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Dispersion relations and low relaxation of spin waves in thin magnetic films
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We study spin excitations in thin magnetic films in the Heisenberg model with magnetic dipole and exchange
interactions by the spin operator diagram technique and make comparison of their parameters with characteristics
of spin waves in thick films. Dispersion relations of spin waves in thin magnetic films (in two-dimensional
magnetic monolayer and bilayer lattices) and the spin-wave resonance spectrum in N -layer structures are found.
For thick magnetic films, spin excitations are determined by simultaneous solution of the generalized Landau-
Lifshitz equations and the equation for the magnetostatic potential. Generalized Landau-Lifshitz equations are
derived from first principles and have the integral (pseudodifferential) form. It is found that dispersion relations
of spin waves in monolayers and in bilayers differ from dispersion relations of spin waves in continuous thick
magnetic films. For normal magnetized ferromagnetic films, the spin-wave damping is calculated in the one-loop
approximation for a diagram expansion of the Green functions at low temperature. In thick magnetic films, the
magnetic dipole interaction makes a major contribution to the relaxation of long-wavelength spin waves. Thin
films have a region of the low relaxation of long-wavelength spin waves. In thin magnetic films, four-spin-wave
processes take place and the exchange interaction makes a major contribution to the damping. It is found that the
damping of spin waves propagating in a magnetic monolayer is proportional to the quadratic dependence on the
temperature and is very low for spin waves with small wave vectors.
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I. INTRODUCTION

Nanosized magnetic films are of great interest due to their
perspective applications in spin-wave devices. At present,
the most important spin-wave devices—microwave filters,
delay lines, signal-to-noise enhancers, and optical signal
processors—have been realized on the base of magnetic
films of microsized thickness.1–3 Nanosized films give us
an opportunity to construct spin-wave devices of small
sizes and to design devices with new functional properties.
Recently, new applications of spin waves have been proposed
such as spin-wave computing,4,5 spin-wave filtering using
width-modulated nanostrip waveguides,6 and transmission of
electrical signals by spin-wave interconversion in an insulator
garnet Y3Fe5O12 (YIG) film based on the spin-Hall effect.7

Spin-wave logic elements have been done on the basis of a
Mach-Zehnder-type interferometer6,8,9 and can be realized on
magnonic crystals.5 Using nanosized magnetic films, we have
a probability to construct an array of logic elements of small
sizes. Ferromagnetic monolayers, bilayers, and trilayers are
of great interest for magnetic sensors and spin-wave devices.
Spin excitations in these thin magnetic film structures are
theoretically investigated and are studied by the Brillouin
light-scattering method.10–14

In order to design new spin-wave devices based on nano-
sized magnetic films, it is necessary to determine dispersion
relations and damping of spin excitations in thin films. In the
phenomenological model with the magnetic dipole interaction
(MDI) and the exchange interaction,15–18 the magnetization
dynamics in thick magnetic films is described by the Landau-
Lifshitz equations, which are differential with respect to spatial
variables. The differential form of equations is postulated. In
this connection, the following question arises: is this form of
Landau-Lifshitz equations correct for thin nanosized films?
Determination of the dispersion relations depends on the

answer of this question. In phenomenological models, the
spin-wave damping is described by relaxation terms in Gilbert,
Landau-Lifshitz, or Bloch forms.18 Properties of intrinsic
relaxation processes are not taken into account in these terms
and, therefore, the calculated spin-wave damping may be
incorrect. The above-mentioned leads us to the main question
of the paper: what are the dispersion relations and damping
of spin waves in thin films and can they be derived from
first principles? In order to answer this question, we consider
generalized Landau-Lifshitz equations, spin excitations, and
relaxation of spin waves in thin films in the framework of the
Heisenberg model with the MDI and the exchange interaction.
In the paper, we suppose that films are thin in two cases.
(1) For the case, when we calculate dispersion relations of
spin waves, we say that an N -layer structure is thin, if N is a
low number (for example, monolayer, bilayer, trilayer). (2) For
the case of relaxation processes a film is thin, if the spin-wave
energy is less than energy gaps between spin-wave modes and,
therefore, three-spin-wave processes are forbidden.

The above-mentioned problems have not yet been investi-
gated comprehensively. One of the cause of these problems
is the long-range action of the MDI. The spin-wave relax-
ation and the spin-wave dynamics become dependent on the
dimensions and shapes of ferromagnetic samples. In order to
analyze the Heisenberg model with the MDI and the exchange
interaction, we use the spin operator diagram technique.19–23

Advantages of the spin operator diagram technique give us
the opportunity to calculate the spin-wave damping at high
temperatures and obtain more exact relationships describing
spin-wave scattering and excitations in comparison with meth-
ods based on diagram techniques for creation and annihilation
magnon Bose operators.24–32 In Refs. 23 and 33, the spin
operator diagram technique is generalized for models with
arbitrary internal Lie-group dynamics.
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In Sec. II, we consider spin operator diagram technique
for the Heisenberg model with the MDI and the exchange
interaction. Spin-wave excitations are determined by poles
of the P matrix: the matrix of the effective Green functions
and interaction lines. On the basis of this diagram technique,
dispersion relations of spin waves in a magnetic monolayer
and in a bilayer and the spectrum of spin-wave resonances
in an N -layer structure are found (see Sec. III). It is found
that dispersion relations of spin waves in monolayer and
bilayer lattices differ from dispersion relations of spin waves
in continuous thick magnetic films. This difference is due
to the discreetness of the lattice. For the case when the
MDI is equal or greater than the exchange interaction, for
example, for monolayer consisted of magnetic nanoparticles
on the lattice, this difference becomes essential and is taken
into account. For thick magnetic films, it is more convenient
to present the P-matrix-pole equation describing spin-wave
excitations in the form of the Landau-Lifshitz equations and
the equation for the magnetostatic potential (see Sec. IV).
Spin excitations are determined by simultaneous solution
of these equations. Landau-Lifshitz equations are integral
(pseudodifferential) equations, but not differential ones with
respect to spatial variables. In the common case, the reduction
of Landau-Lifshitz equations to differential equations with
exchange boundary conditions is incorrect and their solutions
give dispersion relations different from dispersion relations
calculated on the basis of integral (pseudodifferential) Landau-
Lifshitz equations. The contradiction is removed, if the pinning
parameter is equal to the spin-wave wave vector. In Sec. V,
we consider spin-wave relaxation in thick and thin magnetic
films. In thick films, three-spin-wave processes take place
and the MDI makes a major contribution to the relaxation
of long-wavelength spin waves. Thin films have a region of
low relaxation of long-wavelength spin waves. In this case,
three-spin-wave processes are forbidden and the exchange
interaction makes a major contribution to the relaxation
process.

II. HEISENBERG MODEL WITH MAGNETIC
DIPOLE AND EXCHANGE INTERACTIONS

A. Spin operator diagram technique

Let us consider the Heisenberg model with the exchange
interaction and the MDI on a lattice.22,23 The exchange
interaction is short ranged and the MDI is long ranged.
Operators S± = Sx ± iSy and Sz satisfy the commutation
relations:

[Sz(�1),S+(�1′)] = S+(�1)δ�1�1′ ,

[Sz(�1),S−(�1′)] = −S−(�1)δ�1�1′ ,

[S+(�1),S−(�1′)] = 2Sz(�1)δ�1�1′ ,

where �1 ≡ �r1,�1′ ≡ �r1
′ is the abridged notation of lattice sites.

The Hamiltonian of the Heisenberg model is

H = −gμB

∑
�1

H (�1)Sz(�1) − gμB

∑
�1

hμ(�1)Sμ(�1)

− 1

2

∑
�1,�1′

Jμν(�1 − �1′)Sμ(�1)Sν(�1′), (1)

where H ( �H ‖ Oz) is the external magnetic field, hμ is the
auxiliary infinitesimal magnetic field, and μ = −, +, z. It is
supposed that the summation in Eq. (1) and in all following
relations is performed over all repeating indices μ, ν. The sum-
mation is carried out over the lattice sites �1,�1′ in the volume V

of the ferromagnetic sample. g and μB are the Landé factor and
the Bohr magneton, respectively. Jμν(�1 − �1′) = Jνμ(�1′ − �1)
is the interaction between spins, which is the sum of the
exchange interaction Iμν and the MDI:

Jμν(�1 − �1′) = Iμν(�1 − �1′)

−4π (gμB )2∇μ�(�r − �r ′)∇′
ν |�r=�1,�r ′=�1′ , (2)

where the function �(�r − �r ′) in the MDI term is determined
by the equation

��(�r − �r ′) = δ(�r − �r ′),
∇μ = {∇−,∇+,∇z}

=
{

1

2

(
∂

∂x
+ i

∂

∂y

)
,
1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z

}
.

(3)

In three-dimensional space, �(�r − �r ′) = −1/4π |�r − �r ′|
and the MDI term in Hamiltonian (1) can be written as

H(dip) = (gμB)2

2

∑
�1,�1′

[
(�S(�1),�S(�1′))

|�1 − �1′|3

− 3(�S(�1),�1 − �1′)(�S(�1′),�1 − �1′)

|�1 − �1′|5
]
.

For the following calculations of spin-wave dispersion rela-
tions in magnetic films, we use a more convenient form of the
MDI determined by relations (2) and (3).

Spin excitations, interaction of spin waves, spin-wave relax-
ation, and other parameters of excitations in the canonical spin
ensemble are determined by the generating functional19,23,33,34

Z[h] = Sp exp[−βH(h)]

=
∞∑

n=0

∑
�1, . . . ,�n

μ1, . . . ,μn

∫ β

0
· · ·

∫ β

0
Qμ1...μn(�1, . . . ,�n,τ1, . . . ,τn)

×hμ1 (�1,τ1) . . . hμn
(�n,τn) dτ1 . . . dτn, (4)

where β = 1/kT , k is the Boltzmann constant, and T is the
temperature, h = {hμi

}. Coefficients Qμ1...μn are proportional
to the temperature Green function without vacuum loops:

Gμ1...μn(�1, . . . ,�n,τ1, . . . ,τn)

≡ 〈〈TŜμ1 (�1,τ1) . . . Ŝμn(�n,τn)〉〉
= (βgμB)−nZ−1 δnZ[h]

δhμ1 (�1,τ1) . . . δhμn
(�n,τn)

∣∣∣∣
h→0

, (5)

where Ŝα( �j,τ ) = exp(τH)Sα( �j ) exp(−τH) are the spin oper-
ators in the Euclidean Heisenberg representation, τ ∈ [0,β].
T is the τ -time ordering operator. Variable τ is added in the
auxiliary field hμ in order to take into account T ordering.
〈〈. . .〉〉 denotes averaging of spin operators calculated with
exp(−βH)/Sp exp(−βH). The symbol Sp denotes the trace.
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The frequency representation of the expansion (4) is more
convenient for calculations. The Fourier transforms of Qμ1...μn

are defined in terms of the Matsubara frequencies ω(1)
m1

=
2πm1/h̄β, . . . ,ω(n)

mn
= 2πmn/h̄β35 (m1, . . . ,mn are integers):

Qμ1...μn
(�1, . . . ,�n,ω(1)

m1
, . . . ,ω(n)

mn

)
=

∫ β

0
· · ·

∫ β

0
Qμ1...μn(�1, . . . ,�n,τ1, . . . ,τn)

× exp
[ − ih̄

(
ω(1)

m1
τ1 + · · · + ω(n)

mn
τn

)]
dτ1 . . . dτn. (6)

The coefficients Qμ1...μn can be expanded with respect to
the interaction Jμν(�1 − �1′) [see Eq. (2)].19–23,33 Each term
of this expansion is represented by a diagram constructed of
propagators, vertices, blocks and interaction lines.

1. Propagators. Spin propagators

D±(�1,�1′,ωm) = δ�1�1′

p0 ± iβh̄ωm

, (7)

where p0 = βgμBH , are determined for the spin ensem-
ble without any interaction between spins. The propagators
D±(�1,�1′,ωm) are represented by directed lines in diagrams
[see Fig. 1(a)]. The directions of arrows show the direction of
growth of the frequency variable ωm.

2. Vertices. There are five types of vertices [see Fig. 1(b)].
Vertices a and b are the start and end points of propagators,
respectively. In analytical expressions of diagrams the vertex
a corresponds with the factor 2 and the vertex b with the factor
1. The vertex c ties three propagators and corresponds with
the factor (−1) in analytical expressions. The vertex d with

(a)

(b)
a b c

d e

(d)

D (1,1 ,+ m
′

1 1 

D (1,1 ,-
′

m
1 1′

m

m

V (1-1 , ) = Jm (1-1 )=
(0)

1 1m

(c)

′

′ ′
′

FIG. 1. (a) Propagators D±, (b) vertices, (c) block with isolated
parts and (d) interaction lines V (0)

μν .

the factor 1 is defined as a single vertex. The vertex e ties two
propagators. The factor of the e vertex is equal to (−1).

3. Blocks. Blocks contain propagators and isolated vertices
d [see Fig. 1(c)]. Propagators can be connected through
vertices c and e. In analytical expressions of the diagram
expansion, each block corresponds with the block factor
B[κ−1](p0), where κ is the number of isolated parts in the
block. The factor B[κ−1](p0) is expressed by partial derivatives
of the Brillouin function BS for the spin S with respect
to p0:

B(p0) = 〈〈Sz〉〉0 = SBS(Sp0), B[n](p0) = S
∂nBS(Sp0)

∂pn
0

,

(8)

where 〈〈. . .〉〉0 denotes the statistical averaging performed over
the states described by the Hamiltonian H (1) without the
interaction Jμν between spins. BS(x) = (1 + 1/2S) coth[(1 +
1/2S)x] − (1/2S) coth(x/2S).

4. Interaction lines. The interaction line V (0)
μν (�1 − �1′,ωm) =

βJμν(�1 − �1′) connects two vertices in a diagram [see Fig. 1(d)].
The correspondence between the first index μ of the interaction
line V (0)

μν and the vertex type is the following. (1) If μ = −,

then the left end point of V
(0)
−ν is bound to the vertex a; (2)

if μ = +, then this end point is bound to the vertices b or c;
and (3) if μ = z, then the end is bound to the vertices d or e.
The analogous correspondence is satisfied for the right end ν

of V (0)
μν .

Coefficients Qμ1...μn in the expansion (4) in the frequency
representation (6) are the sum of N topologically nontrivial
diagrams

∑N
t Q

μ1...μn

t (t = 1, . . . ,N ). The general form of
the analytical expression of the diagram in the frequency
representation is written as19–23

Q
μ1...μn

t

(�1, . . . ,�n,ω(1)
m1

, . . . ,ω(n)
mn

)
= (−1)L2ma

Pk

2kk!

∏
l

B[κl−1](p0)
κl∏

�i, �j∈l

δ�i �j

×
∑

�1′, . . . �k′
�1′′ . . . �k′′

∑
mi

V (0)
αγ

(�1′−�1′′,ωm1

)× · · · ×V (0)
ρσ

(�k′−�k′′,ωmk

)

×
ID∏
�s,�s ′

D−
(�s,�s ′,ωms

) Iv∏
v

δ

(∑
r∈v

βh̄ωmr

)
, (9)

where �1, . . . ,�n,ω(1)
m1

, . . . ,ω(n)
mn

are the external lattice and
frequency variables corresponded to the auxiliary fields hμi

in the expansion (4). ma is the number of a vertices in a
diagram. L is the number of c and e vertices. Pk is the
number of topological equivalent diagrams. 2k is the number of
vertices connected with k interaction lines V (0)

αγ . . . V (0)
ρσ . The

product
∏

l is performed over all blocks of a diagram. κl is
the number of isolated parts in block l. The term

∏κl

�i, �j∈l
δ�i �j

denotes that all isolated parts in block l are determined on
a single lattice site. ID is the number of propagators in a
diagram. Iv is the number of vertices in a diagram.

∑
mi

denotes the summation performed over all inner frequency
variables. The term

∏Iv

v δ(
∑

r∈v βh̄ωmr
) gives the frequency
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conservation in each vertex v, i.e., the sum of frequencies of
propagators and interaction lines, which come in and go out
from the vertex v, is equal to 0. The vertex d can be connected
with the single interaction line. In the analytical expression,
this corresponds to the factor δ(βh̄ωm). The lattice variables
�s and �s ′ of propagators D− can be inner or external. In the
first case, end points of propagators are connected with the end
points {�1′,�1′′, . . . ,�k′,�k′′} of interaction lines V (0)

αγ . . . V (0)
ρσ and

the summation
∑

�1′,...�k′
�1′′ ...�k′′

∑
mi

is performed. In the second case,

end points of propagators are not connected with interaction
lines.

The first approximation of the diagram expansion (4) is the
self-consistent field approximation in which the effective field
acting on spins is derived and the self-consistent field H (c)

μ

induced by the neighboring spins is taken into account.19,22,23

This leads to the substitution p0 → p = βgμB | �H + �H (c)| in
the propagator D− (7) and in the block factor B[κl−1] (8) in
the analytical expression (9). The self-consistent field is the
sum of exchange and magnetic dipole self-consistent fields,
H (c)

μ = H (exch)
μ + H (m)

μ , where

H (exch)
μ (�1) = (gμB)−1

∑
�1′

Iμν(�1 − �1′)〈〈Sν(�1′)〉〉

H (m)
μ (�1) = −4πgμB∇μ

∑
�1′

�(�r − �r ′)∇′
ν〈〈Sν(�r ′)〉〉

∣∣∣∣ �r=�1
�r ′=�1′

.

(10)

The second approximation of the expansion (4) is the approx-
imation of the effective Green functions and interactions. In
this approximation, the poles of the matrix of the effective
Green functions and interactions are determined and the
dispersion curves are obtained. The next terms in the diagram
expansion determine the imaginary and real corrections to
the poles of the matrix of the effective Green functions
and interactions. The imaginary parts of the poles give the
relaxation parameters of spin excitations and the real parts
determine the corrections to the dispersion curves. In the next
section, we consider the approximation of the effective Green
functions and interactions.

B. Effective Green functions and interaction lines

In the framework of this approximation, the matrix of
the effective Green functions and effective interactions P =
‖PAB(�1,�1′,ωm)‖ is introduced.22,23 We compose the P matrix
from analytical expressions of connected diagrams with two
external sites. These sites are end points of propagators, single
vertices d, or end points of interaction lines. Accordingly,
multi-indices A = (aμ), B = (bν) are the double indices,
where μ,ν = {−,+,z} and indices a, b point out that A, B

belong to a propagator or to a d vertex (a,b = 1), or belong to
an interaction line (a,b = 2). The zero-order approximation
P (0) of the P matrix is determined by the matrix of the
bare interaction V (0) = ‖V (0)

μν (�1 − �1′,ωm)‖ and by the two-site
Green functions (5) in the self-consistent-field approximation

G(0) = ‖G(0)
μν‖, given on a lattice site:

P (0) =

⎛
⎜⎜⎜⎝

∥∥P
(0)
(1μ)(1ν)

∥∥ ...
∥∥P

(0)
(1μ)(2ν)

∥∥
· · · · · · · · ·∥∥P

(0)
(2μ)(1ν)

∥∥ ...
∥∥P

(0)
(2μ)(2ν)

∥∥

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

∥∥G(0)
μν

∥∥ ... 0

· · · · · · · · ·
0

...
∥∥V (0)

μν

∥∥

⎞
⎟⎟⎟⎠ ,

where

∥∥G(0)
μν

∥∥ =

⎛
⎜⎝

0 G
(0)
−+ 0

G
(0)
+− 0 0

0 0 G(0)
zz

⎞
⎟⎠

=2B(p)

⎛
⎜⎜⎝

0 D−(�1,�1′,ωm) 0

D+(�1,�1′,ωm) 0 0

0 0 B[1](p)
2B(p) δ�1�1′δm0

⎞
⎟⎟⎠

(11)

with the propagator (7) in which the substitution p0 → p =
βgμB | �H + �H (c)| is performed.

The P matrix is obtained by means of the summation of
the P (0) matrix: the summation of all diagram chains consisted
of the bare Green functions G(0)

μν and the bare interaction lines
V (0)

μν (Fig. 2). These chains of propagators and interaction lines

(a)

G
(0)

=

= G+-

(0)

z z

- +

-+

= G-+
(0)

= Gzz
(0)

P = G =(1 )(1 ) = +

(b)

P = V =(2 )(2 ) = +

(c)

P =(1 )(2 ) =

P =(2 )(1 ) =

FIG. 2. (a) Definition of the effective Green functions P(1μ)(1ν) =
Gμν via the bare two-site Green functions G(0)

μν . (b) Definition of ef-
fective interaction lines P(2μ)(2ν) = Vμν . (c) Definition of intersecting
terms P(1μ)(2ν), P(2μ)(1ν).
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do not have any loop insertion. Analytical expressions of the
considered diagrams can be written in accordance with relation
(9). The summation gives equation of the Dyson type, which
forms the relationship between P (0)- and P-matrices,

P = P (0) + PσP (0), (12)

where

σ =

⎛
⎜⎜⎜⎝

0
... E

· · · · · · · · ·
E

... 0

⎞
⎟⎟⎟⎠ ,

E = ‖δμν‖ is the diagonal matrix.
The P-matrix consists of the two-site effective Green

functions G = ‖Gμν‖ = G(0)(E − V (0)G(0))−1, where Gμν =
P(1μ)(1ν), effective interactions V = ‖Vμν‖ = V (0)(E −
G(0)V (0))−1, where Vμν = P(2μ)(2ν), and intersecting terms
P(1μ)(2ν), P(2μ)(1ν) (see Fig. 2). The effective Green functions,
effective interactions, and intersecting terms are denoted in
diagrams by directed thick lines, empty lines, and composi-
tions of the thick and empty lines, respectively. The P matrix
determines the spectrum of quasiparticle excitations in the spin
ensemble. Spectrum relations for spin excitations are given
by the P matrix poles by zero eigenvalues of the operator
1 − σP (0) or, equivalently, by E − V (0)G(0) under the analytical
continuation

iωm → ω + iε sign ω,
(13)

δ(βh̄ωm) = δm0 → 1

βh̄(ω + iε sign ω)
(ε → +0).

Since zero eigenvalues of the operator E − V (0)G(0) may
correspond to different eigenfunctions and can determine dif-
ferent excitation modes, we introduce the spectral parameter λ

for the eigenfunctions h(λ)
μ (�1,ωm) of the operator E − V (0)G(0).

The spectral parameter λ can be discrete or continuous.
Taking into account the above mentioned, we get the equation
describing spin-wave excitations:

h(λ)
μ (�1,ωm) −

∑
�1′,�1′′,ν,ρ

V (0)
μν (�1 − �1′,ωm)

×G(0)
νρ (�1′,�1′′,ωm)h(λ)

ρ (�1′′,ωm)

∣∣∣∣
iωm→ω+iεsignω

= 0. (14)

III. SPIN WAVES IN MAGNETIC FILMS

A. Spin-wave equations for magnetic films

Let us consider spin waves with the wave vector �q in normal
and in-plane magnetized films consisted of N monolayers
at low temperature. Monolayers can be regarded as layers
consisting of ions with strong exchange interaction or layers
consisting of magnetic nanoparticles. In the second case, the
exchange interaction between nanoparticles can reach low
values in comparison with the MDI. The external magnetic
field H is parallel to the z axis. At low temperature, derivatives
of the Brillouin function in B[n](p) in relation (8) tend to zero
exponentially with decreasing temperature. Thus it follows
that diagrams containing blocks with isolated parts can be

dropped, the Green function G(0)
zz in relation (11) is negligible

and only the Green functions G
(0)
−+, G(0)

+− are taken into account
in Eq. (14). Indices μ, ν of interactions V (0)

μν in Eq. (14) are
{−,+}. We suppose that on monolayers, spins are placed on
quadratic lattice sites with the lattice constant a and the spin
orientation is parallel to the z axis. The exchange interaction
acts between neighboring spins and is isotropic between spins
in monolayers, 2I

(mon)
−+ = 2I

(mon)
+− = I (mon)

zz = I0, and between

neighboring layers, 2I
(lay)
−+ = 2I

(lay)
+− = I

(lay)
zz = Id .

As we consider spin waves in two-dimensional layers
and films, it is necessary to discuss restrictions imposed by
the Mermin-Wagner theorem.36 The Mermin-Wagner theorem
states that continuous symmetries cannot be spontaneously
broken at finite temperature in systems with sufficiently
short-range interactions in dimensions �2. In accordance
with the theorem, the isotropic spin Heisenberg model can
be neither ferromagnetic nor antiferromagnetic. The theorem
extends to N -layer films: for any finite temperature and for
any finite number of layers, a phase transition is ruled out.37,38

In the case of the Heisenberg model with the Hamiltonian
H (1), the Mermin-Wagner theorem is not applied: the O(3)
rotational symmetry of the Hamiltonian H is broken by the
MDI and by the external magnetic field H . Therefore the two-
dimensional layers and films considered below have nonzero
finite magnetization. We suppose that the magnitude of the
magnetic field is sufficient to achieve magnetic saturation and
to eliminate a domain structure.

1. Normal magnetized films

In normal magnetized films, x and y axes are in the
monolayer plane and the z axis is normal to monolayers.
The magnetic field H is normal to monolayers. The Fourier
transform of the exchange interaction with respect to the
longitudinal lattice variables �1xy is

Ī (�q,1z − 1′
z) =

∑
�1xy−�1′

xy

I (�1xy − �1′
xy,1z − 1′

z)

× exp[−i �q(�1xy − �1′
xy)]

= Ī (0,1z − 1′
z) + 2I0[cos(qxa)

+ cos(qya)]δ1z1′
z
, (15)

where �1xy and �1′
xy are lattice sites in monolayers, 1z and 1′

z are z

positions of layers, �q = (qx,qy) is the longitudinal wave vector
in monolayers, and Ī (0,1z − 1′

z) is the exchange interaction
at �q = 0, which is equal to Id between spins of neighboring
layers. The corresponding exchange part of the interaction line
V (0)

μν = V (exch)
μν + V

(dip)
μν [see Fig. 1(d)] is

V (exch)
μν (�q,1z − 1′

z) = βĪ (�q,1z − 1′
z)/2, (16)

where μν = (−+),(+−). For indices μν = (−−) and (++),
V (exch)

μν = 0. The MDI part V
(dip)
μν is determined by the Fourier
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transform of Eq. (3):

(
−q2 + ∂2

∂z2

)
�(�q,z − z′) = S−1

a δ(z − z′)

with the solution

�(�q,1z − 1′
z) = �(�q,z − z′)|z=1z,z′=1′

z

= −1

2qSa

exp(−q|1z − 1′
z|), (17)

where Sa = a2, q = |�q|. According to the solution (17), the
corresponding MDI part of the interaction line is

V (dip)
μν (�q,1z − 1′

z) = −2πβ(gμB )2qμqν

qSa

exp(−q|1z − 1′
z|),

(18)

where

μ,ν = {−,+} q− = 1
2 (qx + iqy), q+ = 1

2 (qx − iqy).

Taking into account relations (16) and (18), from Eq. (14), we
obtain equations for spin-wave modes with the wave vector �q

in N -layer magnetic films:

h(λ)
μ (�q,1z,ωm) −

∑
�1′
z

[
V

(0)
μ−(�q,1z − 1′

z,ωm)

×G
(0)
−+(1′

z,1
′
z,ωm)h(λ)

+ (�q,1′
z,ωm) + V

(0)
μ+(�q,1z − 1′

z,ωm)

×G
(0)
+−(1′

z,1
′
z,ωm)h(λ)

− (�q,1′
z,ωm)

]∣∣
iωm→ω+iεsignω

= 0, (19)

where

G
(0)
−+

(+−)
(1z,1

′
z,ωm) = 2B(p)δ1z1′

z

p ± iβh̄ωm

,

λ = 1, . . . ,N is the mode number, V (0)
μν (�q,1z − 1′

z,ωm) =
V (exch)

μν (�q,1z − 1′
z) + V

(dip)
μν (�q,1z − 1′

z), μ,ν = {−,+}. Eigen-
values of equations (19) give dispersion relations of spin waves
in normal magnetized films.

2. In-plane magnetized films

In in-plane magnetized films, x and z axes are in the
monolayer plane and the y axis is normal to monolayers. The
Fourier transform of the exchange interaction with respect to
the longitudinal lattice variables �1xz is given by relation (15),
where substitutions �1xy → �1xz, �1z → �1y , and qy → qz should
be done. The MDI part of the interaction is

V
(dip)
−−

(++)
(�q,1y − 1′

y) = πβ(gμB )2

(
q2

x ± 2qx

∂

∂y
+ ∂2

∂y2

)
�(�q,y − y ′)

∣∣∣∣
y=1y ,y ′=1′

y

(20)

V
(dip)
+− (�q,1y − 1′

y) = V
(dip)
−+ (�q,1y − 1′

y) = πβ(gμB )2

(
q2

x − ∂2

∂y2

)
�(�q,y − y ′)

∣∣∣∣
y=1y ,y ′=1′

y

,

where

�(�q,y − y ′) = −1

2qSa

exp(−q|y − y ′|),

q = (q2
x + q2

z )1/2 is the longitudinal wave vector. Taking into
account relation (15) with the above mentioned substitutions
and relation (20), from Eq. (14), we obtain equations for
spin-wave modes in in-plane magnetized films analogous to
Eq. (19), where the substitution �1z → �1y should be done.
In next sections, we find spin-wave dispersion relations for
the cases of monolayer and two-layer films and spin-wave
resonance relations for the case of N -layer structures.

B. Spin waves in magnetic monolayer

1. Normal magnetized monolayer films

Dispersion relations of spin waves in normal magnetized
monolayer lattice are determined by the determinant of
Eq. (19) for variables h

(1)
− and h

(1)
+ . Taking into account

relations (16) and (18), we find

ω2(�q) = �(�q)[�(�q) + 2πγσmq], (21)

where

�(�q) = γ (H + H (m)) + 2B(p)I0

h̄
[2 − cos(qxa) − cos(qya)],

γ = gμB/h̄ is the gyromagnetic ratio, H (m) = | �H (m)| is the
depolarizing magnetic field (10), σm = gμBB(p)/Sa is the
surface magnetic moment density, and q = (q2

x + q2
y )1/2. As

one can see from relation (21), in the monolayer lattice, spin
waves have the one-mode character.

In the next sections, we compare dispersion relations (21)
with dispersion relations in thick magnetic films. Therefore
we calculate the dispersion curve for a monolayer film
with parameters analogous to YIG films. YIG films have
the magnetization 4πM = 4πgμBB(p)/a3 = 1750 Oe and
the exchange interaction constant α = B(p)I0a

2/h̄γ 4πM =
3.2 × 10−12 cm2 at room temperature.18 Magnetic parameters
of monolayer with 〈〈Sz〉〉0 = B(p) = 1/2 are analogous to
YIG, if the lattice constant a = 0.4 nm and the exchange
interaction between neighboring spins I0 = 0.085 eV. Figure 3
presents the dispersion curve (21) of spin waves propagat-
ing in the monolayer film. The spin-wave wave vector �q
is parallel to the x axis (qx = q, qy = 0) and is in the
range [0,π/a]. Calculations have been done at the sum of
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FIG. 3. (Color online) Dispersion curve of spin waves propagat-
ing in the normal magnetized monolayer film with quadratic lattice
(a = 0.4 nm) at the sum of magnetic fields H + H (m) = 3 kOe.
Exchange interaction I0 is 0.085 eV.

magnetic fields H + H (m) = 3 kOe. For the given monolayer
film, the exchange interaction makes a major contribution
to the dispersion. The relatively weak MDI is significant
for the dispersion at small values of the wave vector q < q0,
where

q0 = h̄πγ σm

B(p)I0a2
= a

4α
.

At q → 0, the group velocity of spin waves is positive
v = πγσm. These spin waves are analogous to forward
volume magnetostatic spin waves propagating in magnetic
films.1–3,18

2. In-plane magnetized monolayer films

Dispersion relations of spin waves in in-plane magnetized
monolayers are determined by the determinant of Eq. (19)
for the variables h

(1)
− and h

(1)
+ with the substitution �1z → �1y .

Taking into account relations (20), we obtain

ω2(�q) = [�(�q) + �M − 2πγσmq] ·
[
�(�q) + 2πγσm

q2
x

q

]
,

(22)

where

�(�q) = γH + 2B(p)I0

h̄
[2 − cos(qxa) − cos(qza)],

q = (q2
x + q2

z )1/2, and �M = 4πγσm/a. Spin waves propagat-
ing along the x axis (�q ⊥ �H,q = qx,qz = 0) at q → 0 have
the positive group velocity

v = πγσm�M

[�(0)(�(0) + �M )]1/2

and, in this sense, are analogous to surface
magnetostatic spin waves propagating in magnetic
films.1–3,18 In contrast with this, spin waves
propagating along the z axis (�q ‖ �H,q = qz,qx = 0)
at q → 0 have the negative group velocity

v = − πγσm�(0)1/2

(�(0) + �M )1/2

and have features of backward volume magnetostatic spin
waves. These backward spin waves propagate in the sector
[−θ,θ ], where sin θ = �(0)/[�(0) + �M ].

C. Spin waves in magnetic bilayer

Let us consider spin waves in magnetized structures
consisted of two monolayers of the quadratic lattice with the
lattice constant a. The distance between layers is equal to d

and the exchange interaction between spins of layers is Id .

1. Normal magnetized films

Dispersion relations for two spin-wave modes in normal
magnetized bilayer are determined by eigenvalues of Eq. (19)
for variables h

(1)
− , h

(1)
+ , h

(2)
− , and h

(2)
+ and can be written as

ω(1)2(�q) = �(�q){�(�q) + 2πγσmq[1 + exp(−qd)]},
ω(2)2(�q) =

[
�(�q) + 2B(p)Id

h̄

]{
�(�q) + 2B(p)Id

h̄

+ 2πγσmq[1 − exp(−qd)]

}
, (23)

where q = (q2
x + q2

y )1/2 and �(�q) is defined in relation (21).
For the first mode, spins in different layers change their
orientations in phase. In this case, spin waves of the first
mode correspond to spin waves in monolayer (21). At q →
0, the group velocity of spin waves v = 2πγσm is two
times higher than the group velocity in monolayer. For the
second mode, spins in different layers change orientations in
antiphase and the energy of the spin wave with the given
longitudinal wave vector q is higher than the energy of the
spin wave of the first mode. For q → 0, the spin-wave group
velocity v tends to zero. Dispersion curves of spin waves
determined by relations (23) are shown in Fig. 4. Spin waves
propagate along the x axis. Calculations have been done for the
exchange interactions I0 = Id = 0.085 eV and for the distance
between layers d = a = 0.4 nm at the sum of magnetic fields
H + H (m) = 3 kOe.

2. In-plane magnetized films

Dispersion relations of spin waves in in-plane magnetized
bilayers are determined by eigenvalues of Eq. (19) for variables
h

(1)
− , h

(1)
+ , h

(2)
− , and h

(2)
+ with the substitution �1z → �1y . Taking

into account relations (20), for spin waves propagating along
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FIG. 4. (Color online) Dispersion curve of spin waves propagat-
ing in the normal magnetized bilayer with quadratic lattice (a = 0.4
nm) at the sum of magnetic fields H + H (m) = 3 kOe. Exchange
interactions, I0 = Id = 0.085 eV. The distance between monolayers
d is equal to the lattice constant a. 1 and 2 are the first and the second
modes of spin waves, respectively.

the x axis (�q ⊥ �H,q = qx,qz = 0), we obtain

ω(n)2(q) =
[
�(q) + B(p)Id

h̄

] [
�(q) + �M + B(p)Id

h̄

]

+
[
B(p)Id

h̄

]2

+ Q{�M − Q[1 + 2 exp(−2qd)]}

±
({ [

2�(q) + 2B(p)Id

h̄
+ �M

]
B(p)Id

h̄

+Q exp(−qd)(2Q − �M )

}2

+ 4Q2 exp(−2qd)

×
{
Q2 exp(−2qd)−

[
B(p)Id

h̄

]2 })1/2

, (24)

where Q = 2πγσmq, n = 1,2 is the mode number, �(q) and
�M are defined in relation (22). At q → 0, the group velocity
of the first mode

v = 2πγσm�M

{�(0)[�(0) + �M ]}1/2

is two times higher than the group velocity of spin waves in
monolayer. For the second mode, v tends to zero.

For spin waves propagating along the z axis (�q ‖ �H,q = qz,

qx = 0) dispersion relations of two modes are

ω(1)2(q) = �(q){�(q) + �M − 2πγσmq[1 + exp(−qd)]},
ω(2)2(q) =

[
�(q) + 2B(p)Id

h̄

] {
�(q) + �M + 2B(p)Id

h̄

−2πγσmq[1 − exp(−qd)]

}
. (25)

For small wave vectors q, the group velocity of the first mode
is negative and at q → 0 is equal to

v = − 2πγσm�(0)1/2

(�(0) + �M )1/2 .

The group velocity of the second mode tends to zero with the
wave vector decrease.

D. Spin-wave resonance in N-layer structure

In this section, we consider a spin-wave resonance in a
normal magnetized structure consisted of N uniform mono-
layer lattices with the exchange interaction Id between spins
of layers. The distance between layers is equal to d. The
spin-wave resonance is the limit case of a spin wave when
the longitudinal wave vector q → 0. Therefore the MDI terms
V

(dip)
μν (�q,1z − 1′

z) in Eq. (19) can be dropped and the equations
with variables h

(λ)
+ and h

(λ)
− are separated and eigenvalues are

determined by the zero values of the determinant (we write the
determinant D(+) for equations with the h

(λ)
+ ):

D(+) = G(0)(1) . . . G(0)(N ) det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[G(0)−1(1) − V (0)(11)] −V (0)(12) 0
...

−V (0)(21) [G(0)−1(2) − V (0)(22)] −V (0)(23)
...

0 −V (0)(32) [G(0)−1(3) − V (0)(33)]
...

· · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where V (0)(kj ) and G(0)(k) are the abridged notation of V
(exch)
+− (�q,kz − jz,ωm)|�q=0 and G

(0)
−+(k,k,ωm) at iωm → ω + iεsignω,

respectively. (k,j ) are indices of layers. Taking into account that spins of outer layers (k = 1,N ) interact with spins of one inner
layer and spins of inner layers interact with spins of two layers and introducing the variable for inner layers in the determinant
D(+),

x = G(0)−1(k) − V (0)(kk)

−V (0)(jk)
= h̄

B(p)Id

[ω − γ (H + H (m))] − 2 (k 
= 1,N, j = k ± 1),
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we obtain that the spin-wave resonance spectrum is determined by roots of the polynomial

RN (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x + 1) 1 0 0
... 0 0

1 x 1 0
... 0 0

0 1 x 1
... 0 0

0 0 1 x
... 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0

... x 1

0 0 0 0
... 1 (x + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (x + 1)2PN−2(x) − 2(x + 1)PN−3(x) + PN−4(x) = 0 (N � 2),

where P−2(x) = −1, P−1(x) = 0, P0(x) = 1, PN (x) =
xPN−1(x) − PN−2(x). Polynomial RN (x) has N roots:

x(n) = −2 cos

(
πn

N

)
,

where n = 0,1, . . . ,N − 1. Taking into account the form of
the roots x(n), we can introduce the transverse wave vector
q(n)

z = πn/Nd. Then the spin-wave resonance spectrum can
be written as

ω(n) = γ (H + H (m)) + 2B(p)Id

h̄

[
1 − cos

(
q(n)

z d
)]

. (26)

For the first mode (n = 0), spins in different layers change
their orientations in phase. For the highest mode (n = N − 1),
spins in different layers change orientations in antiphase and
the energy of spin-wave resonance is highest. Figure 5 presents
the spin-wave resonance spectrum (26) for the structure with
N = 40 layers. One can see that at low values of the transverse
wave vector, the resonance spectrum is proportional to the
quadratic dependence on q(n)

z .

d

Id

D

0.0 1.0 2.0 3.0
q d = n/N

0.0
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z

(n)
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ω
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FIG. 5. (Color online) Spin-wave resonance spectrum ω(n)

(n = 0,1, . . . ,N − 1) for the structure with N = 40 layers. q (n)
z is

the transverse wave vector, d is the distance between layers, and Id

is the exchange interaction between spins of layers.

IV. LANDAU-LIFSHITZ EQUATIONS AND SPIN-WAVE
EXCITATIONS IN THICK MAGNETIC FILMS

A. Linearized Landau-Lifshitz equations

Equations (14) and (19) describe spin-wave excitations.
Solutions of these equations for magnetic samples of great
volumes and for thick N -layer magnetic films with N � 1
become difficult, because determinants of Eqs. (14) and (19)
have high orders. In order to overcome the difficulty and to
find the spin-wave spectrum for these samples, we derive
Landau-Lifshitz equations.22,23 Dispersion relations for spin
excitations are determined by the P-matrix poles (12) that
coincides with poles of the matrix G of effective propagators.
Accordingly, the dispersion relations can be derived from the
eigenvalues of equation

G = G(0) + G(V (exch) + V (dip))G(0), (27)

where G(0) = ‖G(0)
μν‖ is the matrix of bare propagators (11).

Since the considered interaction is the sum of exchange and
magnetic dipole interactions, we can obtain the eigenvalues
and eigenfunctions of equation (27) by a two-step procedure.
In the first stage, we perform the summation of diagrams, take
into account the exchange interaction, and find the propagator
matrix G(1) = ‖G(1)

μν‖
G(1) = G(0) + G(0)V (exch)G(1). (28)

In the second stage, the summation of diagrams with dipole
interaction lines is performed. This gives the equation for the
matrix G of effective propagators expressed in terms of the
matrix G(1):

G = G(1) + GV (dip)G(1). (29)

Thus the solution of Eq. (27), which determines the matrix
G, is equivalent to the solution of Eqs. (28) and (29). After the
performed two-step summation, Eq. (14) for eigenfunctions
h(λ)

μ is written in the more convenient form

h(λ)
μ (�1,ωm) −

∑
ρ,σ
�1′ �1′′

V (dip)
μρ (�1 − �1′,ωm)

×G(1)
ρσ ( �1′, �1′′,ωm)h(λ)

σ ( �1′′,ωm)

∣∣∣∣
iωm→ω+iεsignω

= 0. (30)
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The solution of simultaneous equations (28) and (30) gives
the dispersion relations for spin excitations. These equations
can be reduced to linearized Landau-Lifshitz equations in
the generalized form and the equation for the magnetostatic
potential. In order to perform this transformation, one needs
to make a transition to the retarded Green functions. We
transform the matrix equation (28) to equations describing
small variations of the magnetic moment density (or the
variable magnetization), mν . The variable magnetization mν

under the action of the magnetic field hν = h̄ν , which is
generated by the MDI V (dip), is given by the retarded Green
functions, which are determined by the analytical continued
values of the propagator matrix G(1):39

mν(�1,ω) = β(gμB)2

Va

∑
ρ, �1′

G(1)
νρ (�1, �1′,ωm)

∣∣∣∣
iωm→ω−iε

h̄ρ( �1′,ω),

(31)

where Va is the atomic volume. The analytical continuation
iωm → ω − iε defines the retarded Green functions. h̄ρ(�1,ω)
is the field of the magnetic dipole-dipole interaction acting on
spins. By multiplying matrix equation (28) by G(0)−1 from the
left and by h̄ρ from the right, performing the analytical continu-
ation iωm → ω − iε, δ(βh̄ωm) → [βh̄(ω − iε)]−1 and taking
into account relation (31), we get the matrix equation (28)
in the form of simultaneous equations:∑

ν, �1′

[
G(0)−1

ρν (�1, �1′,ω) − βIρν(�1 − �1′)
]
mν( �1′,ω)

= β(gμB)2

Va

h̄ρ(�1,ω). (32)

For isotropic exchange interaction, 2I−+ = 2I+− = Izz =
I , equations (32) have the form

Ê±m±(�1,ω) = 2γM(�1)h̄∓(�1,ω), (33)

Êzmz(�1,ω) = B[1](p)

B(p)
γM(�1)h̄z(�1,ω), (34)

where M(�1) = gμBB(p)/Va is the magnetic moment density
at the low-temperature approximation. We say that the opera-
tors Ê± and Êz,

Ê±m±(�1,ω) = [γ (H (�1) + H (m)(�1)) ± ω]m±(�1,ω)

+ B(p)

h̄Vb

∑
�1′

∫
Vb

[Ī (0) − Ī (�q)]

× exp[i �q(�1 − �1′)]m±( �1′,ω) d3q

and

Êzmz(�1,ω)=ωmz(�1,ω) − B[1](p)

h̄Vb

∑
�1′

∫
Vb

Ī (�q) exp[i �q(�1−�1′)]

×mz( �1′,ω) d3q,

are Landau-Lifshitz operators. For a cubic crystal lattice,
the Fourier transform of the exchange interaction with re-
spect to the lattice variables is Ī (�q) = ∑

�1 I (�1) exp(−i �q�1) =
2I0[cos(qxa) + cos(qya) + cos(qza)], where I0 is the interac-
tion between neighboring spins. The field H (m)(�1) is defined

by relation (10) and depends on the magnetic moment density
M(�1); Vb = (2π )3/Va is the volume of the first Brillouin zone.
Equations (33) and (34) have the generalized form of the
Landau-Lifshitz equations.18 Solutions m± of Eq. (33) depend
on temperature, because β = 1/kT is contained in the variable
p of the function B(p) (8), through which the magnetic
moment density M(�1) is expressed. Equation (34) describes
longitudinal variations of the variable magnetization under the
influence of the field h̄z. At low temperature, the derivative of
the function B[1](p) tends to zero and the longitudinal variable
magnetization mz is negligible.

From the form of the magnetic dipole interaction in
relations (2) and (3), it follows that the field hν = h̄ν ,
which is generated by the MDI V (dip), in relation (31) is
magnetostatic, i.e., it is expressed in terms of the magnetostatic
potential ϕ: h̄ν = −∇νϕ. We transform equation (30) to the
equation for the magnetostatic potential ϕ(�r,ω). Taking into
account relation (31) and the explicit form of the magnetic
dipole interaction in relations (2) and (3), performing the
derivation ∇μ, the analytical continuation iωm → ω − iε and
the summation of equation (30) over the index μ, we obtain
the equation expressed in terms of ϕ, mν :

−�ϕ(�r,ω) + 4π∇νmν(�1,ω)|�1→�r = 0. (35)

Equation (35) gives the boundary conditions for the normal
component of the field �b = −∇ϕ + 4π �m,

(�b,�n)|+∂V = (�b,�n)|−∂V , (36)

where �n is the normal to the boundary, ∂V , +∂V , and −∂V

denote different sides of the boundary. Thus, in consideration
of the Landau-Lifshitz equations (33) and (34), the dispersion
relations of spin excitations are given by the eigenvalues of
Eq. (35).

If the scale of the spatial distribution of the variable
magnetization mν(�1,ω) and the sample size are much greater
than the lattice constant a, then the sum over the lattice
variables

∑
�1 in Landau-Lifshitz operators Ê± and Êz can be

converted into an integral over the sample volume V −1
a

∫
d3r .

In this approximation, we suppose that the film is continuous
over the thickness and, therefore, one can use methods of
differential and integral calculus. Let us consider the case of
normal and in-plane magnetized homogeneous films when the
temperature is low. Then we obtain that mz → 0 and Eq. (34)
is dropped.

1. Normal magnetized films

The dispersion relations of spin waves in a normal mag-
netized film with thickness D are determined by Eqs. (33)
and (35). Taking into account that the magnetic field H (m) in
normal magnetized films is equal to −4πM ,18 we find the
dispersion relations of spin waves:

ω(n)2(�q) = �(n)(�q)
[
�(n)(�q) + �Mq2/q

(n)2
0

]
, (37)

where n = 1,2,3, . . . is the mode number, �q = (qx,qy) is
the two-dimensional longitudinal wave vector of spin waves,
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q = |�q|,

�(n)(�q) = γH − �M + 2B(p)I0

h̄

×[
3 − cos(qxa) − cos(qya) − cos

(
q(n)

z a
)]

,

�M = 4πγM , q
(n)
0 = (q2 + q(n)2

z )1/2, q(n)
z is the transverse

vector. The magnetostatic potential over the thickness
z ∈ [−D/2,D/2] of the magnetic film is

ϕ(n�q)(x,y,z) = (2π )−1f (n)−1/2 exp(iqxx + iqyy)

× cos
[
q(n)

z z + π (n − 1)/2
]
, (38)

where f (n) = D/2 + q/q
(n)2
0 . The boundary conditions (36)

gives the relationship between the transverse q(n)
z and the

longitudinal q wave vectors:

2 cot q(n)
z D = q(n)

z

q
− q

q
(n)
z

. (39)

For low values of q and for small mode numbers n, we can
neglect the exchange term in the �(n)(�q). Then, in this case,
dispersion relations (37) correspond to dispersion relations of
forward volume magnetostatic spin waves.1–3,18

2. In-plane magnetized films

Let us consider the case, when x and z axes are in the film
plane and the y-axis is normal to the plane. The magnetic
field �H is parallel to the z axis. Spin waves propagate along
the x axis. Dispersion relations of spin waves in an in-plane
magnetized film with the thickness D are determined by
Eqs. (33) and (35) with boundary conditions (36). Taking into
account that the magnetic field H (m) in in-plane magnetized
films is equal to zero, we find the dispersion relations of surface
spin waves:

ω(s)2(q) = �2(q) + �(q)�M + �2
M

4
[1 − exp(−2qD)], (40)

where

�(q) = γH + 4B(p)I0

h̄
[1 − cos(qa)],

and dispersion relations of high spin-wave modes,

ω(n)2(q) = �(n)(q)[�(n)(q) + �M ], (41)

where

�(n)(q) = γH + 2B(p)I0

h̄

[
2 − cos(qa) − cos

(
q(n)

y a
)]

,

q(n)
y = πn/D, n = 1,2,3, . . . . For low values of q, we can

neglect the exchange term in the �(q) in relation (40). In this
case, the dispersion relations correspond to dispersion relations
of Damon-Eshbach surface magnetostatic spin waves.40

Let us consider the case when spin waves propagate along
the z axis (q = qz). Then the solution of Eqs. (33) and (35)
gives the spin-wave dispersion relations

ω(n)2(q) = �(n)(q)

[
�(n)(q) + �M − �Mq2

q
(n)2
y + q2

]
, (42)

where �(n)(q) is defined in relation (41). The transverse
wave vector q(n)

y is determined by relation (39), where the

substitution q(n)
z → q(n)

y should be done. For low values
of q and for small mode numbers n, dispersion relations
(42) correspond to dispersion relations of backward volume
magnetostatic spin waves.1–3,18

B. Difference between dispersion relations of spin waves in
monolayers, bilayers and in thick magnetic films

We can single out the MDI part in the dispersion relations
of spin waves in monolayers, bilayers, and in thick magnetic
films. Taking into account that for monolayers and for bilayers
�M = 4πγσm/a, we can write the dispersion relations (21),
(23), and (37) of spin waves propagating in normal magnetized
films in the form

ω(n)2(�q) = �(n)(�q)[�(n)(�q) + �Mη(n)(qD)], (43)

where n is the mode number. η(n)(qD) is the function of qD,
where for monolayers D = a, for bilayers D = 2d = 2a (we
consider the case d = a), and in the case of thick films, D is the
thickness. �(n)(�q) is defined in relation (37). The η function
determines the action of the MDI.

For spin waves propagating in in-plane magnetized films
along the x axis (�q ⊥ �H,q = qx,qz = 0), dispersion relations
(22) and (24) and surface spin-wave relation (40) can be written
in the form

ω2(q) = �2(q) + �(q)�M + �2
Mη,

where for the case of monolayers and of thick films, η is a
function of qD. For bilayers, η is a function of qD, �(q)/�M ,
and B(p)I0/�M . �(q) is defined in relation (22).

For spin waves propagating in in-plane magnetized films
along the z axis (�q ‖ �H,q = qz,qx = 0), dispersion relations
(22), (25), and (42) have the form

ω(n)2(q) = �(n)(q)[�(n)(q) + �M − �Mη(n)(qD)]

with �(n)(q) defined in relation (41). The η function for
backward volume spin waves coincides with the η function
for forward waves in relation (43).

For the first forward and backward spin-wave modes and
for spin waves propagating in in-plane magnetized films along
the x axis, η functions are presented in Fig. 6. For in-plane
magnetized bilayers, Fig. 6(b) shows the η function of I0 = 0
and of B(p)I0/�M → ∞. For these cases, the η function
is independent on the variable �(q)/�M . One can see that
η functions of spin waves in monolayers, bilayers, and in
thick magnetic films are close for qD < 1. Thus, in order
to calculate dispersion relations of spin waves in N -layer
films (N = 1,2, . . .) consisted of monolayers for qD < 1, we
can consider the N -layer film as continuous. For example,
for a quadratic lattice monolayer with the lattice constant a,
the parameters of this continuous film are the following: the
thickness D is equal to a and the volume magnetic moment
density M is determined by the surface magnetic moment
density σm, M = σm/a. Spin excitations in thin magnetic films,
bilayers, and trilayers are calculated in Refs. 10–14 in the
continuous-film approximation for low wave vectors, qD � 1.
In accordance with the above mentioned, in this case, the usage
of the continuous-film approximation is correct.

For qD > 1, the difference between the η function of
monolayer and the η function of continuous thick magnetic
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(a)

(b)

FIG. 6. (Color online) (a) η function characterizing the action
of the MDI on dispersion curves of forward spin waves in normal
magnetized films and backward spin waves in in-plane magnetized
films vs the normalized wave vector qD. 1 is a monolayer, 2 is a
bilayer, and 3 is a thick film case. (b) η function for surface spin
waves in in-plane magnetized films. 1 is a monolayer, 2 is a bilayer
[2a for I0 = 0, and 2b for B(p)I0/�M → ∞], 3 is a thick film case.

films is considerable. The difference is due to the discreetness
of the lattice. If the exchange interaction is much greater than
the MDI, the difference between dispersion relations of spin
waves in monolayers and in continuous thick magnetic films
determined by η functions is insignificant in comparison with
the exchange interaction and can be dropped. But, when the
MDI is equal or greater than the exchange interaction, this
difference becomes essential and should be taken into account.
It is important for the case of monolayer lattice with magnetic
nanoparticles on lattice sites.

C. Exchange boundary conditions

Let us consider the case when the size of a homogeneous
film is much greater than the lattice constant a and the sum

∑
�1

in operators Ê± (33) can be converted into an integral over the
sample volume V −1

a

∫
d3r . The magnetic fields H and H (m)

are homogeneous. If we restrict ourself to the second term

in the Fourier transform of the exchange interaction Ī (�q) −
Ī (0) = −I0a

2q2, then the operators Ê± can be written in the
pseudodifferential form of order 2:41

Ê±m±(�r,ω) = [γ (H + H (m)) ± ω]m±(�r,ω)

+ 4πγαM

(2π )3

∫
V

∫
Vb

q2 exp[i �q(�r − �r ′)]

×m±(�r ′,ω) d3q d3r ′, (44)

where α = B(p)I0a
2/h̄γ 4πM is the exchange interaction

constant, V is the volume of the ferromagnetic sample.
In Refs. 15–18,42–46, the pseudodifferential Landau-

Lifshitz operators are reduced to the differential operators with
respect to spatial variables:

Ê±(�r,ω) = γ [H + H (m) − 4παM�] ± ω. (45)

For solvability of Eq. (33) with differential Landau-Lifshitz
operators (45), the exchange boundary conditions are imposed:

∂mν

∂ �n + ξmν

∣∣∣∣
∂V

= 0, (46)

where �n is the inward normal to the boundary ∂V and
ξ is the pinning parameter. As it is found in Appendix
for the case of forward volume spin waves propagating
in a normal magnetized film, simultaneous equations (33)
with operators (45) and with boundary conditions (46) and
Eq. (35) with boundary conditions (36) have no solutions due
to incompatibility of conditions (36) and (46). In order to
evaluate the influence of the exchange boundary conditions on
the dispersion relations, we formally drop out the boundary
conditions (36). Then the exchange boundary conditions (46)
give the relation for the transverse wave vector q(n)

z (see
Appendix):

2 cot q(n)
z D = q(n)

z

ξ
− ξ

q
(n)
z

, (47)

where n is the mode number. Dispersion relations (37) of
the first spin-wave mode propagating in the YIG film of
the thickness D = 0.5 μm with 4πM = 1750 Oe, and α =
3.2 × 10−12 cm2 at the applied magnetic field H = 3000 Oe
are shown in Fig. 7 for the transverse wave vector q(1)

z (47)
with different pinning parameters ξ . In contrast with these
curves, we show dispersion relations based on pseudodif-
ferential operators (44) with the boundary conditions (36)
(the curve A). One can see that there does not exist any constant
pinning parameter ξ at which the curve A calculated on the
basis of relation (39) coincides with the curves calculated on
the basis of the exchange boundary conditions.

In order to overcome the contradiction based on simulta-
neous solvability of relations (39) and (47), we should require
that the pinning parameter ξ = q. Only in this case, the curve
A calculated on the basis of equations with pseudodifferential
Landau-Lifshitz operators (44) coincides with the curves
calculated on the basis of differential equations with the
exchange boundary conditions (46).

V. SPIN-WAVE RELAXATION

In this section we answer the question: what is the value
of spin-wave relaxation in the model with magnetic dipole
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FIG. 7. (Color online) Dispersion curves of the first spin-wave
mode propagating in the YIG film of the thickness D = 0.5 μm with
4πM = 1750 Oe, α = 3.2 × 10−12 cm2 at the applied magnetic field
H = 3000 Oe. The curve A is calculated on the base of relation (39)
for the case of pseudodifferential Landau-Lifshitz operators (44).
Curves 1–4 are calculated for the case of differential Landau-Lifshitz
operators (45) on the base of relation (47) with different pinning
parameters ξ . (1) ξD = 0.01, (2) 0.1, (3) 1, and (4) 10.

and exchange interactions derived from first principles? The
answer depends on the ratio of the spin-wave energy to
intervals between modes of the spin-wave spectrum and is
different for thick and for thin magnetic films. In thick films,
the spin-wave energy is greater than energy gaps between
modes and a three-spin-wave process takes place. If the
exchange interaction is isotropic, it cannot induce three-
magnon processes and, therefore, the MDI makes a major
contribution to the relaxation. We consider the spin-wave
damping in thick films in the one-loop approximation. In
thin magnetic films (for example, in nanosized films), the
energy of long-wavelength spin waves is less than energy gaps
between modes and three-spin-wave processes are forbidden.
In this case, four-spin-wave processes take place, the exchange
interaction makes a major contribution to the relaxation,
and the spin-wave damping has lower values in comparison
with the damping in thick films. We calculate the spin-wave
relaxation for four-spin-wave processes in thin films for
long-wavelength spin waves in the two-loop approximation.

A. Spin-wave relaxation in thick films

The spin-wave relaxation induced by a three-spin-wave
process in normal magnetized homogeneous ferromagnetic
films is considered in Refs. 22 and 23 in the one-loop approxi-
mation for spin waves with small longitudinal wave vectors
at low temperature. The relaxation is determined by self-
energy diagram insertions �(1+)(1−) to the P matrix given by
relation (12) (see Fig. 8). Damping of the j -mode excitation is

q, j, m q,j, m

j,j,q, )m =
q,j, mq, j, m

1
2B + (2B)2

1
(1+)(1-)

FIG. 8. Self-energy diagrams in the one-loop approximation at
low temperature. B is determined by relation (8).

defined by the imaginary part of the pole of the effective Green
functions G−+ = P(1−)(1+) with insertions �(1+)(1−) under the
analytical continuation (13):

�(j )(�q) = δω(j )(�q)

ω(j )(�q)
= 2B(p)Va

βh̄ω(j )(�q)
Im �(1+)(1−)

× (j,j,�q,ωm)

∣∣∣∣
iωm→ω+iε sign ω

= Va

2βh̄ω(j )
Im

∑
n,i,k

∫
F (i)F (k)[P̄(1−)(1+)(i,−�q1,−ωn)

× P̄(2z)(2z)(k,�q − �q1,ωm − ωn)

+ 1

8B(p)
P̄(1−)(2z)(i,�q1,ωn)P̄(2z)(1+)

× (k,�q − �q1,ωm − ωn)]N2(j,�q; i,�q1; k,�q − �q1)

× d2q1

∣∣∣∣
iωm→ω+iε sign ω

, (48)

where

P̄(1−)(1+)(j,�q,ωm) = 2ρV 2
a (�(j ) + 2η

(j )
−+ + iωm),

P̄(1−)(2z)(j,�q,ωm) = −2η
(j )
+z(�

(j ) + iωm),

P̄(2z)(1+)(j,�q,ωm) = −2η
(j )
z−(�(j ) + iωm),

P̄(2z)(2z)(j,�q,ωm) = F (j )−1βVaĪ (�q) − ρ−1η(j )
zz (�(j )2 + iω2

m),

F (j ) = (
ω(j )2 + ω2

m

)−1
, ρ = B(p)

βh̄Va

,

η(j )
μν = �Mqμqν

q
(j )2
0

(μ,ν = −,+,z),

q± = 1

2
(qx ∓ iqy),

Ī (�q) = 2I0
[

cos(qxa) + cos(qya) + cos
(
q(j )

z a
)]

is the Fourier transform of the exchange interaction,

N (j1, �q1; j2, �q2; j3, �q3)

= 1

8πVa

3∏
k=1

1

f (jk )1/2

∑
σ1,σ2,σ3

sin
[( ∑3

k=1 σkq
(jk )
z

)
D/2

]
∑3

k=1 σkq
(jk )
z

× exp

[
i

3∑
k=1

σkπ (jk − 1)/2

]

is the block factor in the representation of the functions
(38), f (j ) = D/2 + q/q

(j )2
0 , σk = ±1;

∑
σ1,σ2,σ3

denotes the
summation over all sets {σ1,σ2,σ3}. The spin-wave frequency
ω(j ) and the transverse wave vector q

(j )
z are determined

by relations (37) and (39), respectively. The damping �(j )

increases directly proportionally to the temperature.
Relation (48) describes relaxation of the spin-wave j mode

caused by inelastic scattering on thermal excited spin-wave
modes. Relaxation occurs through the confluence of the j

mode with the k mode to form the i mode. From the explicit
form of the block factor N in relation (48), it follows that
the confluence processes take place when the sum of mode
numbers j + i + k is equal to an odd number. The confluence
processes are induced by the MDI and are accompanied by
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FIG. 9. (Color online) Spin-wave damping �(1) = δω(1)/ω(1) of
the first mode in normal magnetized YIG film with the magnetization
4πM = 1750 Oe and the exchange interaction constant α = 3.2 ×
10−12 cm2 at H = 3000 Oe, T = 300 K at different film thickness D.
(1) D = 500, (2) 300, (3) 200, (4) 120 nm. A is the low-relaxation
region.

transitions between thermal excited i and k modes. Transitions
take place when the equation

ω(j )(�q) = ω(i)(�q (s)) − ω(k)(�q − �q (s)) (49)

has at least one solution �q (s) for the given �q, i, j , k. The
existence of solutions �q (s) of Eq. (49) depends on the thickness
of the magnetic film. With decreasing film thickness D, the
density of dispersion curves of modes on the plane (ω,q)
decreases and the frequency of the spacings between curves
increase. The least frequency spacing occurs between the
first (i = 1) and the third (k = 3) modes. Figure 9 shows
the damping �(1) of the first spin-wave mode versus the
longitudinal wave vector q normalized by the film thickness D

at different film thicknesses. Calculations have been done for
a YIG film with the magnetization 4πM = 1750 Oe and the
exchange interaction constant α = 3.2 × 10−12 cm2 at H =
3000 Oe and T = 300 K. One can see that for the YIG film
with the thickness D = 120 nm in the region qD < 0.14 the
damping �(1) is equal to zero due to the absence of transitions
between modes. Thus, in thin magnetic films, a low spin-wave
relaxation region takes place. We define the low-relaxation
region as a region in the (ω,q) space, where spin wave has no
damping induced by three-spin-wave processes. For the given
j mode, this region appears when the excitation frequency
ω(j )(�q) is less than the difference ω(3)(�q (s)) − ω(1)(�q − �q (s))
at any values of the wave vector �q (s). For the first mode ω(1)

in the YIG film, the film thickness, when the low spin-wave
relaxation region appears, is shown in Fig. 10 at q → 0. If

ω(1)(0) < ω(3)(�q (s)) − ω(1)(�q (s)), (50)

the first mode has low values of the spin-wave damping �(1).
Taking into account dispersion relations (37), from inequality
(50), we can obtain an estimation of the characteristic thickness
for the given frequency ω:

D0 = 2π (α�M )1/2

[ω(ω + �M )]1/4
.
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FIG. 10. (Color online) Film thickness D0 of YIG film versus the
excitation frequency ω(1)(�q)/2π of the first mode at the wave vector
�q → 0. Low-relaxation region of the first spin-wave mode exists for
YIG films with the thickness D < D0.

We say that a film is thin with respect to the relaxation process,
if the film thickness D < D0. In the next section, we consider
the relaxation of spin waves in thin films.

B. Relaxation in thin magnetic films

What is the value of spin-wave damping in the low
relaxation region in thin magnetic films? We consider four-
spin-wave processes in the normal magnetized monolayer of
the quadratic lattice with the lattice constant a at small lon-
gitudinal wave vector values �q = (qx,qy) at low temperature.
As isotropy of the exchange interaction cannot forbid four-
spin-wave processes and the value of the exchange interaction
is much greater than the MDI, only the exchange interaction
will be taken into account in diagrams. We suppose that the
exchange interaction acts between neighboring spins and is
equal to I0. In order to calculate self-energy diagram insertions
to the effective Green functions in the two-loop approximation,
we use the ladder expansion (see Fig. 11). At small values of
wave vectors the bare �0 vertex [see Fig. 11(a)] is

�0(1,2; 3,4) ≡ �0(�k,�s + �q − �k; �q,�s)

= β[Ī (�k − �q) + Ī (�k − �s) − Ī (�s) − Ī (�q)]

= 2βI0a
2(�q,�s),

where 1,2; 3,4 is the abridged notation of two-dimensional
wave vectors, which are variables of �0 vertex; |�k|,|�q|,|�s| �
a−1:

Ī (�q) =
∑

�1xy−�1′
xy

I (�1xy − �1′
xy) exp[−i �q(�1xy − �1′

xy)]

= 2I0[cos(qxa) + cos(qya)].

The � vertex in the ladder approximation [see Fig. 11(b)] is
determined by the relationship

�(1,2; 3,4)

≡ �(�k,ω1,�s + �q − �k,ω3 + ω4 − ω1; �q,ω3,�s,ω4)

= �0(�k,�s + �q − �k; �q,�s)
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FIG. 11. (Color online) (a) Bare �0 vertex. (b) Ladder approxi-
mation. (c) Self-energy diagram insertion.

+ 1

8B2(p)Sb

∑
ω

(q)
m

∫
�0(�k,�s + �q − �k; �q ′,�s + �q − �q ′)

×G−+
( �q ′,ω(q)

m

)
G−+

(�s + �q − �q ′,ω3 + ω4 − ω(q)
m

)
×�

( �q ′,ω(q)
m ,�s+�q− �q ′,ω3+ω4−ω(q)

m ; �q,ω3,�s,ω4
)
d2q ′,

where

G−+(�q,ωm) = 2B(p)

βh̄(ω(�q) − iωm)

is the effective Green function determined by the P matrix
(12), ω(�q) is the frequency of spin excitations in monolayer
(21), and Sb is the volume of the two-dimensional first
Brillouin zone. The coefficient 1/8B2(p) is due to the fact
that the substitution of the bare Green function to effective
ones in diagrams are performed inside blocks. The self-energy
diagram insertion [see Fig. 11(c)] is given by

�(�q,ω(q)
m ) = 1

2Sb

∑
ω

(k)
n

∫
�0(�q,�k; �q,�k)G−+

(�k,ω(k)
n

)
d2k

+ 1

16B2(p)S2
b

∑
ω

(k)
n ,ω

(s)
l

∫ ∫
�0(�q,�s + �k − �q; �s,�k)

×G−+
(−�s − �k + �q, −ω(k)

n − ω
(s)
l + ω(q)

m

)
×G−+

(�k,ω(k)
n )G−+

(�s,ω(s)
l

)
×�

(�s,ω(s)
l ,�k,ω(k)

n ; �q,ω(q)
m ,�s + �k − �q,

ω(k)
n + ω

(s)
l − ω(q)

m

)
d2k d2s. (51)

The damping of spin-wave excitations at ω = ω(�q) is
expressed by the imaginary part of the self-energy �(�q,ω

(q)
m ):

�(�q) = δω(�q)

ω(�q)
= Im �

(�q,ω
(q)
m

)
βω

∣∣∣∣
iω

(q)
m →ω+iε sign ω

. (52)

Taking into account the self-energy �(�q,ω
(q)
m ) in the Born

approximation, namely, substituting � → �0 in relation (51),
integrating over �k and �s, and summing over the frequency
variables ω(k)

n and ω
(s)
l , from equation (52) at h̄ω(�q) < kT , we

obtain

�(�q) = C(qa)2(kT )2

16πB2(p)I0ε(0)
,

where C = 1.12, k is the Boltzmann constant and ε(0) =
h̄γ (H + H (m)) is the Zeeman energy. In order to evaluate the
damping of spin waves, we calculate �(�q) for spin waves with
the wavelength λ = 5 μm propagating in the monolayer film
with the lattice constant a = 0.4 nm and with the exchange
interaction between neighboring spins I0 = 0.085 eV, B(p) =
1/2 at T = 300 K. Then, taking into account that q = 2π/λ,
for ε(0)/h = 10 GHz, we obtain �(�q) = 4.28 × 10−6. Thus
one can see that the damping of spin waves of small wave
vectors is low.

VI. CONCLUSIONS

The results of the investigations can be summarized
as follows. (1) Spin excitations in thin magnetic films in
the Heisenberg model with magnetic dipole and exchange
interactions are studied by the spin operator diagram tech-
nique. Dispersion relations of spin waves in two-dimensional
magnetic monolayer and bilayer lattices and the spin-wave
resonance spectrum in N -layer structures are obtained. It is
found that dispersion relations of spin waves in monolayer
and bilayer lattices differ from dispersion relations of spin
waves in continuous thick magnetic films. This difference
is due to the discreetness of the lattice. For the case when
the magnetic dipole interaction is equal or greater than the
exchange interaction, for example, for monolayer consisted of
magnetic nanoparticles on the lattice, this difference becomes
essential and is taken into account.

(2) Generalized Landau-Lifshitz equations for thick mag-
netic films, which are derived from first principles, have the
integral (pseudodifferential) form, but not differential one with
respect to spatial variables. Spin excitations are determined
by simultaneous solution of the Landau-Lifshitz equations
and the equation for the magnetostatic potential. It is found
that the model based on differential Landau-Lifshitz equations
with exchange boundary conditions is contradictory. The
contradiction is removed, if the pinning parameter ξ is equal
to the spin-wave wave vector q.

(3) The magnetic dipole interaction makes a major con-
tribution to the relaxation of long-wavelength spin waves in
thick magnetic films. The spin-wave damping is determined
by diagrams in the one-loop approximation, which correspond
to three-spin-wave processes. The three-spin-wave processes
are accompanied by transitions between thermal excited spin-
wave modes. The damping increases directly proportionally to
the temperature.
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(4) Thin films have a region of low relaxation of long-
wavelength spin waves. In thin magnetic films, the energy of
these waves is less than energy gaps between spin-wave modes,
therefore, three-spin-wave processes are forbidden, four-spin-
wave processes take place and, as a result of this, the exchange
interaction makes a major contribution to the relaxation. It
is found that the damping of spin waves propagating in a
magnetic monolayer has the form of the quadratic dependence
on the temperature and is very low for spin waves with small
wave vectors.

Low-damping spin waves can be observed in YIG films
of nanometer thickness. Thin (nanosized) magnetic films can
be used in spin-wave devices. The low damping of long-
wavelength spin waves gives us an opportunity to construct
tunable narrow-band spin-wave filters with high quality at the
microwave frequency range.
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APPENDIX: SPIN-WAVE MODEL WITH EXCHANGE
BOUNDARY CONDITIONS

Let us consider forward volume spin waves propagating in
a normal magnetized film homogeneous through the thickness
D. The applied magnetic field �H is parallel to the z axis.
In order to understand the role of the exchange boundary
conditions in Refs. 15 and 16, we consider Landau-Lifshitz
equations (33) with differential operators (45) and with
boundary conditions (46). The dispersion relations of spin
waves are given by the eigenvalues of equation for the
magnetostatic potential ϕ (35). Taking into account that the
magnetic field of spin waves h̄ν = −∇νϕ, after the Fourier
transform with respect to the longitudinal variables x and y,
we can write Landau-Lifshitz equations (33) in the form[

� + α�M

(
q2 − ∂2

∂z2

)
± ω

]
m± = −i�Mq

4π
ϕ, (A1)

where � = γ (H + H (m)) and �M = 4πγM , q is the longi-
tudinal wave vector. Without loss of a generality, we suppose
that q = qx and qy = 0. The equation for the magnetostatic
potential ϕ (35) is written as(

q2 − ∂2

∂z2

)
ϕ + 2πiq(m+ + m−) = 0. (A2)

The boundary conditions (36) for the normal component of
the field �b = −∇ϕ + 4π �m at boundaries z = −D/2 and D/2

are reduced to the form

∂

∂z
ϕ

∣∣∣∣
+∂V

= ∂

∂z
ϕ

∣∣∣∣
−∂V

, (A3)

where +∂V and −∂V denotes different sides of the boundary.
The magnetostatic potential ϕ is continuous in the boundary
region

ϕ|+∂V = ϕ|−∂V . (A4)

The exchange boundary conditions (46) can be written as

∂m±
∂z

+ ξm±

∣∣∣∣
∂V

= 0 (z = −D/2) (A5)

and

−∂m±
∂z

+ ξm±

∣∣∣∣
∂V

= 0 (z = D/2), (A6)

where ξ is the arbitrary constant pinning parameter.
In accordance with the form of Eqs. (A1) and (A2), we find

the magnetic moment density m± and the potential ϕ over the
film thickness z ∈ [−D/2,D/2] in the form

m±(z) = A± exp(iqzz) + B± exp(−iqzz), (A7)

ϕ(z) = C exp(iqzz) + D exp(−iqzz). (A8)

Taking into account Eq. (A2), the potential ϕ in the external
region of the film is given as

ϕ(z) = E exp(qz) (z < −D/2), (A9)

ϕ(z) = F exp(−qz) (z > D/2). (A10)

Relations (A7), (A8), (A9), and (A10) contain eight unknown
variables A±, B±, C, D, E, and F . In order to find these
variables, we have eight equations: two equations (A3) at
boundaries z = D/2 and −D/2, two equations (A4) at z =
D/2 and −D/2, and four equations (A5) and (A6). The
substitution of ϕ (A8), (A9), and (A10) in Eqs. (A3) and (A4)
gives the relation for the transverse wave vector qz:

2 cot qzD = qz

q
− q

qz

. (A11)

From Eqs. (A5) and (A6) and the form (A7), we obtain the
relation

2 cot qzD = qz

ξ
− ξ

qz

. (A12)

Thus we have different relations (A11) and (A12) for deter-
mination qz. In the common case, for given q, D, and the
constant ξ , simultaneous solvability of Eqs. (A11) and (A12)
is impossible and there is no solution of qz. This leads us to the
conclusion that the phenomenological model15,16 based on the
exchange boundary conditions (46) is internally contradictory.
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