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NMR compared to band structure calculations of the quaternary superconductor La3Ni2B2N3−x
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We measured susceptibility and NMR spectra, spin-lattice, and spin-spin relaxation of 11B and 139La in
the quaternary superconductor La3Ni2B2N3−x and compare these experimental results to full potential density
functional theory band structure calculations. The electric field gradients (EFGs) at B and La sites clearly show
that the N vacancies are restricted to the N(2b) sublattice. Temperature-dependent susceptibility, Knight shift, and
nuclear spin-lattice relaxation T1 are successfully described within the Fermi-liquid model. The Hebel-Slichter
peak is suppressed in the mixed state and in the presence of paramagnetic impurities.
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I. INTRODUCTION

Quaternary superconductors with PbO-type NiB layers as
a common structure building element attracted considerable
interest in the wake of the high-Tc cuprates. The first
members of this family of superconductors with transition
temperatures up to 16 K were RNi2B2C (R = Rare Earth
and Y)1 and La3Ni2B2N3−x .2 More recently, the extended
family of materials with PbO-type layers gained large attention
with the discovery of high-temperature superconductivity
in Fe-pnictides and Fe-tellurides (see, e.g., Ref. 3). As
compared to other superconductors of this family, relatively
few experimental studies have been devoted to the nitride
La3Ni2B2N3−x because of its challenging preparation.4–6 A
new route to prepare essentially single phase material used
for the present investigation has been reported recently.7,8

Early investigations of YNi2B2C favored the existence of
antiferromagnetic (AF) fluctuations similar to the ones present
in the high-Tc cuprates.9–11 Later work of Suh et al. on a
single crystal, however, concluded that the susceptibility as
well as the NMR data can be understood within straightforward
Fermi-liquid theory with only small correlation energies.12

We report in this work that the same is true for
La3Ni2B2N3−x by computing the band structure within full
potential density functional theory (DFT) using the Wien2k
code,13 and comparing the resulting Pauli susceptibility to
the experimental susceptibility, and the electric field gradients
(EFGs) at 11B and 139La to the ones observed by NMR.
We discuss the Knight shift and spin-lattice relaxation (T1)
data above Tc, and briefly comment on the absence of the
Hebel-Slichter peak at the transition to the superconducting
state as a result of spin diffusion in the presence of Rare-Earth
(RE) impurities.

II. DFT AND ELECTRIC FIELD GRADIENTS

La3Ni2B2N3−x crystallizes in the space group I4/mmm
(No. 139) with one formula unit per primitive unit cell. The
structure may be visualized as NiB layers with Ni in 4d and
B in 4e positions separated by LaN (or RC). Figure 1 shows
that there are three LaN layers between NiB in La3Ni2B2N3−x ,
leading to two different positions for La (2a, 4e) and N (2b, 4e)

each. The central layer is absent in YNi2B2C. Our attempts to
influence the carrier concentration by adjusting the number of
nitrogen vacancies in this layer revealed a rather narrow range
(x = 0.06–0.1) for the variation of the nitrogen stoichiometry
in La3Ni2B2N3−x .14

Polycrystalline samples were grown following the proce-
dure described elsewhere.7,8 The samples were ground into
powders, the structure reported by Huang and co-workers4

was confirmed for our samples by x-ray diffraction with ion
positions given in Fig. 1. The fourfold axis ensures a vanishing
asymmetry parameter η of the EFG at all positions in a perfect
structure.

For band structure calculations we used full potential
density functional theory implemented in the Wien2k pro-
gram package with the generalized gradient approximation
functional of Perdew et al. for the exchange potential.15,16

Convergence criteria for self-consistency were energy, charge,
and the electric field gradients at B and La, which we compare
to the experimental data below. Note that DFT is a completely
different approach to calculating the EFG from first principles
than via charge distributions and Sternheimer (anti)shielding
factors from induced electric field gradients. The states of all
electrons in the Coulomb and exchange potential consistent
with the lattice symmetry are calculated self-consistently.
The EFG is derived from the resulting charge distribution.17

Relaxing the atomic positions in the structural model within
the DFT calculation moves the atoms in 4e positions only
by about 1% or less (La to 0.37073, B to 0.19650, N to
0.12578).

The NMR powder spectra shown in Fig. 2 together with
the simulated powder spectra for the electric field gradi-
ent tensors calculated for 11B (11I = 3/2,11γ /2π = 13.660
MHz/T, 11Q = 0.04 barn) and 139La (139I = 7/2,139γ /2π =
6.0146 MHz/T, 139Q = 0.2 barn)18 by DFT indicate that the
electronic structure calculated in this way without Ni on-site
Hubbard correction or spin-orbit interaction is already close
to the experimental one.

The NMR spectra clearly confirm the observation from
neutron diffraction that nitrogen vacancies are present in the
N(2b) positions of the central LaN layer but not in the layer
adjacent to NiB.4 The EFG at 11B, which is neighboring N(4e)
but is shielded from N(2b) by the LaN layer in between is very
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FIG. 1. (Color online) Crystallographic structure of
La3Ni2B2N3−x with atom positions in the I4/mmm space group,
multiplicities, and point symmetries.

homogeneous with η = 0. The observed quadrupole splitting
corresponds to Vzz = ±1.67 × 1021 V/m2 (the sign cannot
be determined by NMR). Comparison with Vzz = −1.64 ×
1021 V/m2 calculated for the perfect structure clearly shows
that the negative sign is the correct one. For the La spectra, on
the other hand, broadening from structural inhomogeneities is
evident with all six satellite lines folded into one broad nearly
Gaussian line at the same position as the central line.

We utilized two possibilities to approximately treat the
nitrogen vacancies within our band structure calculations.
Since the EFG at the B sites is experimentally homogeneous
throughout the sample, the virtual crystal approximation
should be sufficient to estimate the influence of the vacancies
on the electronic structure of the NiB layer tested by the
EFG at the B site. In our calculations with effective nuclear
charges for N(2b) down to Z = 6.4 (corresponding to x =
1 − 6.4/7 = 0.09, consistent with neutron diffraction14) the
absolute value of the calculated EFG increased only slightly
to Vzz = −1.69 × 1021 V/m2 which is slightly smaller than
the experimental value but well within any reasonable errors.
The weak dependence of the EFG on this doping is another
indication for the absence of charge transfer into the NiB layer.

The virtual crystal approximation keeps the perfect crystal
symmetry and is, therefore, clearly not suited to treat the
influence of the nitrogen vacancies within the LaN layers tested
by the EFG at the La sites. The simulated spectra (lines in
Fig. 2) show the La-2a and La-4e powder spectra calculated
from Vzz = 6.50 × 1021 V/m2 and Vzz = 2.85 × 1021 V/m2

determined by DFT for the structure without N vacancies.
They show the characteristic satellite peaks for η = 0 which
are absent in the experimental spectrum, but the order of
magnitude of the calculated Vzz clearly is correct. Already
the simulation with Vzz fixed at the calculated value for La-4e

and assuming a distribution of asymmetry parameters up to
η = 0.5 provides a reasonable description of the La spectrum
(dotted line). Such a distribution is in accord with La EFGs

FIG. 2. (Color online) NMR spin echo Fourier transform enve-
lope powder spectra (symbols) of 11B and 139La in La3Ni2B2N3−x at
T = 17 K. The lines are simulated spectra with parameters calculated
by DFT (see text).

taken from a DFT calculation of a small 2 × 2 supercell in a

and b directions centered at a nitrogen vacancy. Unfortunately,
structural relaxation of this supercell and larger supercells
are not practicable on the standard PC we used for these
computations. There are eight different La positions in this
supercell. The influence of a nitrogen vacancy on the EFG
at the five of them not neighboring the vacancy is rather
small. However, it leads to sizable asymmetry parameters
η = 0.2 and 0.5 for the two La neighbors where this becomes
allowed by point symmetry, and it increases the size of the
main component of the EFG by more than a factor of 3 at
its two nearest La neighbors. The calculation confirms the
experimental finding that the EFGs at the more distant B
sites are only slightly affected (below 10%) by the nitrogen
vacancies.

Electronic correlation effects may be estimated from DFT
by including an on-site effective correlation potential19 Ueff =
U − J , which we introduced for the Ni 3d electrons in the
structure model without vacancies. Increasing values of Ueff
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increase the absolute value of the calculated EFG at the B
site. Comparing the values with the experimental one we find
Ueff < 2.0 eV. When we take into account the influence of the
N vacancies discussed above a value Ueff ≈ 1.0 eV describes
our EFG data best. We note that this value is significantly
smaller than, for example, Ueff ≈ 5.4 eV for NiO.

III. SUSCEPTIBILITY AND DFT

We calculated the Pauli susceptibility corresponding to
the DFT results discussed above. Figure 3 shows that the
calculated density of states N (ε) near the Fermi energy εF

for La3Ni2B2N3−x in the perfect structure without nitrogen
vacancies is the same as reported in earlier band structure
calculations.20,21 It is seen that the Fermi energy is in the
center between Ni valence bands near −2 eV and empty La
conduction bands at approximately 3 eV. Four bands cross

FIG. 3. (Color online) Density of states of La3Ni2B2N3−x ,
x = 0.0, from DFT with total La, Ni, and (small) B contributions.
The second panel shows the dependency of the total DOS near εF = 0
on the N vacancy concentration in the virtual crystal approximation
with quadratic fits (lines). The enhanced B-2s and B-p partial DOS
for x = 0 is also shown.

FIG. 4. (Color online) dc susceptibility of La3Ni2B2N3−x in the
normal state measured at 5.85 T in a SQUID magnetometer (�: 4N-
pure La and isotope pure 11B precursors, ∇: NMR sample prepared
from commercial precursors). Inset: dc susceptibility of a different
sample measured up to 1000 K in a Quantum Design PPMS vibrating
sample magnetometer (commercial precursors). The red lines are
calculated from Eq. (1) with parameters from DFT (see text).

εF where a maximum in the density of states is situated
originating from a Ni d band which sits on top of a broad
band of mostly La(4e) character and contains a small amount
of B2s and Bp states. Introducing N vacancies within virtual
crystal approximation shifts εF at small concentrations to the
low energy side of this maximum without affecting the overall
band structure. At higher defect concentrations, however, a
narrow peak from La(4e) states just above εF shifts to higher
energies, changing the shape of N (ε) at the Fermi energy
significantly.

In Fig. 4 we compare the temperature dependence of
the dc susceptibility measured for different samples in a
SQUID magnetometer below T = 300 K, and in a vibrating
sample magnetometer up to T = 1000 K. We consider three
contributions to χ (T ) with different temperature dependence:

χ (T ) = C/T + χ0 + αχP (1 − DET 2). (1)

From the direct comparison in Fig. 4 between the sample
prepared with commercial La which was used for NMR
because of its well characterized superconducting properties,
and the one prepared from high purity (4N) La by Ames
MPC22 the first (Curie) contribution can be assigned to
Rare-Earth moments from impurities on the La sublattices. The
Curie-constant C of a fit displayed in the figure corresponds to
35 ppm Gd at La sites, similar to values reported elsewhere.11

This assignment is also consistent with the observation of an
increasing NMR linewidth with decreasing temperature in the
normal state. Such a temperature dependence of the linewidth
is expected from dipolar fields and RKKY interactions with
statistically distributed 4f moments.

The second contribution contains the core electron sus-
ceptibility and the orbital contributions from van Vleck and
itinerant Landau susceptibilities. We are not aware of a reliable
way to calculate these susceptibilities in a complex metallic
band structure as the present one and assume below only
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that they are independent of temperature. Experimentally we
observed a large scatter in χ0 from different samples which
we ascribe tentatively to variations in the defect structures
connected with the RE impurities and the N vacancies.
These defect contributions are compensated in the figure by
adding a temperature-independent diamagnetic contribution
(0.7 × 10−3 [10−6 m3/mol]) to the data for the sample prepared
with commercial precursors.

The third contribution is the (molar) free conduction elec-
tron spin Pauli susceptibility χP = μ0NAμ2

BN (εF ). The T 2

term with DE = (πkB )2

6 {[N ′(εF )/N (εF )]2 − N ′′(εF )/N(εF )}
with slope N ′(εF ) and curvature N ′′(εF ) of the total density
of states at the Fermi energy accounts for the softening of the
Fermi function with increasing temperatures.23 The (Stoner)
enhancement factor α accounts for electron correlation effects.

The line is the result from a fit to the impurity contribution at
low temperature, χP = 2.30 × 10−3 [10−6 m3/mol] and DE =
3.57 × 10−7 [K−2] calculated from the DFT band structure (in
the case x = 0.03 shown in Fig. 4), and a Stoner enhancement
α = 1/(1 − U/W ) ≈ 1.9 estimated from the calculated band-
widths W ≈ 2.2 eV and Ueff ≈ 1.0 eV discussed above. With
these rather crude assumptions the resulting susceptibilities
for x = 0.0 and x = 0.03 agree remarkably well with the
experimental one if the temperature-independent diamagnetic
contribution for the sample prepared from high purity La is
χ0 = −0.95 × 10−3 [10−6 m3/mol]. We note that this value is
close to χL = −χP /3, the diamagnetic Landau contribution
for quadratic dispersion. At larger x, the bands crossing εF

do not shift rigidly (compare Fig. 3) and the calculated χP

does not describe the experimental temperature dependence
any more.

In Fig. 5 we show the Knight-shift data for 11B and 139La
below 250 K which we compare with the susceptibility.
The vertical lines indicate the superconducting transition

FIG. 5. (Color online) Knight shift of 11B (B0 = 1.3 T, Tc =
13.4 K) and 139La (scaled, see text, B0 = 3.0 T, Tc = 10.5 K) below
250 K compared to the susceptibility calculated from DFT shown in
Fig. 4 according to Eq. (2) with (dotted) and without (line) impurity
contribution. The vertical lines indicate the transition temperatures,
the insets show that the B-central lines develop a double peak structure
in the field cooled mixed state below Tc.

onset temperatures Tc(1.3T ) = 13.4 K and Tc(3.0T ) = 10.5 K
determined by the onset of the diamagnetic shift from the
superconducting phase in our measurements of the 11B and
139La resonance, respectively. These values are in accord with
the ones reported elsewhere from susceptibility and specific
heat measurements.24 The upper inset shows that there is a
considerable inhomogeneous linewidth of 20 kHz FWHM at
T = 16 K just above Tc for the 11B resonance. Associated
with this inhomogeneous width is the observation of a large
π/2 − π− pulse spin echo which we utilized to measure the
spectra. The broadening has been ascribed above to dipolar
and RKKY contributions from RE impurities, which increase
with decreasing temperature since the expectation value of
the RE magnetization increases. An additional, temperature-
independent contribution to the linewidth is expected from
structural inhomogeneities associated with the presence of the
N vacancies. Finally, there are inhomogeneous dipolar fields
due to the demagnetizing fields of irregular shaped grains in
the overall spherical sample, and possibly a shift due to the
noncubic lattice symmetry.25 A direct comparison of single
crystal and powder spectra in the structurally related YNi2B2C
indicates that the dipolar shift from the noncubic lattice can
be neglected, and that on average spherical powder grains can
be assumed.11 A direct calculation of the lattice sum for Gd
moments on the La sites in a Lorentz sphere of La3Ni2B2N3−x

confirms that the shift due to the noncubic lattice can safely be
neglected.

We used 11B isotopic pure element as a reference and
corrected for the quadrupole shift of the central transition
in a field perpendicular to the main eigenaxis of the EFG
calculated by numeric diagonalization of the spin Hamiltonian.
No separate reference was measured for 139La, a reference
frequency 139fref calculated from the different γ and nominal
fields leads to 139K(T = 16 K) = 0.11%, a factor of 2 higher
than the values shown in Fig. 5. The data in the figure are
obtained by adjusting 139fref so that they coincide with 11K to
show that the temperature dependence is the same.

The absolute values and temperature dependence of 11K

closely resemble the ones reported for the B resonance
in YNi2B2C, where several authors observed an increasing
Knight shift with decreasing temperature. Our data for the
La resonance differ, however, from the ones reported for
Y in YNi2B2C in that 89K⊥(T = 16 K) ≈ 0.025% increases
with increasing temperature. This negative hyperfine coupling
has been attributed to an indirect coupling to the d-electron
magnetization via polarization of s electrons at the Y site.
The Y Knight shift shows a significant anisotropy due to
orbital contributions to the susceptibility, which we cannot
determine for La because suitable single crystals are not yet
available.

In the discussion above we described the susceptibility
by an impurity part, a temperature-independent contribution
χ0 summing up core and orbital susceptibilities, and a
temperature-dependent Pauli spin susceptibility. If we assume
a single hyperfine coupling 11A of the 11B nuclear spin
to the spins at the Fermi surface, and furthermore assume
that the impurities do not contribute to a line shift, we can
write the temperature-dependent shift as

11σ(T ) = σ0 +11 K(T ) = A0χ0 + 11AαχP (1 − DET 2), (2)
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with the hyperfine coupling constant A0 describing the
effective coupling to the temperature-independent part of the
susceptibility. The line in Fig. 5 shows a fit with the total
hyperfine coupling constant 11A = 2.5 [106 mol/m3] (=17.5
[T/μBNA]) and an offset σ0 = −1.05 × 10−4.

From Eq. (2) it is seen that the hyperfine coupling constant
is the ratio of the slope of the Knight shift with temperature to
the one of the susceptibility. It turns out that the slope of the
Knight shift is surprisingly large, resulting in a large hyperfine
coupling constant. Assuming that only B-2s electrons have an
appreciable spin density at the B nucleus one expects that the
Knight shift is dominated by the hyperfine coupling 11A2s to
their Pauli spin susceptibility χB,2s :

11K = 11A2sχB,2s . (3)

The Pauli spin susceptibility χi of any part of the electrons
is proportional to their partial density of states Ni(εF ),
χi = gμ0μ

2
BNi(εF )/4, so one can substitute (provided the

Lande factors g are equal) χB,2s = χP NB,2s(εF )/N (εF ) by
the experimental total Pauli spin susceptibility χP and solve
for the hyperfine coupling constant:

11A2s =
11K

χP

N (εF )

NB,2s(εF )
. (4)

With 11K(16 K) = 5.6 × 10−4 from Fig. 5, χP = 2.30
[10−9 m3/mol] in accord with DFT as discussed above,
N (εF ) = 5.65 [states/eV f.u.], NB,2s(εF ) = 0.0152 [states/eV
B], and 2 boron per formula unit (f.u.) we find 11A2s = 40 [106

mol/m3] (=280 [T/μBNA]). Assuming furthermore that the
amplitude of the 2s wave function at the B nucleus in the metal
is not very different from the atomic one, we can compare
this to the much smaller atomic hyperfine coupling 11A

(at)
2s =

1000 [kG/μBNA] = 14.0 [mol B/10−6 m3].25 A similar
discrepancy between the calculated temperature dependence
of the susceptibility and the Knight shift in YNi2B2C was left
unexplained by Suh et al..12

The Fermi contact hyperfine coupling constants can be
independently found from DFT in a spin resolved cal-
culation by solving the self-consistent field cycle with a
fixed spin moment as a boundary condition for the spin
distribution or, alternatively, by introducing a magnetic field as
an orbital potential within the muffin-tin spheres. We assume
that the self-consistent solution is an approximation for
the experimental field induced state in both cases. The up
and down spin densities in the volume of the B nucleus
as well as the resulting Fermi contact hyperfine fields of
the valence as well as the core electrons are calculated
separately.26 The distinction between both in the code is that
core electrons are well localized within an atomic muffin-tin
sphere and efficiently described by atomic wave functions,
while valence electrons contribute to the charge distribution
outside the atomic muffin-tin sphere and are described by
plane waves. For B in La3Ni2B2N3−x only B-1s is treated
as core orbital, B-p and B-2s are valence states and both
have a small contribution to the DOS at the Fermi energy.
The main contribution to the hyperfine field is from valence
electrons, the field from core electrons is opposite and six
times smaller. The Fermi contact coupling constant of B to
the valence spin moments is 11A(val) = 524 [kG]/[μBNA] =

7.47 [mol B/10−6 m3] independent of the method of the
calculation, fixed spin moment, or orbital potential.

This coupling constant to the boron valence electrons
compares favorably with the experimental value: Substituting
in Eq. (4) NB,2s(εF ) by the combined density of states of the
boron valence electrons 2NB,p+2s(εF ) = 2(0.0849 + 0.0152)
we get 11Ap+2s = 6.8 [mol B/10−6 m3] (=48 [T/μBNA]) from
the experiment.

The parabolic temperature dependence of χP fits the nearly
linear temperature dependence of the Knight shift not very
well. The poor description of the temperature dependence
suggests the influence of another temperature-dependent
contribution to the susceptibility with a significant hyperfine
coupling. No shift is expected from the dipolar fields of
randomly distributed Rare-Earth impurities, but this is in
general not true for the RKKY interaction, that is, the coupling
to the conduction band polarization σ (r) induced by magnetic
impurities at position r = 0. The polarization in a sphere
of radius R is proportional to JSzχP [1 − sin(2kF R)/2kF R],
where Sz is the bare moment of the impurity, J is the coupling
constant between S and the conduction electron spin, and kF is
the radius of the Fermi sphere. The dotted line in Fig. 5 results
in the assumption that the conduction band polarization of
neighboring RE ions does not cancel perfectly in this complex
band structure and that, therefore, the Curie susceptibility
couples indirectly to 11B with the hyperfine coupling constant
11A = 2.5 [mol B/10−6 m3] we determined from the ratio of
the average of the slopes [dK(T )/dT ]/[dχ (T )/dT ]. Addi-
tional work with better control of the impurity concentration
is in progress to clarify the situation.

IV. NUCLEAR SPIN RELAXATION

We measured the nuclear spin lattice relaxation rates 1/11T1

and 1/139T1 on the central transitions of the spectra shown in
Fig. 2 in the same field as the Knight shifts. For 11B a single
time constant in the standard Master equation27 describes
the relaxation in the four level system (I = 3/2) well at
temperatures above Tc, but it becomes rapidly worse with
the increasing linewidth in the inhomogeneous mixed state
below Tc (see insets Fig. 5). This is usually ascribed to the
influence of spin diffusion or inhomogeneous excitation and
gives rise to a relatively large error in the T1 data below Tc

shown in Fig. 6. In this situation the relaxation can frequently
be fitted to the phenomenological S(t) ∝ exp[−(t/τ1)β] with
a single relaxation time constant τ1 which replaces the
multiexponential decay of the Master equation by a stretched
exponential. We find β ≈ 0.85 above Tc, and values down
to β = 0.5 in the mixed state below. The inhomogeneities are
larger for the La resonance due to the neighboring N vacancies.
In addition, the relaxation behavior is more complex in this
I = 7/2 system. The fits with a single time constant and a
Master equation are, therefore, less reliable than for the B
resonance, but due to the different nuclear spin they still allow
a better comparison of the resulting time constants for 11B and
139La than the stretched exponential.

Figure 6 shows that for both isotopes a Korringa relation

1
iT1

= CKT αK (iγ iK(T ))
2 (5)
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FIG. 6. (Color online) Nuclear spin lattice relaxation rate of 11B
and 139La with fits (lines) to a Korringa law with a temperature-
dependent Knight shift calculated from Eq. (2). The inset shows
the low temperature regime for 11B with the Korringa law above
Tc = 13.4 K (line) and the exponential expected from BCS theory
below (dotted).

holds, where CK = (hkB)/(μ0μB)2 is the Korringa constant
for free electrons, iγ is the gyromagnetic constant of iso-
tope i = 11(B),139(La), iK(T ) =i AχP (T ) is the also isotope
specific, slightly temperature-dependent Knight shift from
the Pauli spin susceptibility without Stoner enhancement
as discussed above, and αK is a correction to account for
electronic correlations.28

For the boron resonance we insert the experimental 11A =
2.5 [106 mol/m3] from above and find αK = 0.11. The free
electron relaxation rate calculated with the Korringa relation
is, therefore, significantly larger than the experimental one.
Such a suppression of transverse fluctuations by electronic
correlations is a common observation in transition metal
systems. The factor of 8 we find here is, however, rather large
and could indicate some additional mechanism suppressing the
fluctuations. The relaxation rate of La is larger than the one
of B, showing that the smaller 139γ is overcompensated by a
stronger hyperfine coupling. In view of the strong influence
of the N vacancies we observed for the EFG at the La sites
we made no attempt to calculate 139A within DFT and only
note that within the virtual crystal approximation we found
both positive and negative 139A, depending on site, spin orbit
coupling, and the presence of a Hubbard potential U . Since
αK is a property of the electronic system we can estimate
139A = 11 [106 mol/m3] (= 77 [T/μBNA]) from the Korringa
relation observed for the La resonance.

Figure 6 shows that in the field cooled mixed supercon-
ducting state below Tc = 13.4 K (see Fig. 5) 1/T1 of B (as
well as La, not shown) drops without a Hebel-Slichter peak.
This behavior has been reported for other quaternary NiB
superconductors as well9,10,12 and is ascribed to nuclear spin
diffusion in the presence of a flux line lattice and Rare-Earth
impurities. The temperature dependence can be described by29

1

T1
= W0 + ae−�/T , (6)

where we fixed � to its BCS value 2� = 3.52Tc, set W0 =
0.45 [1/s] in accordance with the offset observed in a free
linear fit to 1/T1,B above Tc, and fitted only the amplitude
a = 2.6 [1/s].

The presence of a spin diffusion contribution even in the
normal state above Tc can also be inferred from the difference
between the spin-spin relaxation time T2H as observed in
the decay of a conventional Hahn echo, and the exponential
decay constant T2CP of the signal in a Carr-Purcell ±π -pulse
train.30 For the Hahn echo we find T2H = 680 [μs] while
T2CP = 1100 [μs] is significantly longer, as expected in the
presence of spin diffusion which is partly suppressed in a
multipulse sequence. T2H < T2CP is observed below as well
as above Tc indicating that spin diffusion does not occur
towards vortex cores but due to RE impurities. We note that
1/T2 is, in contrast to 1/T1, constant above Tc (at least up
to 25 K), and has a maximum below Tc at T = 11 K which
we ascribe to longitudinal field fluctuations from motions of
flux lines which freeze at low temperatures into the static
inhomogeneous broadening shown in the lower inset of Fig. 5.

V. CONCLUSION

Susceptibility, NMR spectra, Knight shift, and spin lattice
relaxation of 11B and 139La in La3Ni2B2N3−xbelow room
temperature are very similar to the ones in YNi2B2C and
other closely related NiB-based superconductors. We compare
our experimental results to predictions from full potential
DFT calculations based on the crystal structure. The electric
field gradients are calculated remarkably accurate at least for
11B, allowing us to identify N(2b) as the site of the nitrogen
vacancies in the lattice, and to estimate an effective correlation
energy Ueff ≈ 1.0 [eV] for Ni.

The Pauli spin susceptibility calculated from this band
structure and the corresponding Stoner enhancement describes
the weakly temperature-dependent experimental susceptibility
very well with a temperature-independent diamagnetic suscep-
tibility as the only free parameter. Similar to what has been
reported for YNi2B2C we find a remarkably strong temperature
dependence of the Knight shift which is not compatible with
a description by the atomic hyperfine coupling constant from
the literature and the calculated band structure. However, the
valence electron hyperfine coupling constant calculated within
DFT is again fairly close to the (large) experimental one.

The spin-lattice relaxation rate of both 11B and 139La follow
a free electron Korringa law. Taking the hyperfine coupling
constant of B at face value one finds that the correlation factor
indicates a significant suppression of longitudinal fluctuations.
We presented evidence from susceptibility and nuclear spin
relaxation for the presence of RE impurities and argued that
they might be responsible not only for the suppression of
these longitudinal fluctuations and of the Hebel-Slichter peak,
but also for the remaining discrepancies in the temperature
dependence of the Knight shift and the susceptibility. The
successful and consistent description of our susceptibility and
NMR data with DFT and a rather small on-site effective
Hubbard potential U at the Ni sites gives no evidence for
any strong electronic correlation effects in these materials.
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