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Nonlinear effects in the Josephson-vortex terahertz photonic crystal: Second harmonic generation

A. Wall-Clarke and S. Savel’ev
Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom

(Received 20 April 2012; published 20 June 2012)

This paper considers nonlinear effects on the propagation of Josephson plasma waves in the Josephson-vortex
photonic crystal in layered superconductors with the possibility of exciting the second harmonic, tunable by
magnetic field. This would enable an increase in the operable frequency of THz superconducting devices such as
generators, detectors, and filters. We demonstrate numerically that the second harmonic can be strongly amplified
for certain resonance frequencies. The linear spectrum for the second harmonic has also been analyzed, finding
the possible resonance points with the first harmonic spectrum. An analytical approach describing a spatial
distribution of the THz Josephson plasma waves at and near the resonances is also developed.
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I. INTRODUCTION

Layered superconductors have been shown to be a useful
system for the generation and control of THz radiation
(see, e.g., reviews in Refs. 1–3). Consisting of a series of
superconducting layers, separated by insulating barriers, these
materials form a stack of Josephson junctions. Proposals have
been made for the use of these materials as emitters,4–15

detectors,16–20 filters,21–24 and other nonlinear and quantum
devices25–36 in the effort to bridge the THz gap. Recently, the
main experimental obstacle in the way of THz superconducting
electronics has been overcome. Coherent radiation above
1 μW has been produced37–40 from a crystal of BSCCO up
to 0.85 THz.

In order to control THz radiation in layered superconduc-
tors, Josephson vortices (JVs) can be used. For example, they
allow the filtering of THz radiation via coherent scattering of
propagating electromagnetic waves. Thus, a Josephson-vortex
lattice formed in layered superconductors in an applied mag-
netic field can serve as a THz photonic crystal for Josephson
plasma waves. Transparency of the THz photonic crystals can
be controlled21 by varying the applied magnetic field. Indeed,
the spectrum of the JV photonic crystal shows band-gap
structure as has been calculated.24 The gaps in the Josephson
plasma wave spectrum are tunable by an applied in-plane
magnetic field Hab. Namely, the JV lattice is created by the
in-plane magnetic field Hab parallel to the superconducting
layers, and the distance between Josephson vortices can be
readily changed by varying Hab. JVs act as scattering centers
for THz waves, forming a photonic band gap for frequencies
in this range which are strongly reflected. The JV photonic
crystal allows the propagation of waves above and near the
Josephson plasma frequency ωJ , which has been shown to be
within the THz range and tunable by magnetic field Hab as well
as the interlayer current J⊥. Moreover, dynamics of JVs and
THz Josephson plasma waves can be further controlled41–44 by
applying out-of-plane magnetic fields, which generate pancake
vortices inside superconducting layers, which can attract JVs.

The dynamics of JVs and THz radiation (Josephson plasma
waves) are governed by a coupled set of sine-Gordon equations
describing the phase evolution of the superconducting order
parameter in the material. The sine-Gordon equations have a
nonlinearity due to the Josephson nonlinear relation between
the superconducting current and electromagnetic fields. This

nonlinearity45 would affect the properties of the JV photonic
crystals particularly when considering high-intensity radiation
and/or frequency near the Josephson plasma frequency ωJ .
Following the analogy with nonlinear optics,46,47 a num-
ber of unusual effects can be expected in the nonlinear
Josephson media. Materials with nonlinear refraction index
have a response that varies according to the intensity of the
electromagnetic waves in a nonlinear way. Unusual effects
include higher harmonic generation, where the frequency of
the input signal is increased by an integer factor, self-focusing
of light, negative refractive index, sum-difference frequency
mixing, among others. The nonlinearity of the sine-Gordon
equation allows for the production of a second harmonic at
double the input frequency if a strong enough in-plane field is
applied. This would potentially increase the frequency range
of THz radiation propagating through the JV photonic crystal
if it could be understood how to excite this second harmonic.
The main goal of this article is to show how to drive and control
the second harmonic.

In Sec. II, the nonlinear equations for THz radiation in the
JV photonic crystal are derived. We develop a perturbative
approach to describe the generation of the second harmonic
of THz radiation tunable by a magnetic field. In other words,
we obtain solutions to these equations in terms of the first
and second harmonics, leaving two coupled equations for the
two harmonics only. In Sec. III, we solve these equations nu-
merically and demonstrate that there are resonance frequencies
where the second harmonic is strongly amplified. Section IV A
discusses the linear spectrum of the second harmonic using
Bloch wavelike solutions, comparing it to the first harmonic
and finding possible resonance points between the two. In Sec.
IV B, we propose an analytical approach to analyze the coupled
equations for the first and second harmonics in JV photonic
crystals and describe spatial distribution of the harmonics near
the resonances.

II. DERIVING THE NONLINEAR EQUATIONS FOR
FIRST AND SECOND HARMONICS

The structure of layered superconductors consists of thin
superconducting layers (in the xz plane for the coordinate
system used below) separated by normal barriers as shown in
Fig. 1. JVs created by the applied magnetic field Hab along
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FIG. 1. Layered structure of the Josephson vortex photonic
crystal, showing unit-cell boundaries on the x axis, and vortex cross
sections along the z axis.

the z axis form a triangular lattice with a high anisotropy
coefficient γ = dx/dy , where dx and dy are vortex spacings in
the x and y directions, respectively (typical distance between
layers is s = 15 Å, and anisotropy parameter is γ = 300–600;
see, e.g., Ref. 48).

The spatial and temporal variance of the interlayer gauge-
invariant phase difference ϕ of the order parameter for
layered superconductors is given by the coupled sine-Gordon
equations, which can be written in a continuous approximation
as (see, e.g., Ref. 1)

[
1 − λ2

ab
∂2

∂y2

](
1

ω2
J

∂2ϕ

∂t2
+ sin ϕ

)
− λ2

c

∂2ϕ

∂x2
= 0, (1)

where λc and λab are the out-of-plane and in-plane London
penetration depths, respectively. Here, we neglect the damping
term, which is valid for samples thinner than the skin depth
(about 0.3 mm for standard high-Tc superconductors). For
larger samples, dissipation of Josephson plasma waves should
be considered. However, the qualitative picture remains the
same since the distance between vortices (the characteristic
scale in Josephson-vortex photonic crystals) is much shorter
than the characteristic damping scale for magnetic fields (H �
�0/γ s2) considered here. In other words, Josephson plasma
waves scatter many times before they significantly decay if the
temperature is low enough.

Representing ϕ as a sum of the solution ϕ0 for JVs and the
solution ϕ1 for Josephson plasma waves (JPWs), we can write
ϕ = ϕ0(x,y) + ϕ1(x,y,t). Assuming ϕ1 � ϕ0, we can derive
a perturbative algorithm for calculation of THz JPWs by ex-
panding sin ϕ as sin ϕ ≈ sin ϕ0 + (cos ϕ0)ϕ1 − (sin ϕ0)ϕ2

1/2.
In the following, we follow the approach developed in Ref. 24,
thus, averaging Eq. (1) in the y direction (on the scale of the

order of the distance between nearest JVs), we derive[
1 − λ2

ab
∂2

∂y2

](
1

ω2
J

∂2ϕ1

∂t2
+ 〈cos ϕ0〉ϕ1 + 〈sin ϕ0〉

2
ϕ2

1

)

− λ2
c

∂2ϕ1

∂x2
= 0. (2)

Here, 〈sin ϕ0〉 and 〈cos ϕ0〉 are the average values of these
functions across the layers. The form of these functions is
discussed in Sec. III. So far,21–24 only the linear properties of
Eq. (2) have been discussed, ignoring the higher powers of ϕ1.
In order to analyze nonlinear properties of Josephson-vortex
photonic crystals, these higher-order terms need to be taken
into account.

After averaging along the y axis, the obtained equation
(2) does not contain variables t and y explicitly. In other
words, all coefficients are either constants or functions of
the x variable only. This suggests an idea that we can try
to find solution as a combination of waves ψn cos(nωt − nqy)
with amplitudes varying along the x axis directed inside the
crystal. Restricting ourselves with the first two terms in this
combination, the solution of Eq. (2) can be written as ϕ1 =
ψ1(x) cos(ωt − qy) + ψ2(x) cos(2ωt − 2qy). Substituting the
last expression in (2) and ignoring all terms consisting of higher
harmonics results in two coupled equations for the first and
second harmonics:

(〈cos ϕ0〉 − ω2)ψ1 − λ2
c(

1 + λ2
abq

2
)ψ

′′
1 = 〈sin ϕ0〉

2
ψ1ψ2, (3)

(〈cos ϕ0〉 − 4ω2)ψ2 − λ2
c(

1 + 4λ2
abq

2
)ψ

′′
2 = 〈sin ϕ0〉

4
ψ2

1 , (4)

where all frequencies are measured in units of ωJ .
Equations (3) and (4) are coupled, which allows for

feedback between the first and second harmonics. Both
equations take the form of a nonlinear Schrödinger equation in
the amplitudes of the harmonics. Here, the “potential” term is
described by cos ϕ0(x). The second term in the left-hand side
of Eqs. (3) and (4) can represent a kind of “effective mass”
of Josephson plasma waves in the JV photonic crystal. Here,
we would like to mention that our approach becomes incorrect
for large q � 1/s, i.e., for short wavelength along the y axis.
In this short-wavelength limit, a discrete version of coupled
sine-Gordon equations should be considered rather than their
continuous limit.

III. NUMERICAL SIMULATIONS

A. Reducing to 1D problem

An approximate vortex solution of the sine-Gordon equa-
tions in a layer containing a JV is given by49

ϕv
0 = π + 2 arctan

(
x

l0

)
. (5)

The phase change can be shown24 to decay quickly away from
the position of a JV both along and across junctions; this
means that the phase ϕ0 of the Josephson vortex lattice can be
approximated as a sum of the phase ϕv

0 of individual vortices.
This is valid for moderate magnetic fields. It is useful to define
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FIG. 2. (Color online) Graphs of cos ϕv
0 (x) (which defines the

effective potential in the equation for the first and second harmonics)
and sin ϕv

0 (which defines the interaction between the first and second
harmonics) in the layer of a vortex. To plot these functions, Eqs. (8)
and (10) were used.

a dimensionless magnetic field

hab = Hab

H1
(6)

given in terms of a characteristic field

H1 = 2�0

γ s2
, (7)

where �0 is the flux quantum. The above solution (5) for
vortices is only valid for hab � 1.

Using (5), the value of cos ϕv
0 (see Fig. 2) in the layer of a

vortex can be given by24

cos ϕv
0 = −x2 − l2

o

x2 + l2
o

. (8)

By averaging cos φ0 along the y axis, we finally derive

〈cos ϕ0〉 = − s

dy

∑
n

(
x − 2n+1

2 dx

)2 − l2
o(

x − 2n+1
2 dx

)2 + l2
o

. (9)

In a similar way, function sin ϕv
0 (see Fig. 2) in the vortex

layer can be expressed as

sin ϕv
0 = − 2lox

x2 + l2
o

. (10)

Averaging along the y axis results in the following equation:

〈sin ϕ0〉 = − s

dy

∑
n

2lo
(
x − 2n+1

2 dx

)
(
x − 2n+1

2 dx

)2 + l2
o

. (11)

Equations (3) and (4) together with effective 〈cos ϕ0〉 potential
(9) and harmonic 〈sin ϕ0〉 interaction (11) fully describe
propagation of the first and second harmonics of Josephson
plasma waves through Josephson-vortex photonic crystals.

B. Numerical integration

In order to study the spatial distribution of the first and sec-
ond harmonics described by the coupled equations (3) and (4),
a simple numerical integration of these ordinary differential
equations by using both Euler and higher-order multiderivative
methods has been used. We numerically integrate these
equations until the solution shows a “saturation behavior”

FIG. 3. (Color online) (a) Average second harmonic 〈ψ2
2 〉 as a

function of frequency for Q = d2
x (1 + λ2

abq
2)/λ2

c shown in the plot,
lo/dx = 0.2, ψ2(0) = ψ ′

2(0) = 0, ψ1(0) = 0.5, ψ ′
1(0) = 0.2, �x =

0.001. Resonance frequencies are shown as ω(1), ω(2), ω(3) near the
corresponding resonance peaks. Blue arrow and blue symbol ω(1)(Q)
show the dependence of the resonance frequencies on Q. (b) Shift
in resonance frequencies ω(1), ω(2), ω(3) as a function of Q. All other
parameters are the same as in (a).

and then measure the average value 〈ψ2
2 〉 [see Fig. 3(a)].

One can see sharp resonances where the second harmonic
considerably enhances. Changing wave vector q along the y

direction (i.e., changing JPW propagation direction) or varying
the in-plane magnetic field hab results in variations in Q and
in a shift in resonance frequencies [see Fig. 3(b)]. Thus, the
resonance amplification (or optimal generation) of the second
harmonic can be tuned by either the magnetic field or tilting
the superconductor with respect to the incident THz radiation.

To understand the origin of the observed resonances, we
plot a distribution of the second harmonic close and away from
resonances (Fig. 4). Away from the resonance (blue curve in
Fig. 4), the first harmonic generates a weak rather disordered
oscillation indicating that the spatial periods (wavelengths) of
these harmonics are not commensurate. In contrast, the spatial
oscillations of the second harmonic near the resonance are
very regular and the amplitude of the oscillation increases
at the resonance (black curve in Fig. 4). When analyzing
the envelope curve (inset in Fig. 4) at larger distances, we
observe that the second harmonic amplitude oscillates with a
quite large period. Finally, we conclude that these resonances
occur under certain matching conditions for the spatial periods
of the first and the second harmonics. Therefore, in order
to develop an analytical approach of the second harmonic
enhancement in THz Josephson-vortex photonic crystals, one
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FIG. 4. (Color online) Spatial distribution ψ2(x) of the second
harmonic near ω = 3.5 (black line) and away from ω = 2 (blue
line) the resonance ω(1) for Q = 0.09. The regular oscillation with
increasing amplitude is clearly seen near the resonance. By plotting
the amplitude of the oscillations (shown by red dashed curve in the
main panel), we observe oscillation of the second harmonic amplitude
at larger scales (see inset).

needs to consider cases when wavelengths of these harmonics
are commensurate.

IV. SOLVING THE NONLINEAR EQUATIONS

A. Linear spectra for the first and second harmonics

The linear spectrum for the first harmonic propagating
through Josephson-vortex photonic crystals has been obtained
in Ref. 24 by solving Eq. (3) with no second harmonic (ψ2 = 0)
and by seeking solution in the form of Bloch waves:

ψL1 = uL1(x)eik1x (12)

Here, k1 is the quasi-wave-vector of the first harmonic located
within the first Brillouin zone (−π/dx < k1 < π/dx), the
Bloch wave amplitude uL1(x) is a periodic function with period
dx [i.e., uL1(x + dx) = uL1(x)], while subindex “1” refers to
the first harmonic. In this section, we compare linear spectra for
the first and the second harmonics with a goal to locate possible
harmonic matching conditions. Using stepwise approximation
(see for detail Ref. 24) of 〈cos φv

0 〉, we can derive spectra for
both the first and second harmonics analytically. Indeed, the
linear spectrum for the second harmonic can be obtained in the
same way as for the first harmonic by ignoring the nonlinear
right-hand side of Eq. (4), then using a Bloch wave solution of
the form

ψL2 = uL2(x)eik2x (13)

for the linear part of Eq. (4) with zero right-hand side. Here,
a periodic function uL2(x + dx) = uL2(x) is the Bloch wave
amplitude, the quasi-wave-vector k2 is located in −π/dx <

k2 < π/dx , and subindex “2” refers to the second harmonic.
Applying periodic boundary conditions of the period of the
unit cell of the vortex lattice allows the spectrum to be derived
as follows:

cos(kdx) = cos αl1 cos βl2 − α2 + β2

2αβ
sin α l1 sin βl2. (14)

FIG. 5. (Color online) Comparison of spectrum of JPWs for the
first harmonic ω(k1) (shown in blue) and the second ω(k2/2) harmonic
(shown in green) for the case hab = 0.2, qs = 0.3π (when k1,2 is
normalized by 1/dx). To calculate these spectra, we use Eq. (14) with
α1,2 and β1,2 calculated for the first and second harmonics by using
Eqs. (15) and (16). The spectrum for the second harmonic shown
as a function of k2/2 rather than k2 in order to locate resonances
ω(k1) = ω(k2/2) discussed below.

Here, α and β take different values for the first and second
harmonics:

αn = k0(q)
√

n2ω2 − 1, βn = k0(q)
√

n2ω2 + π
√

hab − 1,

(15)

although the overall structure of both spectra remains the same.
Here, subindex n takes 1 or 2 and refers to the first harmonic
or the second harmonic, respectively, while k0 is defined by
the following expression:

k2
0 = 1 + n2λ2

abq
2

λ2
c

. (16)

The spectrum for the second harmonic as shown in Fig. 5
is very similar to the first harmonic and displays similar
photonic band gaps. The position of these band gaps is directly
proportional to the applied magnetic field. As we see in the
following, the matching condition for the first and the second
harmonics is k2 = 2k1. Therefore, we plot ω(k1) and ω(k2/2)
in order to locate the resonance points.

B. Resonance approximation for the harmonics

In the attempt to find analytical solutions to Eqs. (3)
and (4), it can be assumed that the nonlinearity is weak
and defines slowly varying harmonic amplitudes A1,2, which
change over a much larger scale than the vortex-lattice period.
This approach has been successfully used for the analysis of
optical nonlinear photonic crystals.50 Here, we plan to apply
this method for our two harmonic Josephson plasma waves
propagating through Josephson-vortex THz photonic crystals.
Following the approach in Ref. 50, we have to introduce the
first and the second harmonic amplitudes A1 and A2:

ψ1 = A1�L1, ψ2 = A2�L2, (17)

where the subindices refer to the first and the second harmon-
ics, respectively. Here, we assume that A1 and A2 are slowly
varying amplitudes of �L1 = Re(ψL1) and �L2 = Re(ψL2),
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which are the solutions of the linear part of Eqs. (3) and (4) (i.e.,
solutions without the nonlinear terms in the right-hand side).
To solve nonlinear equations (3) and (4), we have to replace
complex representation of Bloch waves ψL1 = uL1e

ik1x and
ψL2 = uL2e

ik2x by their real parts (representing the real
function solution of the same equations) as follows:

�L1 = Re(ψL1) = u1 cos k1x − v1 sin k1x,
(18)

�L2 = Re(ψL2) = u2 cos k2x − v2 sin k2x,

where u1 = Re(u1L), v1 = Im(u1L) and u2 = Re(u2L), v2 =
Im(u2L). This should be done due to problems arising when
using the complex wave solutions in the nonlinear equations
(3) and (4). The real functions u1,2 and v1,2 are periodic
with one cell period, while functions cos(k1x), sin(k1x) and
cos(k2x), sin(k2x) are periodic with the period of the wave-
lengths λ1 = 2π/k1 and λ2 = 2π/k2 of the first and the second
harmonics, respectively. In order to simplify calculations
below, we assume that |A1,2|/|dA1,2/dx| � λ1,2 � dx .

Substituting Eqs. (17) and (18) into (3) and (4), two
equations for the nonlinear amplitudes can be obtained:

�
′
L1A

′
1 = − q2

γ 2

〈sin ϕ0〉
2

�L1�L2A1A2, (19)

�
′
L2A

′
2 = − q2

γ 2
〈sin ϕ0〉�2

L1A
2
1, (20)

where we neglect terms that are proportional to A′′
1,2. Now, we

have to notice that there are three different spatial scales in this
problem. The shortest one is the size dx of the Josephson THz
photonic crystal cell. If considering the wave vectors k1,2 of
the first and the second harmonics to be not very close to the
Brillouin zone boundary ±π/dx , then the wavelengths of these
harmonics are much larger than the cell size dx , but they are still
much smaller than the characteristic scale |A1,2|/|dA1,2/dx| of
variations of the harmonic amplitudes if nonlinearity is weak
enough. So, we can average Eqs. (19) and (20) in two stages:
First, we can average Eqs. (19) and (20) within the photonic
crystal cell (on scales dx) by assuming that both A1,2 as well as
cos k1,2x and sin k1,2x are slow functions; then, we can average
once more over cos k1,2x and sin k1,2x by assuming that only
A1,2 are slow. Following this procedure (see Appendix), we
derive equations for amplitudes which are valid in resonance
points k2 = 2k1:

A
′
1 = I1A1A2, (21)

A
′
2 = I2A

2
1, (22)

where I1 and I2 are not functions of x and are defined by the
integrals

I1 =−q2
∫ L

0 dx〈sin ϕ0〉[μ1(u1u2 + v1v2) + η1(u1v2 − v1u2)]

4γ 2
∫ L

0 dx
(
μ2

1 + η2
1

) ,

(23)

I2 = −q2
∫ L

0 dx〈sin ϕ0〉
[
μ2

(
u2

1 − v2
1

) + 2η2u1v1
]

2γ 2
∫ L

0 dx
(
μ2

2 + η2
2

)
with μj = u′

j − kjvj , ηj = v′
j + kjuj , and j = 1 or 2.

Since I1 and I2 are constants, we can analytically calculate
the distribution of the harmonic amplitudes. By dividing
Eq. (21) by (22) and separating A1 and A2, an integrable

FIG. 6. (Color online) (a) Harmonic amplitudes versus normal-
ized distance x/dx from the sample surface. Solid curves were
obtained by simulations of coupled equations (3) and (4) for the
first and the second harmonics at ω = 3.49 and other parameters
to be the same as in Fig. 4. Dashed curve is the solution in
the resonance approximations (27) and (28) for

√
I1I2 = 0.0036

and
√

I2/I1 = 0.65. (b) Harmonic amplitudes distribution for the
second type of the resonance described by Eqs. (29) and (30) with√

I2/I1 = 0.5.

expression can be obtained:

A1A
′
1 = I1

I2
A2A

′
2. (24)

In order to integrate this expression, we have to use boundary
conditions: the second harmonic is zero A2(0) = 0 at the
sample boundary (x = 0) since we assume that it is generated
by the first harmonic in the sample rather than coming from the
vacuum, while A1(0) = A0. In other words, the first harmonic
amplitude is set to A0 and the second harmonic amplitude is set
to zero at the vacuum-crystal interface. By integrating Eq. (24),
we derive an expression linking A1 and A2 as follows:

A2
1 = I1

I2
A2

2 + A2
0. (25)

Equations (21) and (22) can now be decoupled using Eq. (25),
resulting in

A
′
2 = I1A

2
2 + I2A

2
0. (26)

The form of the solutions, though, depends strongly on
the signs of the integrals I1 and I2. When integrals have the
same signs (e.g., I1 > 0, I2 > 0), the solutions for the first and
second harmonic amplitudes can be written as

A1(x) = A0sec(A0

√
I1I2x), (27)

A2(x) = A0

√
I2

I1
tan(A0

√
I1I2x). (28)
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FIG. 7. (Color online) Harmonic amplitudes versus normalized
distance x/dx from the sample surface. Solid curves were obtained
by simulations of coupled equations (3) and (4) for the first and the
second harmonics at ω = 3.5 (i.e., near the resonance) and other
parameters to be the same as in Fig. 4. Dashed curve is the solution
in the near-resonance approximations (33) and (34) for

√
Ĩ1Ĩ2/δk =

0.015,
√

Ĩ2/Ĩ1 = 56, α = 0, and δk = 0.004.

These solutions [called type-I resonance, Fig. 6(a)] diverge
at distance x = π/(2A0

√
I1I2). For the case when I2 and

I1 have different signs (e.g., I2 < 0, I1 > 0), the solutions
[type-II resonance, Fig. 6(b)] have no singularities:

A1(x) = A0sech(A0

√
I1|I2|x), (29)

A2(x) = −A0

√
|I2|
I1

tanh(A0

√
I1|I2|x). (30)

By varying frequency near the resonance ω(2) in our simula-
tions of Eqs. (3) and (4), we observe the divergence of 〈ψ2

2 〉
at ω = 3.49, indicating that we have type-I resonance point.
An attempt to fit the simulations by our analytical formulas
(27) and (28) results in a quite good quantitative agreement
[Fig. 6(a), solid versus dashed curves].

For frequencies close (but not exactly satisfying) to the res-
onance conditions (i.e., δk = 2k1 − k2, |δk| � k2), we derive
(see Appendix) the following set of equations:

A
′
1 = Ĩ1A1A2 cos(δkx + α1), (31)

A
′
2 = Ĩ2A

2
1 cos(δkx + α2) (32)

with constants Ĩ1,2 and α1,2. If α1 = α2, this equation can
be easily solved. For instance, for α = 0 we can write the

following solutions:

A1(x) = A0sec(A0

√
Ĩ1Ĩ2 sin(δkx)/δk), (33)

A2(x) = A0

√
Ĩ2

Ĩ1
tan(A0

√
Ĩ1Ĩ2 sin(δkx)/δk) (34)

for Ĩ1,2 cos(α1,2) > 0. These solutions can be used to fit
(Fig. 7) amplitude oscillations obtained in our simulations
(see inset in Fig. 4). A good fit (Fig. 7, dashed versus solid
curves) of our analytical and numerical results shows that
a generalization of the usual method describing nonlinear
photonic crystal (Ref. 50) allows us to quite accurately
describe the generation of second harmonic near the matching
resonances in Josephson-vortex THz photonic crystals.

V. CONCLUSIONS

The above simulations and analytical calculations suggest
that the second harmonic can be generated in the Josephson-
vortex photonic crystal within certain frequency ranges with an
amplitude that depends strongly on frequency. These second
harmonics can be strongly enhanced at resonances which
depend on the vortex-lattice period controlled by applied
magnetic field. The analytical approach proposed here quite
accurately describes the distribution of the first and second
harmonics near the resonances and suggests two different types
of the possible resonance points.

We would like to stress that the Josephson-vortex photonic
crystal allows more efficient control of the generation of
high harmonics of Josephson plasma waves. First of all, even
harmonics (including the second harmonic) can not be created
in a vortex-free sample due to the oddlike nonlinearity of the
sine-Gordon equation. Also, due to a band-gap structure of
THz Josephson plasma waves in Josephson photonic crystals,
multiple resonances occur when the linear spectra of the
first and the second harmonics of Josephson plasma waves
cross, which is not the case for vortex-free samples. These
resonances can be tuned by in-plane magnetic field, which
allows considerable enhancement of the second harmonic of
any desirable frequency, so we propose a nonlinear higher-
harmonic THz generator tunable by an applied magnetic field.

APPENDIX: EQUATIONS FOR HARMONIC AMPLITUDES

Multiplying Eqs. (19) by � ′
L1 and (20) by � ′

L2 and
averaging over one Josephson THz photonic cell, we derive

(Y1,1 cos2 k1x − 2Y1,2 cos k1x sin k1x + Y1,3 sin2 k1x)A′
1

= − q2

2γ 2
A1A2(Z1,1 cos2 k1x cos k2x − Z1,2 cos k1x sin k1x cos k2x + Z1,3 sin2 k1x cos k2x

−Z1,4 cos2 k1x sin k2x + Z1,5 sin k1x cos k1x sin k2x − Z1,6 sin2 k1x sin k2x), (A1)

(Y2,1 cos2 k2x − 2Y2,2 cos k2x sin k2x + Y2,3 sin2 k2x)A′
1

= − q2

γ 2
A2

1(Z2,1 cos2 k1x cos k2x − Z2,2 cos k1x sin k1x cos k2x + Z2,3 sin2 k1x cos k2x

−Z2,4 cos2 k1x sin k2x + Z2,5 cos k1x sin k1x sin k2x − Z2,6 sin2 k1x sin k2x), (A2)
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where

Yj,1 = 1

L

∫ L

0
(u′

j − vjkj )2dx,

Yj,2 = 1

L

∫ L

0
(u′

j − vjkj )(v′
j + kjuj )dx,

Yj,3 = 1

L

∫ L

0
(v′

j + kjuj )2dx,

Z1,1 = 1

L

∫ L

0
〈sin ϕ0〉(u′

1 − v1k1)u1u2dx,

Z1,2 = 1

L

∫ L

0
〈sin ϕ0〉[(u′

1 − k1v1)v1u2 + (v′
1 + k1u1)u1u2]dx,

Z1,3 = 1

L

∫ L

0
〈sin ϕ0〉(v′

1 + k1u1)v1u2dx,

Z1,4 = 1

L

∫ L

0
〈sin ϕ0〉(u′

1 − k1v1)u1v2dx,

Z1,5 = 1

L

∫ L

0
〈sin ϕ0〉[(u′

1 − k1v1)v1v2 + (v′
1 + k1u1)u1v2]dx,

Z1,6 = 1

L

∫ L

0
〈sin ϕ0〉(v′

1 + k1u1)v1v2dx,

Z2,1 = 1

L

∫ L

0
〈sin ϕ0〉(u′

2 − v2k2)u2
1dx,

Z2,2 = 2

L

∫ L

0
〈sin ϕ0〉(u′

2 − k2v2)u1v1]dx,

Z2,3 = 1

L

∫ L

0
〈sin ϕ0〉(u′

2 − k2v2)v2
1dx,

Z2,4 = 1

L

∫ L

0
〈sin ϕ0〉(v′

2 + k2u2)u2
1dx,

Z2,5 = 2

L

∫ L

0
〈sin ϕ0〉(v′

2 + k2u2)v1u1dx,

Z2,6 = 1

L

∫ L

0
〈sin ϕ0〉(v′

2 + k2u2)v2
1dx.

Now, we can assume that the amplitudes A1 and A2 vary slowly
also on scales of the order of the wavelength of the first and
the second harmonics, thus we can also average the derived
equations on the scale of L > max(2π/k1,2π/k2). Due to fast
oscillations of cos k1,2x and sin k1,2x, this averaging results
in trivial equations A′

1 = A′
3 = 0 for all k1 and k2 apart of

resonance points k2 = 2k1 where the coupling of the first and
the second harmonics are most efficient. In the resonance point
k2 = 2k1, we obtain(

Y1,1

2
+ Y1,3

2

)
A′

1 = − q2

2γ 2
A1A2

(
Z1,1

4
− Z1,3

4
+ Z1,5

4

)
,

(A3)

(
Y2,1

2
+ Y2,3

2

)
A′

1 = − q2

γ 2
A2

1

(
Z2,1

4
− Z2,3

4
+ Z2,5

4

)
.

(A4)

The approach discussed above also allows analyzing
spatial distribution of harmonics near the resonance δk =
2k1 − k2, |δk|/k2 � 1. In this case, we have to assume
that oscillations cos δkx and sin δkx are slow and keep
the corresponding terms in (A1) and (A2). All other spa-
tial oscillations can be averaged out. As a result, we
derive

(Y1,1 + Y1,3)A′
1 = − q2

4γ 2
A1A2[(Z1,1 − Z1,3 + Z1,5) cos δkx

+ (−Z1,2 + Z1,4 + Z1,6) sin δkx], (A5)

(Y2,1 + Y2,3)A′
1 = − q2

2γ 2
A1A2[(Z2,1 − Z2,3 + Z2,5) cos δkx

+ (−Z2,2 + Z2,4 + Z2,6) sin δkx]. (A6)

The above equations can be easily rewritten in the form
presented in the main text.
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