlet superconductor while χSC

⊥z will have
a large spin susceptibility, even at T = 0. To demonstrate this,
Fig. 4 shows the ratio of χSC

⊥z (ν) in the superconducting phase
at T = 0 to the normal state in-plane susceptibility χ0

⊥z(ν)
as a function of αν/tνc for the three bands ν = a,b,c (where
αν is the spin-orbit strength and tνc is the interlayer coupling
strength). These values were determined using simple tight-
binding calculations for the three Fermi surface sheets a,b,c.
Estimating the ratios αν/tνc from the band structure, we find
values of χSC

⊥z (ν)/χ0
⊥z(ν) = 0.11,0.42, and 0.91 for the Fermi

surface sheet ν = a, b, and c, respectively. Consequently, we
expect that a sizable portion of the normal state susceptibility
will exist in the limit T → 0 for in-plane magnetic fields.
We note that related behavior has recently been predicted for
multilayer systems.25

The enhanced susceptibility suggests that the Pauli limiting
field will also be enhanced. To calculate this, we include the
Zeeman field HZ = ∑

k,s,s ′,i gμBH · σ s,s ′c
†
ksicks ′i and orient

the field in the basal plane. Within weak-coupling theory
and assuming

√
|εc(k)|2 + α2(k) � gμB |H| (which is well

supported by LDA results), we find the following expression
for Tc as a function of h = gμB |H|:

ln

(
Tc

Tc0

)
= −�

(
1

2

)
+ Re

{
1

2

〈
�

(
1

2
+ ih(k)

)〉
k

}
, (9)
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where

h(k) =
h|εc(k)|
2πkBTc√

|εc(k)|2 + α2(k)
, (10)

Tc0 is the transition temperature for h = 0, 〈f 〉k means an
average of f over the Fermi surface, Re means real part, and
�(x) is the digamma function. The band index ν is omitted
for brevity. In the limit where εc = 0, we find that Tc is
independent of h. This is in agreement with the result predicted
and observed for noncentrosymmetric superconductors in the
limit of large SOC.10,15 At Tc = 0, using Eq. (9), we find that
the Pauli limiting field is given by

�

(
1

2

)
=

〈
ln

∣∣∣∣∣ h|εc(k)|
2πkBTc0

√
|εc(k)|2 + α2(k)

∣∣∣∣∣
〉

k

. (11)

Using tight-binding calculations, we estimate that the enhance-
ment of the Pauli limiting field hP /hP 0 (where hP 0 is the
limiting field when α = 0) takes the values 1.1, 1.8, and 7.4
for Fermi sheets a, b, and c, respectively. Provided that the
orbital upper critical field is sufficiently large, an enhanced
Pauli limiting field should be observable. For fields along the
z axis, a usual Pauli suppression is expected.

We point out that, in addition to a spin-singlet pairing order
parameter, a spin-triplet order parameter component will also
appear.26 In particular, in a given layer a spin-triplet component
with d(k) along the direction of g(k) exists, such that it has an
opposite sign in the two inequivalent layers of SrPtAs. Using
the results of Ref. 26, we estimate that the size of the spin-
triplet order parameter component is a factor α/W smaller
than the spin-singlet order parameter (W is the bandwidth).
Consequently, this spin-triplet pairing will not qualitatively

change the results given above. We also note that the Cooper
pairs will in general have both spin-singlet and spin-triplet
parts even without any spin-triplet order parameter component.
This spin mixing of the Cooper pairs is included in the theory
presented above.

In the calculation above, we focused on a spin-singlet order
parameter. If the instability would occur in the spin-triplet
channel, the SOC would force the d(k) vector to lie parallel
to g(k).26 A magnetic field in the ẑ direction would therefore
be pair breaking, similar to the spin-singlet case. Thus, as
is also the case in noncentrosymmetric superconductors,11

measurements of spin susceptibility and the critical field of
SrPtAs do not suffice to distinguish spin-triplet and spin-
singlet pairing.

In conclusion, we have shown that the unique structure in
the pnictide SrPtAs has nontrivial effects on superconductivity.
In particular, the lack of an inversion center in the As-Pt
honeycomb lattice layers, combined with strong spin-orbit
coupling, allows a significant enhancement of both the Pauli
limiting field and the spin susceptibility for spin-singlet
superconductivity. SrPtAs provides an ideal example of a
material with inversion symmetry for which SOC can make a
pronounced effect on spin-singlet superconductivity.

We thank to Michael Weinert, Youichi Yanase, and Daisuke
Maruyama for useful discussions. M.H.F. acknowledges sup-
port from NSF Grant No. DMR-0520404 to the Cornell
Center for Materials Research and from NSF Grant No.
DMR-0955822. S.H.R. is supported by Department of Energy
Grant No. DE-FG02-88ER45382. D.F.A. is supported by
NSF Grant No. DMR-0906655. M.S. is grateful for financial
support by the Swiss Nationalfonds and the NCCR MaNEP.

*Corresponding author: agterber@uwm.edu
1M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
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