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Magnetoelectronic phase separation in La1−xSrxCoO3 single crystals:
Evidence from critical behavior
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We have investigated the critical behavior of ferromagnetic La0.75Sr0.25CoO3 and La0.79Sr0.21CoO3 single
crystals from the bulk magnetization measurements around their Curie temperature (TC). The detailed analysis
of the dc magnetization data using different techniques such as the Kouvel-Fisher, the Arrott-Noaks, and critical
isotherm plots yield the critical exponents of β = 0.362 ± 0.002, γ = 1.304 ± 0.006, and δ = 4.75 ± 0.01 with
TC = 213.93 ± 0.02 K for La0.75Sr0.25CoO3 and β = 0.491 ± 0.004, γ = 1.217 ± 0.003, and δ = 3.51 ± 0.01
with TC = 187.67 ± 0.01 K for La0.79Sr0.21CoO3, characterizing these second-order phase transitions. For both
the crystals, the scaling of the magnetization data above and below TC obtained using the respective critical
exponents and the consistency in the values of the critical exponents determined by different methods confirm
that the calculated exponents are unambiguous and intrinsic. The obtained values of exponents suggest that for
La0.75Sr0.25CoO3 the transition falls into the three-dimensional Heisenberg universality class of the near-neighbor
interaction as proposed for double-exchange systems, whereas in the case of La0.79Sr0.21CoO3 the transition is
characterized by mean-field-like values of the critical exponents. We have also estimated the reduced critical
amplitudes and observed that for La0.75Sr0.25CoO3 they fall well within the range of the Heisenberg model
prediction for spin S > 1/2, whereas for La0.79Sr0.21CoO3 they are found to be shifted toward the mean-field
values. The deviation of the critical exponents from 3D Heisenberg values toward mean-field ones is attributed
to the presence of magnetoelectronic phase inhomogeneity in the x = 0.21 single crystal. The detailed analysis
of the specific-heat data in the vicinity of TC for the x = 0.33, 0.25, and 0.21 samples also supports the phase
separation scenario at around x = 0.21.
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I. INTRODUCTION

Although the perovskite cobaltites have relatively less
studied as compared to their manganite counterparts, these
materials are still an active area of research because of
their complex magnetic phase diagram and the presence of
an additional degree of freedom, the spin-state transition
of the Co ion.1–15 Among the doped perovskite cobaltites,
the prototype large-bandwidth La1−xSrxCoO3 (LSCO) system
is of particular interest. Besides the spin-glass/cluster-glass
behavior, this system exhibits the magnetoelectronic phase
separation (MEPS) phenomenon, which refers to the spatial
coexistence of multiple electronic and magnetic phases on
a nanoscopic length scale even in the absence of chemical
segregation.16–29 The magnetoelectronic phase separation is
observed in a large number of doped Mott insulators (e.g.,
cuprates) and plays a key role in understanding their intriguing
physical properties.30,31 The parent compounds of rare-earth
transition metal oxides are magnetoelectronically homoge-
neous because of the single valence state of the transition-metal
ion with antiferromagnetic interaction. When the rare-earth ion
is substituted by a group II alkaline-earth ion (e.g., substitution
of Sr at the La site in LaCoO3), the system phase-separates
into nanoscopic hole-rich metallic clusters in a hole-poor
insulating matrix. In La1−xSrxCoO3, the MEPS coexists with
the spin-state transitions that occur because of the subtle
balance between the crystal-field splitting energy and the
Hund’s coupling energy. The presence of this MEPS in LSCO
is well established by different high-resolution experimental

techniques.16–29 Because of the spin-state transitions, in LSCO,
the Co3+ ion can have a low-spin (t6

2g , S = 0), an intermediate-

spin (t5
2ge

1
g , S = 1), and a high-spin (t4

2ge
2
g , S = 2) state

and the Co4+ ion can have a low-spin (t5
2g , S = 1/2), an

intermediate-spin (t4
2ge

1
g , S = 3/2), and a high-spin (t3

2ge
2
g ,

S = 5/2) state depending on the temperature as well as the
value of doping (x).6–13 The ferromagnetic (FM) double-
exchange (DE) interaction Co4+-O-Co3+ gives rise to metallic
FM clusters and the antiferromagnetic superexchange interac-
tion between the ions of same valence state generates a non-FM
semiconducting matrix.17,32,33 Depending on the value of x, the
competing ferromagnetic and antiferromagnetic interactions
in coexistence with spin-state transitions make the ground
state magnetically inhomogeneous. As the Sr concentration
increases, the FM metallic clusters grow in size and number
and percolate through the non-FM semiconducting matrix,
leading to a crossover from short-range FM to long-range
FM metallic state at a percolation threshold xp ≈ 0.18.23,25,34

A detailed study on the size of magnetic cluster and the
FM phase fraction in LSCO single crystals reveals that the
MEPS is confined to a well-defined doping range, 0.04 <

x < 0.22.35 Furthermore, in the interval 0.18 < x < 0.22, the
system exhibits a true long-range ferromagnetic ordering but
the volume fraction of the FM phase is less than 100%.35

Samples with x > 0.22 exhibit magnetic features similar to
that of conventional homogeneous FMs.35 Thus, in LSCO
single crystals, a well-defined doping value xc = 0.22 is
set as an upper limit to the region in which this intrinsic
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phase separation exists. Theoretical calculations based on
the multiorbital Hubbard model also suggest that the system
crosses over from an inhomogeneous phase-separated state
to a homogeneous metallic FM state at high doping level.36

However, in polycrystalline LSCO and related samples, MEPS
can occur even up to x = 0.50 due to several extrinsic
effects.20–22

The presence of isolated hole-poor non-FM clusters may
introduce compositional disorder in the system. Such disorder
has a marked influence on the critical behavior at the FM-
paramagnetic (PM) transition as observed in glassy FMs
as well as in compositional disordered crystalline FMs.37,38

Moreover, because of the presence of such non-FM matrix, the
percolated FM network has, therefore, a filamentary character
which reduces the effective topological dimension of the
system. This reduction in the effective dimensionality of the
FM network might affect the values of the critical parameters
in the asymptotic critical regime (ACR), if the spin-correlation
length exceeds the effective dimension of the spin system.37

This is because the fluctuation effects are important when
the physical size of the FM domain is larger than the spin-
correlation length in the ACR regime. Even in single crystals
with large crystallite size, if the correlation length exceeds
the average size of the FM clusters, the fluctuation effect may
get suppressed and the true critical behavior is expected to
be replaced by the mean-field-like behavior. So, in the FM
LSCO single crystal with intrinsic magnetic phase separation,
one might expect a different critical behavior from that of a
homogeneous FM. This fact led us to investigate the critical
behavior of phase-separated as well as homogeneous FM
LSCO single crystals.

II. EXPERIMENTAL DETAILS

The polycrystalline powder samples La1−xSrxCoO3

(x = 0.21 and 0.25) were prepared by standard solid state
reaction method using high-purity and preheated La2O3,
Co3O4, and SrCO3 which were mixed in appropriate ratios.
The powder materials were repeatedly ground and sintered in
air at 1000–1100 ◦C for a few days. The powder samples
were then pressed into cylindrical rods. These rods were
finally sintered at 1200 ◦C for 24 h in a vertical sintering
furnace. Single crystals were grown using these rods by the
traveling zone method under oxygen atmosphere of 5 bars
with a typical growth rate of 4 mm/h. Both the crystals are
single phase as checked by powder x-ray diffraction and the Sr
contents, determined by energy-dispersive x-ray diffraction,
agree within a few percent with the nominal compositions.
Single crystallinity was confirmed by the Laue diffraction. The
nature of the crystal surface was checked by optical and scan-
ning electron microscopy and no indication of microcracks
or segregation was observed. The diffraction pattern of the
crystals can be indexed by a rhombohedral unit cell with space
group R3̄c. The dc magnetization measurements were carried
out using a superconducting quantum interference device
magnetometer (Quantum Design). All measurements were
done with the magnetic field applied parallel to the longest
sample dimension to minimize the demagnetization effects.
The dc magnetic isotherms in the applied field up to 5 T were
measured at an interval of 0.5 K near TC to locate the critical

isotherm and in a 1.0 K interval immediately outside this range.
Prior to measurements, the sample was demagnetized by
warming to 300 K—well above the ordering temperature—
then cooled to the prescribed measuring temperature in the
absence of field. The temperature was stabilized for 45 min
to allow the sample to reach thermal equilibrium before
taking the field-dependent data. The maximum deviation in
the temperature was ±5 mK at each measuring temperature.
For both the samples, as many as 50 data points were collected
for each M-H isotherm using the procedure described above.
The demagnetization factor for the sample was determined
from the respective low-field linear region of M-H isotherms
in the ordered state. All the data used in these analyses were
corrected for demagnetization effect. The zero-field specific-
heat measurements were done using a standard Quantum
Design system (PPMS) via relaxation method.

III. CRITICAL EXPONENTS AND AMPLITUDES

The critical behavior of magnetization and susceptibility
near the Curie point of a second-order PM to FM phase
transition is characterized by a set of critical exponents
(β, γ , and δ) and defined in terms of the dimensionless variable
ε = (T − TC)/TC as follows:39

MS(0,T ) = MS(0)(−ε)β, ε < 0, (1)

χi(0,T ) = χ0(ε)−γ , ε > 0, (2)

M(H,TC) = A(H )1/δ, ε = 0, (3)

where MS(0,T ), χi(0,T ), and M(H,TC) are the spontaneous
magnetization, initial susceptibility, and magnetization at TC ,
respectively, and MS(0), χ0, and A are the corresponding
critical amplitudes and H is the internal magnetic field.
The critical exponents as well as the critical amplitudes
exhibit universal behavior near the phase transition point.
Based on the dimensionality of the system and the nature
of spin-spin interaction, different values for critical exponents
are predicted. The critical exponents do not depend on the
magnitude of the spin quantum number (S), but the critical
amplitudes do so, both on model and spin. In mean-field theory,
the reduced amplitudes are given by39,40

MS(0)

M0
=

{
10(S + 1)2

3(2S2 + 2S + 1)

}1/2

, (4)

μeffH0

kBTC

=
{

30S2

(2S2 + 2S + 1)

}1/2

, (5)

MS(0)δ

H0Aδ
= 1, (6)

where M0 is the zero-temperature saturation magnetization,
H0 = χ−1

0 MS(0), and μeff = gSμB is the magnetic moment
of the fluctuating entity with electronic g factor g � 2 and
μB being the Bohr magneton. Furthermore, according to the
scaling hypothesis, the magnetic equation of state for the
system is as follows:

M(H,ε) = (ε)βf±[H/ε(γ+β)], (7)

where f+ for T > TC and f− for T < TC are regular
analytical functions.39 Equation (7) implies that M|ε|−β as a
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function of H |ε|−(γ+β) produces two universal curves: one for
temperatures below TC and the other for temperatures above
TC with proper choice of β, γ , and δ. This is an important
criterion for the accurate and unambiguous values of the
critical exponents.

IV. RESULTS AND DISCUSSION

Figure 1(a) shows the temperature dependence of the dc
magnetization (M) for the x = 0.21 and 0.25 single crystals
after cooling at a field of 100 Oe. M(T ) shows typical
ferromagnetic behavior with TC’s of approximately 188 K and
215 K for x = 0.21 and 0.25, respectively, as estimated from
the temperature derivatives of M(T ) data, which are shown in
Fig. 1(b). Both the derivatives exhibit symmetric peaks with
respect to their TC’s with full width at half maximum (FWHM)
10.8 K and 4.6 K for x = 0.21 and 0.25, respectively. A value
of FWHM of ∼5 K was observed for the x = 0.33 single
crystal as shown in our previous report.41 So, the peak in
the dM/dT vs T curve for the x = 0.21 sample is two times
broader relative to that for the x = 0.25 and 0.33 samples. Such
a broadening of peak is an indication of magnetoelectronic
phase inhomogeneity for the x = 0.21 single crystal. The es-
timated values of the critical temperature for both the samples
are in good agreement with that reported in the literature for
single-crystalline samples.34,42 The symmetric nature of the

FIG. 1. (Color online) (a) Temperature dependence of field-
cooled dc magnetization at 100 Oe of La1−xSrxCoO3 single crystals
for x = 0.21 and 0.25. (b) The temperature dependence of the
derivative of dc magnetization data shown in (a) for x = 0.21
and 0.25.

FIG. 2. (Color online) Magnetization hysteresis loops for
x = 0.21, 0.25, and 0.33 single crystals measured at 5 K. Inset shows
the expanded view of the M(H ) loops near the low-field region for
x = 0.21 and 0.25 samples.

peaks implies good quality and the crystalline nature of the
samples.

Figure 2 shows the magnetization hysteresis loop at 5 K
for the x = 0.21 and 0.25 single crystals. For comparison, we
have also plotted M(H ) data for the x = 0.33 crystal from our
earlier work.41 For all the samples, magnetization increases
sharply with increasing field and essentially saturates in the
high-field region with saturated moments of 1.46, 1.76, and
1.8 μB /Co ion for x = 0.21, 0.25, and 0.33, respectively. The
inset of Fig. 2 shows the expanded view of the M(H ) loop near
the low-field region. It is observed that for x = 0.25 the loop is
extremely narrow with a coercivity (HC) approximately 15 Oe,
whereas for x = 0.21 the hysteresis is relatively larger with HC

approximately 180 Oe but the M(H ) loop still has the form
of a typical soft ferromagnet. These observations are in good
agreement with the earlier reports.34,42 Also, Fig. 2 shows that
the saturation magnetization increases sharply (by 20%) as x

increases from 0.21 to 0.25 while it increases marginally (only
by 2%) as x increases from 0.25 to 0.33. Thus, it appears that
magnetization is sensitive to the hole concentration close to
the critical doping level xc. In the subsequent sections, we will
show that such an abrupt decrease in saturation magnetization
with the decrease of hole concentration can be explained
by taking into account the phase separation scenario for the
x = 0.21 sample.

Figure 3(a) depicts the temperature dependence of zero-
field specific heat (Cp) for La1−xSrxCoO3 single crystals
with x = 0.21, 0.25, and 0.33. For the x = 0.25 and 0.33
samples, a clear and large “lambda-like” anomaly is observed
at the ordering temperatures, as expected for a second-order
FM-PM phase transition. Contrary to this, the x = 0.21 sample
shows a very weak anomaly at TC though the ordering is
believed to be long-ranged ferromagnetic as it exceeds the
percolation threshold xp. The weakening of this Cp anomaly
can be clearly seen from the excess magnetic heat capacity,
CM (T ), as shown in the inset of Fig. 3(a). The CM (T ) was
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FIG. 3. (Color online) (a) Temperature dependence of the zero-
field specific heat for x = 0.21, 0.25, and 0.33 single crystals.
Inset shows the excess (magnetic) specific heat extracted from the
corresponding data by subtracting a smooth background as explained
in the text. (b) Magnetic heat capacity in the vicinity of the transition
point (ε = 0) for x = 0.21, 0.25, and 0.33 single crystals. Solid lines
are due to the fit of the functions given by Eqs. (8) and (9) for x = 0.33
and 0.25 samples.

calculated by subtracting a smooth background from the
measured Cp(T ) using a polynomial fit to Cp(T ), excluding
the region around TC . Both the height and width of the
peak in CM (T ) are very different for the x = 0.21 relative
to the x = 0.33 and 0.25 samples. The peaks are quite sharp
for x = 0.33 and 0.25, while it is significantly broad and
the “lambda-like” feature gets weakened for x = 0.21. The
anomaly in Cp(T ) for the present samples is qualitatively
similar to that reported in La1−xSrxCoO3 single crystals.27

For further understanding the nature of the FM-PM transition,
we have calculated the magnetic entropy associated with
the transition, SMag = ∫

CM (T )dT /T . We observe that SMag

tends to saturate at 2.48, 1.18, and 0.97 J mol−1 K−1 for
x = 0.33, 0.25, and 0.21, respectively. These values of SMag

are larger than those reported previously.27 However, the
deduced magnetic entropy is significantly smaller than the
expected spin entropy R ln(2S + 1), where S is the spin of
the Co ion. The weaker anomaly in Cp(T ) and broader peak
in the dM(T )/dT curve together with smaller saturation
magnetization and larger coercivity are indicative of intrinsic
phase inhomogeneity in the x = 0.21 single crystal.

The λ-like anomalies (or cusps) in CM observed at the PM-
FM phase transitions occurring near the Curie temperatures for
all the samples suggest that the transitions are continuous or
second order. For the continuous phase transitions, the specific
heat CP obeys the power law of the reduced temperature, ε,
governed by the critical exponents α and α′ near ε = 0. In the
vicinity of the critical temperature, CM can be fitted with the
following functions:

CM = A−

α
′ [(−ε)−α′ − 1] + B−, ε < 0, (8)

CM = A+

α
[ε−α − 1] + B+, ε > 0, (9)

where A+, A−, B+, and B− are constants and the amplitude
ratio A+/A− is a universal quantity with large variation
between different universality classes.37,43 Figure 3(b) shows
the CM data close to the transition point (ε = 0). Assuming
α = α′ as predicted by scaling theory for the continuous phase
transition, the least-squares fit of the CM data to Eqs. (8)
and (9) yield a value of critical exponent α = −0.16 ± 0.08
and A+/A− = 2.13 ± 0.33 for the x = 0.25 single crystal and
α = −0.11 ± 0.03 and A+/A− = 2.2 ± 0.2 for the x = 0.33
single crystal where the uncertainties are the standard errors.
The data points very close to the transition point where the
transition region is “rounded” have been excluded during
the fitting process.44 The experimental contribution to the
rounding of the peak involves the large measuring heat pulses
in the relaxation technique45 and less density of data points
close to TC . The reduced temperature ranges used for the
fits are 0.006 �| ε |� 0.08 for x = 0.33 and 0.008 �| ε |�
0.09 for x = 0.25, which lie well inside the log | ε |� −1.0
boundary where the observation of true critical behavior is
expected.46 The estimated values of the critical exponent
(α) and amplitude ratio (A+/A−) for the x = 0.33 and 0.25
samples are found to be close to that predicted by the 3D
Heisenberg model (α = −0.115 and A+/A− = 1.521).37 The
relatively larger uncertainty in the value of α for x = 0.25 than
that of x = 0.33 is due to the transition region being more
rounded in x = 0.25 compared to that in x = 0.33 as can be
seen from Fig. 3(b). The values of the amplitude ratio (A+/A−)
for the both x = 0.33 and 0.25 samples are slightly larger than
the 3D Heisenberg value and this may be attributed to the
less density of data points close to TC for ε > 0 and relatively
larger ε range used to exclude the “rounded” region. Unlike
magnetization, the uncertainty in the estimation of background
contribution to the specific heat may be another source of
error. Also α < 0 implies that CP exhibits cusplike transition
and remains finite at TC . In contrast, as can be seen from
Fig. 3(b), for the x = 0.21 sample the rounding of the CM near
and beyond TC is the most pronounced and shows humplike
behavior, which makes meaningful quantitative evaluation
of the critical parameters difficult because exclusion of the
“rounded” region may involve discarding the data points close
to the transition where the critical fluctuation is dominating.
The weaker anomaly in CP and the humplike behavior of
CM near the transition for the x = 0.21 single crystal give
a clear indication of the presence of intrinsic inhomogeneity
in the system.37,44,47 So the above results indicate that the
critical behavior of the pure system is significantly altered in
the presence of disorder induced by magnetoelectronic phase
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inhomogeneity. In the subsequent sections we have established
this from the magnetic measurements as well.

To analyze the critical behavior of the magnetic phase
transition, we have used the modified Arrott plot method, based
on the Arrott-Noaks equation of state48

(H/M)1/γ = a

(
T − TC

TC

)
+ bM1/β, (10)

where a and b are considered to be constants. The above
equation implies that for proper choice of β and γ , the
isotherms of the M1/β vs (H/M)1/γ plot form a set of parallel
straight lines and the critical isotherm (T = TC) passes through
the origin. The mean-field values of β = 0.5 and γ = 1 give
the usual Arrott plot (M2 vs H/M).49 The deviation from
mean-field exponents makes it necessary to use the modified
Arrott plot method. An initial choice of β and γ is made from
the theoretical models to construct the modified Arrott plot, the
isotherms of which may give quasistraight lines. The intercepts
of these isotherms on the x and y axes are 1/χi(0,T )1/γ

for T > TC and MS(0,T )1/β for T < TC , respectively. These
MS(0,T ) and χi(0,T ) data obtained from the intercepts are
tested against the power-law prediction given by Eqs. (1) and
(2). With an initial value of TC obtained from the isotherm that
almost passes through the origin of the modified Arrott plot,
power laws are fitted following Eqs. (1) and (2) which yield
new improved values of TC , β, and γ . These refined values
of β and γ are used to construct a new modified Arrott plot
which further gives better values of β, γ , and TC . This process
is repeated until TC , β, and γ converge to stable values to
achieve self-consistency.37

Figure 4 shows a series of magnetization isotherms for
the x = 0.21 sample taken around the Curie temperature. For
clarity, we have shown only some selected M versus H plots.
These plots show a gradual transition from FM to PM state
with increasing temperature. The M2 versus H/M curves of
the Arrott plot (inset of Fig. 4) do not show any negative
slope, further confirming that the transition is a continuous

FIG. 4. (Color online) Isothermal magnetization (M vs H) curves
at temperatures around TC of La0.79Sr0.21CoO3. Inset shows the
corresponding Arrott plot (isotherms of M2 vs H/M).

FIG. 5. (Color online) Modified Arrott plot [M1/β vs (H/M)1/γ ]
isotherms of La0.79Sr0.21CoO3. Solid lines are the high-field linear fit
to the isotherms. The isotherm (at T = 187.5 K) closest to the Curie
temperature (TC = 187.67 K) almost passes through the origin in this
plot. All the isotherms measured in the critical region have not been
shown for the sake of clarity. Except the critical at T = 187.5 K, the
temperature interval is 1 K.

or second-order in nature.50 The isotherms of this Arrott
plot are almost parallel straight lines with a weak downward
curvature, making it difficult to find the critical isotherm
that passes through the origin. So we have constructed the
modified Arrott plot as discussed above and the results are
shown in Fig. 5. The isotherms in this plot form a set of
parallel straight lines for 178 K � T � 195 K and 0.1 T �
Ha � 5 T with the variation in slopes within 1%. During the
least-squares fitting to the isotherms, the low-field data below
0.1 T have been excluded because they represent mainly the
rearrangement of magnetic domains and also the effect due
to the uncertainty in the calculation of demagnetization factor
becomes significant in this region. The reduced-temperature
range used for these fits is 8 × 10−4 to 3 × 10−2 for ε < 0 and
2 × 10−3 to 4 × 10−2 for ε > 0. The convergence in fitting
is achieved for the values of β = 0.489 and γ = 1.219. For
these values of β and γ , the isotherm for T = 187.5 K almost
passes through the origin, suggesting TC � 187.50 K which
is close to that determined from the dM/dT versus T curve.
From the intercepts of the M1/β versus (H/M)1/γ plots on the
x and y axes, we obtain MS and χ−1

0 at different temperatures
which are shown in Fig. 6(a). The power-law fit to MS(T )
yields the critical exponent β = 0.485 ± 0.002 with TC =
187.65 ± 0.01 K while to χ−1

0 (T ) yields the critical exponent
γ = 1.214 ± 0.004 with TC = 187.67 ± 0.01 K where the
error bars come from the deviation in the least-squares fit
analysis. These values of β, γ , and TC match very well with
that of the modified Arrott plot and, thereby, confirm the
self-consistency in the estimates of the exponents and TC . For
further support that the values of the critical exponents and
TC are the correct ones, we have used the Kouvel-Fisher (KF)
method,51

MS(T )[dMS(T )/dT ]−1 = (TC − T )/β, (11)

χ−1
0 (T )[dχ−1

0 /dT ]−1 = (T − TC)/γ. (12)
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FIG. 6. (Color online) (a) Temperature variation of magnetization
MS(T ) and inverse initial susceptibility χ−1

0 (T) along with the fit
(solid lines) obtained with the help of power law due to Eqs. (1) and
(2) for x = 0.21 single crystal. (b) Kouvel-Fisher plot of MS(T ) and
χ−1

0 (T). Solid lines are due to the linear fitting of the data. (c) Critical
isotherm of M vs H close to the Curie temperature (TC = 187.67 K).
Inset shows the same on log-log scale and the straight line is the linear
fit following Eq. (3).

According to the above equations, MS(T )[dMS(T )/dT ]−1

and χ−1
0 (T )[dχ−1

0 /dT ]−1 plotted against temperature yield
straight lines with slopes 1/β and 1/γ , respectively, and they
intercept at a point T = TC on the temperature axis. The
linear fit to the plots [Fig. 6(b)] following the KF method
gives β = 0.491 ± 0.004 with TC = 187.53 ± 0.04 K and
γ = 1.217 ± 0.003 with TC = 187.65 ± 0.01 K. Figure 6(c)
shows the critical isotherm for x = 0.21, i.e., M versus H plot
at temperature 187.5 K, closest to TC . At T = TC , M and H

are related by Eq. (3). The inset of Fig. 6(c) shows the critical
isotherm on a log-log plot which should be a straight line with
slope 1/δ. The linear fit to the plot gives δ = 3.51 ± 0.01. The
three exponents, viz., β, γ , and δ, are related by the Widom
scaling relation,52

δ = 1 + γ

β
. (13)

Using this scaling relation and the estimated values of β

and γ from Figs. 6(a) and 6(b), we obtain δ = 3.50 ± 0.01
and δ = 3.48 ± 0.01, respectively. These values of δ are very
close to the estimated value of δ from the critical isotherm in

FIG. 7. (Color online) Scaled magnetization of La0.79Sr0.21CoO3

below and above TC , using β and γ mentioned in the text. The
different symbols represent different temperatures. While the linear
plot (the main body of this figure) makes evident differences in higher
fields, the double-logarithmic plot of the inset reveals differences in
the lower fields and also demonstrates the collapse of magnetization
isotherms in the critical regime onto the two branches of the scaling
function.

Fig. 6(c). Thus, the Widom scaling relation is well obeyed by
the critical exponents, implying that the values of β and γ are
unambiguous and reliable.

The most rigorous method to check the accuracy of the
critical exponents and TC is to compare our data to the
prediction of the static-scaling hypothesis following Eq. (7).
Using the values of β, γ , and TC obtained with the KF method,
we have plotted M|ε|−β versus H |ε|−(γ+β) as shown in Fig. 7.
The inset of Fig. 7 shows the same result on a log-log scale.
It is clear from the figure that all the isotherms fall onto two
different curves, one for T < TC and the other for T > TC ,
thus describing the two branches of Eq. (7). The validity of
the scaling hypothesis further confirms that the values of the
exponents and TC are unambiguous and self-consistent.

Figure 8 shows the Arrott plot for the x = 0.25 sample.
As in the case of the x = 0.21 sample, the positive slope of
the M2 versus H/M isotherms confirms that the transition is
second order. However, the strong downward curvature in the
M2 versus H/M isotherms of the Arrott plot suggests that the
critical behavior for this sample is far from mean-field-like.
Figure 9 shows the modified Arrott plot, which is constructed
with a value of β = 0.365 and γ = 1.38 and the isotherm
at T = 214.00 K almost passes through the origin of this
plot, implying TC ≈ 214.0 K. The power-law behaviors of the
MS(T ) and χ−1

0 (T ) data, obtained from the modified Arrott
plot, following Eqs. (1) and (2) are shown in Fig. 10(a), which
give β = 0.367 ± 0.002 with TC = 213.94 ± 0.02 K and
γ = 1.31 ± 0.01 with TC = 213.97 ± 0.06 K. The reduced-
temperature range used for these power-law fits is 2 × 10−3

to 4 × 10−2 for ε < 0 and 2 × 10−4 to 3 × 10−2 for ε > 0.
The KF plot [Fig. 10(b)] gives β = 0.362 ± 0.002 with TC =
213.88 ± 0.06 K and γ = 1.304 ± 0.006 with TC = 213.98 ±
0.02 K. Figure 10(c) shows the critical isotherm, which gives
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FIG. 8. (Color online) Conventional Arrott plots (M2 vs H/M) of
the magnetization data close to the Curie temperature (TC = 214.0 K)
of x = 0.25 single crystal.

the critical exponent δ = 4.75 ± 0.01 whereas Figs. 10(a) and
10(b) give δ = 4.57 ± 0.01 and δ = 4.60 ± 0.01, respectively,
following the Widom scaling Eq. (13). Thus the values of
δ obtained using different methods are close to each other.
This implies that the estimated values of β and γ are reliable
and reasonably accurate. Further, the well-obeyed scaling
hypothesis (Fig. 11) predicted by Eq. (7) confirms that the
values of the exponents as well as TC are unambiguous and
intrinsic to the system. Again, to be sure that the derived
exponents for both the samples truly characterize the critical
behavior, we have checked whether the above analysis was
done within the asymptotic critical regime. To confirm this,
we have progressively reduced the temperature range (|ε|)
keeping the values of exponents fixed in scaling shown in
Figs. 7 and 11 but no visible distortion of the scaling was
observed, implying that the fitting processes do not include
any point beyond the ACR. The values of the critical exponents
for La0.79Sr0.21CoO3, La0.75Sr0.25CoO3, and La0.67Sr0.33CoO3

single crystals, conventional FM (Ni), and the theoretical

FIG. 9. (Color online) Modified Arrott plot isotherms [M1/β vs
(H/M)1/γ ] for x = 0.25 forming a set of parallel straight lines. The
solid lines are the high-field linear fit to the isotherms. The isotherm
(at T = 214.0 K) nearest to the Curie temperature (TC = 213.93 K)
almost passes through the origin in this plot. The temperature interval
between 212 K and 216 K is 0.5 K and the rest is in 1 K interval.

values based on different models are summarized in Table I
for comparison.

Besides estimating the values of the critical exponents to
assign a universality class to a system, we have also calculated
the reduced critical amplitudes for better understanding the
nature of the magnetic properties. Moreover, the analysis
of critical amplitudes enables us to determine the effective
magnetic moment of the fluctuating entity, which can be
compared with experimentally measured parameters of the
system such as magnetization. The power-law fit to MS(T ),
χi(T ), and the critical isotherms following Eqs. (1), (2), and
(3), respectively, gives the critical amplitudes MS(0), χ0, and
A, respectively, which are listed in Table II. The values of
the critical amplitudes for La0.79Sr0.21CoO3 are obtained from
Figs. 6(a) and 6(c) and those for La0.75Sr0.25CoO3 are obtained
from Figs. 10(a) and 10(c). We have also calculated the critical

TABLE I. Comparison of critical parameters of La0.79Sr0.21CoO3 and La0.75Sr0.25CoO3 with earlier reports on cobaltites, conventional
ferromagnet Ni, and different theoretical models. Abbreviation: SC, single crystal.

Material Ref. Technique TC (K) β γ δ

La0.79Sr0.21CoO3 (SC) This work Modified Arrott plot 187.6 0.485 ± 0.002 1.214 ± 0.004 3.50 ± 0.01
Kouvel-Fisher method 0.491 ± 0.004 1.217 ± 0.003 3.48 ± 0.01
Critical isotherm 3.51 ± 0.01

La0.75Sr0.25CoO3 (SC) This work Modified Arrott plot 214.0 0.367 ± 0.002 1.31 ± 0.01 4.57 ± 0.01
Kouvel-Fisher method 0.362 ± 0.002 1.304 ± 0.006 4.60 ± 0.01
Critical isotherm 4.75 ± 0.01

La0.67Sr0.33CoO3 (SC) 41 Modified Arrott plot 223.0 0.363 ± 0.002 1.315 ± 0.001 4.62 ± 0.01
Kouvel-Fisher method 0.361 ± 0.007 1.31 ± 0.001 4.61 ± 0.04
Critical isotherm 4.64 ± 0.01

Ni 46,54 627.4 0.378 ± 0.004 1.34 ± 0.01 4.58 ± 0.05
3D Heisenberg 37,55–57 Theory 0.365 1.386 4.8
Mean-Field 37,55–57 Theory 0.5 1.0 3.0
3D Ising 37,55–57 Theory 0.325 1.241 4.82
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TABLE II. Critical amplitudes of La1−xSrxCoO3 single crystals
with x = 0.21, 0.25, and 0.33 estimated by fitting Eqs. (1)–(3) to the
appropriate data. For the x = 0.33 sample, we have used our earlier
data (Ref. 41). The error bars are due to the best-fit uncertainties.

x MS(0) (emu/g) χ0 (emu/g Oe) A−δ [Oe/(emu/g)δ]

0.21 49.0 ± 0.3 (4.69 ± 0.07)×10−5 1.39 ± 0.01
0.25 57.4 ± 0.4 (2.93 ± 0.01)×10−5 0.013 ± 0.001
0.33 55.6 ± 0.1 (2.53 ± 0.01)×10−5 0.022 ± 0.001

amplitudes for the La0.67Sr0.33CoO3 single crystal from our
earlier work and listed them in Table II.41 M0 estimated
from the low-temperature (5 K) saturation magnetization are
31.1, 42.2, and 43.1 emu g−1 for x = 0.21, 0.25, and 0.33,
respectively. Using these values of M0, we have calculated
the reduced critical amplitudes, which are listed in Table III
for comparison with those predicted by different theoretical
models.37,53

From Table I, one can see that the estimated values of the
critical exponents for La0.75Sr0.25CoO3 and La0.67Sr0.33CoO3

single crystals are quite close to those for the 3D Heisen-
berg model. On the other hand, the exponents for the
La0.79Sr0.21CoO3 single crystal are far away from those of
the 3D Heisenberg exponents. From Table III, we can also see
that the experimentally deduced reduced critical amplitudes
MS(0)/M0 and A−δMS(0)δ/H0 for the x = 0.25 and 0.33
single crystals show satisfactory agreement with the prediction
of the Heisenberg model for S > 1/2, but clear disagreement
with the mean-field theory with both S = 1/2 and S(x).
However, for the x = 0.21 single crystal, MS(0)/M0 is larger
and A−δMS(0)δ/H0 is smaller than those for the x = 0.25 and
0.33 crystals. Table III also shows that these parameters show
large deviation from that for Heisenberg model with S > 1/2.
It is noteworthy that for all three samples the critical amplitude
μeffH0/kBTC is smaller than the theoretical prediction and the
discrepancy is significant for the x = 0.21 sample. We show
below that for the x = 0.21 crystal a plausible explanation
on the basis of the MEPS phenomenon can be given for the
mean-field-like high value of β and the strong deviation of
the parameter μeffH0/kBTC from the theoretical predicted
values.

The estimated values of the reduced critical amplitudes
give an important implication regarding the magnetic moment
of the fluctuating entity. If H0 is taken as the effective
exchange interaction field and μeff as the average effective
magnetic moment of the fluctuating entity involved in the
FM-PM transition, then at T = TC the effective exchange
energy μeffH0 is expected to be equal to the thermal energy
kBTC . This seems to be the case for the x = 0.25 and
0.33 samples when μeff is identified with μ(0), the 0 K
saturated magnetic moment. From Table III, we see that
the estimated values of μeffH0/kBTC are 1.08 and 1.19
for x = 0.25 and 0.33, respectively, if we take μeff as the
saturation magnetization at 5 K. However, this is clearly not
the case for the La0.79Sr0.21CoO3 single crystal unless μeff

adopts a value much larger than μ(0). Therefore, in order that
μeffH0/kBTC equal the predicated value for any theoretical
model, say the Heisenberg model, μeff needs to be as high
as 4.22 μB . Several disordered systems exhibit an unusually
smaller value of the parameter μeffH0/kBTC as compared
to that predicted theoretically.37,58 According to Kaul37 and
Lago et al.,58 the reason behind this fact is that not all spins
but a small fraction of the spins participate in the FM-PM
transition. If the concentration of such effective moment is c,
then c = μ(0)/μeff and this fraction of the spins takes part in
the transition. A value of c = 32% has been obtained for the
inhomogeneous ferromagnet SrFe0.80Co0.20O3.58 Because of
the existence of non-FM clusters embedded in the percolated
ferromagnetic matrix, in the La1−xSrxCoO3 system, c is
expected to be very sensitive to x close to the percolation
threshold and can be significantly smaller than 1. Following
the above mentioned prescription, we have estimated c for
our samples. The estimated value of c is 35% for the
inhomogeneous La0.79Sr0.21CoO3 single crystal. On the other
hand, for the ratio μeffH0/kBTC to take the Heisenberg value
of 1.58, the values of μeff become 2.57 μB and 2.39 μB for
x = 0.25 and 0.33, respectively. The values of c obtained in
this way are 68% and 75% for x = 0.25 and 0.33, respectively,
which are comparable to the value of c = 65% for Ni.37

The shift in exponents from the 3D Heisenberg (3DH)
toward mean field could result from the presence of long-range
forces such as isotropic dipolar interactions (IDL). According
to RG calculations, a crossover from 3DH to IDL critical
behavior occurs at a certain value εco of reduced temperature

TABLE III. Comparison of reduced critical amplitudes of La1−xSrxCoO3 single crystals (x = 0.21, 0.25, and 0.33) with those predicted by
various theoretical models for a range of spin (S) values. For the x = 0.33 sample, we have used our earlier results (Ref. 41). Error bars are
due to proportional error and S(x) is the average spin value for the Sr content x deduced from the low-temperature saturation magnetization.

Reduced Mean field fcc Heisenberg fcc Ising
Material critical amplitude S = 1/2, S = S(x) S = 1/2, S = ∞ S = 1/2, S = ∞ Expt.

La0.79Sr0.21CoO3 MS(0)/M0 1.73, 1.68 1.69, 1.22–1.44 1.49, 1.31 1.58 ± 0.02
μeffH0/kBTC 1.73, 2.13 1.58 1.52 0.54 ± 0.03

A−δMS(0)δ/H0 1.0 1.55, 1.23–2.07 1.88 1.07 ± 0.04
La0.75Sr0.25CoO3 MS(0)/M0 1.73, 1.65 1.69, 1.22–1.44 1.49, 1.31 1.36 ± 0.03

μeffH0/kBTC 1.73, 2.32 1.58 1.52 1.08 ± 0.02
A−δMS(0)δ/H0 1.0 1.55, 1.23–2.07 1.88 1.52 ± 0.05

La0.67Sr0.33CoO3 MS(0)/M0 1.73, 1.64 1.69, 1.22–1.44 1.49, 1.31 1.29 ± 0.03
μeffH0/kBTC 1.73, 2.34 1.58 1.52 1.19 ± 0.02

A−δMS(0)δ/H0 1.0 1.55, 1.23–2.07 1.88 1.30 ± 0.06
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FIG. 10. (Color online) (a) Temperature dependence of sponta-
neous magnetization MS(T ) and inverse initial susceptibility χ−1

0 (T)
along with the fitting curves (solid lines) based on power laws
following Eqs. (1) and (2) for x = 0.25 single crystal. (b) Kouvel-
Fisher plot of MS(T ) and χ−1

0 (T). Solid lines are due to the linear
fitting of the data. (c) Critical isotherm of M vs H close to the Curie
temperature (TC = 213.93 K). Inset shows the same on log-log scale
and the straight line is the linear fit following Eq. (3) giving the
value of δ.

that depends on the strength of the interactions but the values
of the exponents characterizing the IDL regime are only
marginally different from 3DH values and are shifted toward
mean field.55,59 Such a small shift from 3DH toward mean field
has been observed in the inhomogeneous SrFe0.80Co0.20O3

system.58 But, in the present case, the exponents for the
La0.79Sr0.21CoO3 single crystal are very much different from
those for 3DH; in fact, they are mean-field-like. Such a
deviation from 3DH behavior cannot be explained by IDL
perturbations. Furthermore, as nearly the same reduced tem-
perature range (ε) is used in the above analysis for both the
samples, the effect of IDL perturbations, if present, should
be observed in both the cases. In the x = 0.25 sample, no
indication of IDL perturbations is observed and the ACR
exponents belong to the 3D Heisenberg model. The crossover
temperature εco can be calculated from the relation εco ≈
g

1/φd

d ,60 where φd is the crossover exponent and gd is the
measure of the strength of the dipolar interaction, which can
be determined from gd ≈ 0.87

TC

θp2

V
,59,60 where θ is a correction

FIG. 11. (Color online) Scaling plot for La0.75Sr0.25CoO3 below
and above TC , using β and γ determined by the KF method. The
different symbols represent different temperatures. The inset shows
the same on log-log scale exhibiting the collapse of magnetization
isotherms in the critical regime onto the two branches of the scaling
function. Linear plot emphasizes the difference in high H , whereas
log plot emphasizes the difference in low H .

factor that depends on S, p = g
√

S(S + 1), and V is the unit
cell volume in Å3. We obtain a value of gd = 3.3 × 10−4 for
x = 0.21 with θ = 0.80 (following Ref. 60) and V = 56.3 Å3

(Ref. 27 from x-ray diffraction). This gives εco ≈ 3.1 × 10−3

with φd ≈ γH = 1.39.55,60 Similarly for x = 0.25, we deduce
gd = 3.8 × 10−4 and εco ≈ 3.5 × 10−3. In the present study,
as the asymptotic exponents could be determined up to
ε = 3 × 10−2, which is much larger than the εco for both the
samples, the dipolar interactions, if present, have a negligible
effect on the critical fluctuations of magnetization.

The deviation of the critical exponents from 3D Heisenberg
to mean-field-like values for x = 0.21 can be understood
from the very nature of the evolution of ferromagnetism in
La1−xSrxCoO3 single crystals with doping.35 Neutron diffrac-
tion, inelastic neutron spectroscopy, small-angle neutron scat-
tering, magnetization, nuclear magnetic resonance, and heat
capacity measurements have established that the LSCO single
crystals with 0.04 < x < 0.22 phase-separate into nanoscopic
FM clusters in a non-FM matrix and this MEPS is driven
by spatial fluctuations in doping rather than electronically
driven.16–29,35 However, the samples with x � 0.22 exhibit
features associated with conventional homogeneous FMs as is
observed for the present x = 0.25 single crystal. These studies
also suggest that the phase-separated samples within the nar-
row doping zone 0.18 < x < 0.22 show a true long-range FM
ordering with a well-defined TC but the FM phase fraction is
less than one. For the x = 0.21 sample, the observed behavior
in heat capacity and magnetization are consistent with those
reported for samples in the doping range 0.18 < x < 0.22.
Similar to the x = 0.33 sample, the estimated values of the
critical exponents for the x = 0.25 sample are close to that of
the 3D Heisenberg model for the isotropic homogeneous FMs
with near-neighbor interactions.41 However, for the x = 0.21
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single crystal, though the critical exponent β is found to be very
close to that for the mean-field model, the value of the critical
exponent γ (=1.214) and the temperature dependence of
specific heat indicate the presence of severe critical fluctuations
for T � TC . Such a high value of β can be explained
within the framework of the Heisenberg model by taking
into account the presence of the intrinsic inhomogeneity.61,62

Using numerical methods, Müller-Krumbhaar61 investigated
the critical behavior of magnetization in a homogeneous
Heisenberg spin system with missed spin clusters as the
lattice inhomogeneity. They have shown that the local value
of β increases close to the missed spin clusters and with
the increasing of such missed spin clusters the bulk value
of β increases as well. Such an enhancement of β might
be related to the weakening of short-range interactions in a
lattice randomly diluted with numerous “missing spins.” Poon
and Durand62 studied the critical behavior of an amorphous
ferromagnet (Gd80Au20) and obtained β = 0.44 ± 0.02 and
γ = 1.29 ± 0.05 and explained their results based on this
dilution model. So, in our case, for the x = 0.21 sample the
non-FM clusters or the hole-poor regions might act as missed
spin clusters as we have seen earlier that only a small fraction
(c = 32%) of the spins take part in the FM-PM transition.
The x = 0.21 sample may be randomly diluted by such
clusters resulting in a weakening of the short-range magnetic
interactions leading to a high value of β. The mean-field-like
values of the exponents for the x = 0.21 sample may also
result if the nanoscopic FM clusters embedded in the hole-poor
matrix (inhomogeneity) provide an average exchange field
in the system which in turn facilitates the FM alignment
of bulk magnetic spins in the critical region. The observed
critical behaviors for these two samples seem to be consistent
with the fact that single-crystalline samples with x � 0.22
behave as conventional homogeneous FMs, whereas samples
within the doping range 0.18 < x < 0.22 contain intrinsic
inhomogeneity which has a marked influence in the behavior of
the magnetization. Finally, the above analysis further confirms
that despite the presence of intrinsic magnetoelectronic phase
inhomogeneity, the La0.79Sr0.21CoO3 single crystal exhibits a
true long-range ferromagnetism below a well-defined FM-PM
phase transition at ∼187.6 K.

It is worthy to compare and contrast the evolution of
magnetization and the critical behavior of La1−xSrxCoO3 with
La1−xSrxMnO3 (LSMO) close to their percolation thresholds
where both the systems turn to FM. The critical observations
reveal some important differences in their intrinsic physical
properties. Though both the systems behave as DE ferro-
magnet, unlike La1−xSrxCoO3, the ferromagnetic ordering in
La1−xSrxMnO3 occurs at a much lower Sr doping level (x ≈
0.10) than that required for the onset of metallicity (x ≈ 0.17);
i.e., the insulating FM state persists over the range 0.10 � x �
0.17.10,63 In broadband manganites such as La1−xSrxMnO3,
La1−xBaxMnO3, and Pr1−xSrxMnO3, close to their percolation
thresholds, the value of saturation magnetization decreases
with the increase of x but the FM phase fraction is almost
100%.10,64,65 Nair et al.66 have studied the critical behavior
from bulk magnetization measurements on single-crystalline
LSMO with x = 0.125 and observed that the values of the
exponents match very well with the 3D Heisenberg model. In
the FM metallic region, though β for LSMO corresponds to the

3D Heisenberg model, γ is found to lie in between 3D Ising and
Heisenberg models.67 Recent studies on different perovskite
manganites show that the critical behavior is consistent with
the 3D Heisenberg model.68–73 Unlike in LSCO, the tendency
of intrinsic magnetic phase separation in rare-earth maganites,
in general, is much more weaker. Also, there is no consensus
on the type and nature of the phase separation and its influ-
ence on several electronic and magnetic properties.30,74 The
narrowband manganites that are susceptible to charge-orbital
ordering may show nanoscale electronic phase separation.
Recently, Asaka et al.75 have used the low-temperature
high-resolution transmission electron microscopy involving
selected area electron diffraction and Lorentz microscopy in
order to obtain crystallographic and magnetic information in
both the reciprocal and real spaces of the La0.875Sr0.125MnO3

single crystal. They observed simultaneous evolutions of three
charge-modulated phases below 135 K, close to the charge-
ordering-transition temperature TCO = 140 K. These phases
form intricate domain structures within a single ferromagnetic
phase; i.e., the system exhibits one and only one magnetic
state but multiple charge states. Below 40 K, the three charge-
modulated phases behave differently from one another and, as
a result, both metallic and insulating electronic phases coexist.
This study clearly reveals that the phase separation close to
percolation threshold is electronic in nature and the magnetic
state remains unaltered. Therefore, La1−xSrxCoO3 compounds
are the model systems for studying the intrinsic magnetic
phase separation which is different from those observed in
manganites.

V. CONCLUSION

We have presented a comprehensive study on the critical
behavior of magnetic phase transitions in La1−xSrxCoO3

single crystals with x = 0.21, 0.25, and 0.33 using bulk
static magnetization and specific-heat measurements. All the
samples undergo a second-order or continuous FM to PM
phase transition with a well-defined Curie temperature (TC).
The specific-heat exhibits a sharp and λ-like anomaly at TC for
the x = 0.25 and 0.33 single crystals and the estimated values
of critical exponent α for these samples are −0.16 ± 0.08 and
−0.11 ± 0.03, respectively, which are close to that predicted
by the 3D Heisenberg model for isotropic homogeneous FMs.
On the contrary, the x = 0.21 sample displays a humplike
anomaly at TC , which reflects the inhomogeneous nature of the
magnetic ground state. The detailed analysis of magnetization
data using different methods such as the modified Arrott
plot, KF plot, and critical isotherm suggests that the FM-PM
phase transition in the x = 0.25 sample is characterized by
the 3D Heisenberg critical exponents with near-neighbor
interactions, whereas the critical exponents characterizing the
phase transition of the x = 0.21 single crystal show a large
deviation from the 3D Heisenberg values, particularly the
critical exponent β, whose value is close to that predicted
by the mean-field model. Such a high value of β may
result due to the presence of intrinsic inhomogeneity or a
hole-poor region which acts as missed spin clusters and
weakens the short-range interactions among the spins. Despite
the presence of severe critical fluctuations, the behavior of the
magnetization deviates from that of a 3D Heisenberg model
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due to the observed inhomogeneity in the x = 0.21 single
crystal. The present study shows that the critical analysis of
the phase transition is another sensitive method of probing
the magnetoelectronic inhomogeneity in FM La1−xSrxCoO3

single crystals. Further studies in this direction with different
doping levels and different techniques would be useful to
understand the role of intrinsic magnetic inhomogeneity on

magnetic phase transition and to reach a consensus on this
issue.
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60K. Ried, D. Köhler, and H. Kronmüller, J. Magn. Magn. Mater.
116, 259 (1992).

61H. Müller-Krumbhaar, J. Phys. C 9, 345 (1976).
62S. J. Poon and J. Durand, Phys. Rev. B 16, 316 (1977).
63J. Wu and C. Leighton, Phys. Rev. B 67, 174408 (2003).
64P. Mandal and B. Ghosh, Phys. Rev. B 68, 014422

(2003).
65C. Martin, A. Maignan, M. Hervieu, and B. Raveau, Phys. Rev. B

60, 12191 (1999).
66S. Nair, A. Banerjee, A. V. Narlikar, D. Prabhakaran, and A. T.

Boothroyd, Phys. Rev. B 68, 132404 (2003).
67K. Ghosh, C. J. Lobb, R. L. Greene, S. G. Karabashev, D. A.

Shulyatev, A. A. Arsenov, and Y. Mukovskii, Phys. Rev. Lett. 81,
4740 (1998).

68J. Fan, L. Ling, B. Hong, L. Zhang, L. Pi, and Y. Zhang, Phys. Rev.
B 81, 144426 (2010), and references therein.

69B. Padmanabhan, H. L. Bhat, S. Elizabeth, S. Rößler, U. K. Rößler,
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73S. Rößler, Harikrishnan S. Nair, U. K. Rößler, C. M. N. Kumar,
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