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Noise studies of magnetization dynamics in dilute magnetic semiconductor heterostructures
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We study theoretically and experimentally the frequency and temperature dependences of resistivity noise
in semiconductor heterostructures δ-doped by Mn. The resistivity noise is observed to be nonmonotonous as
a function of frequency. As a function of temperature, the noise increases by two orders of magnitude for a
resistivity increase of about 50%. We study two possible sources of resistivity noise, dynamic spin fluctuations
and charge fluctuations, and find that dynamic spin fluctuations are more relevant for the observed noise data. The
frequency and temperature dependences of resistivity noise provide important information on the nature of the
magnetic interactions. In particular, we show how noise measurements can help resolve a long-standing debate
on whether the Mn-doped GaAs is a p-d Zener/Ruderman-Kittel-Kasuya-Yosida (RKKY) or double-exchange
ferromagnet. Our analysis includes the effect of different kinds of disorder such as spin-glass type of interactions
and a site-dilution type of disorder. We find that the resistivity noise in these structures is well described by a
disordered RKKY ferromagnet model dynamics with a conserved order parameter.
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I. INTRODUCTION

The mechanism of magnetic ordering in dilute magnetic
semiconductors (DMSs) has traditionally attracted much at-
tention of investigators. One of the issues being most intensely
studied1–12 concerns the microscopic nature of magnetism in
bulk DMSs; in particular, whether the microscopic interaction
governing the ferromagnetism (FM) is of Zener/Ruderman-
Kittel-Kasuya-Yosida (RKKY) type or double-exchange type.
Let us recall that the Zener/RKKY model is applicable
when the effective coupling between local magnetic moments
and the spins of charge carriers is smaller than the carrier
bandwidth, and, this model is widely used in the context of
magnetism in the Kondo lattice systems.13–16 On the other
hand, the double-exchange model is believed to describe the
magnetism in manganites17 and double perovskites18 where
the Hund’s rule coupling is known to be large compared to
the carrier bandwidth. While the ordering of local moments of
magnetic metal in both cases is mediated by the charge carriers
of the semiconductor (SC) host, the two models differ in the
relative importance of the magnitudes of the effective coupling
of the local moments with the spins of charge carriers and the
intersite hopping integrals (in other words, the bandwidth for
charge carriers). The current opinion is that both mechanisms
of FM can take place in bulk DMSs. The conditions of the
realization of either mechanism strongly depend not only on
the concentration of magnetic metal ions, but also on the
character of their distribution in the SC host. The last factor
plays an important role in FM ordering in bulk DMSs and
is crucially driven by the details of their growth technology.
Besides, technological or fabrication aspects drastically affect
the character of fluctuations of crystal-field and exchange
potentials in the SC host as well as the degree of ionization of
magnetic metal atoms and effective concentration of carriers
supplied by them when doping the host. These aspects also
determine the relative importance of phase segregation in the

system as well as the contribution of wide and narrow bands in
the spectrum of carriers to the coupling between local magnetic
moments of the metal.

An emerging trend in the studies of DMSs concerns
the investigation of hybrid layered heterostructures (in the
following, we shall also use the term “2D DMS structures”)
containing magnetic ultrathin metal layers (so-called δ-layers)
embedded into a nonmagnetic SC heterostructure. This interest
in 2D DMS structures has a twofold motivation. The first one
is practical: present-day microelectronic devices have a planar
geometry and it becomes necessary to understand the mutual
interaction of different parts of the structure such as the δ-layer
and quantum wells. A number of studies of 2D DMS structures
have been reported in the literature.19–28 In Refs. 20 and 21,
the FM state in Mn δ-doped GaAs/AlGaAs heterostructures
was observed at rather high temperatures. However, these
devices have low mobility values because the authors of
Refs. 20 and 21 aimed at achieving the highest possible hole
density just in the vicinity of Mn ions to maximize the Curie
temperature TC . Note here that Mn ions are responsible not
only for magnetism, but also act as acceptors and a source of
the random potential that limits mobility. Second, properties
of 2D magnets are often qualitatively different from those
of their bulk counterparts, and studies in heterostructures can
sometimes clarify issues of basic research on two-dimensional
magnetism in solids. Issues peculiar to the heterostructures,
such as magnetic anisotropy, limit their use in a general
2D ferromagnet problem. However, for properties such as
the frequency dependence of the magnetization noise, the
universality of the behavior is not sensitive to issues such
as magnetic anisotropy since the universality is dictated by
other properties such as the existence of a conserved order
parameter, and heterostructures provide a good platform. Note
also that as we have studied resistivity noise of the hole gas in
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the 2D quantum well, our analysis will be useful for studies
of magnetic impurity effects in low-dimensional conductors.
It is also perhaps worth observing here that the idea of using
resistivity noise for probing magnetization dynamics that we
develop here is not specifically for heterostructures and can be
adapted for the study of other 2D ferromagnets.

As a rule, in the bulk DMSs, there are no insurmountable
problems in obtaining detailed information on FM ordering
from direct magnetic measurements although it is often
difficult to correctly interpret the obtained data in terms of
some specific theoretical model. In 2D DMS structures, the
situation turns out to be more complicated, and direct magnetic
measurements that are able to detect FM ordering in the
metal layers are often tedious, troublesome, and sometimes
even spurious as opposed to the bulk DMSs. Moreover, direct
measurements of the magnetization are impractical given the
small size of the magnetically active region in 2D DMS
structures. In such a situation, an indirect retrieval of magnetic
characteristics (for example, from resistivity and Hall effect
measurements) becomes decisive, whereas for the bulk DMSs,
it is in general a subsidiary tool. However, even in the bulk
DMSs, the resistivity anomaly, which is a peak or shoulder
at the temperature dependence of resistivity, is widely used
as an evidence for the onset of significant FM correlations
and the measure of TC .10 In an earlier paper (Ref. 29), it
was demonstrated that in contrast to the resistivity anomaly
in bulk DMSs, which typically appears near (and above) the
Curie temperature, the resistivity anomaly observed in 2D
DMS structures typically appears far below the mean-field
Curie temperature and may even exist in the absence of an
actual magnetic phase transition. Nevertheless, the resistivity
anomaly (a peak or shoulder) in 2D DMSs can be also
regarded as an indication of the onset of significant FM
correlations).20,29

The use of indirect experimental methods to reveal mag-
netic properties in 2D DMS structures introduces additional
considerations into the interpretation of data compared to
bulk samples. For example, magnetic proximity effects and
long-range Coulomb interaction between different compo-
nents of such structures have a crucial influence on the
magnetic and transport characteristics of the system. Recently,
structures with a single FM δ-layer deposited near or inside
the SC quantum well (QW) forming the 2D channel of
conductivity have emerged as a test system to study magnetic
proximity effects. For example, in Ref. 19, photoluminescence
polarization was observed in Al0.4Ga0.6As/GaAs/Al0.4Ga0.6As
structures with a 0.5 monolayer of MnAs placed at 5 nm from
a GaAs QW. Crucially, these structures had a gate, which
allowed shifting holes from the QW to the FM layer. It was
shown that the holes in the QW are spin polarized and that
their degree of polarization strongly increases (from 0.4%
to 6.3%) with the “pressing” gate voltage. In the control
structures, lacking the FM δ-layer, the photoluminescence
polarization was not observed. Induced photoluminescence
polarization effect was recently observed in other structures
such as GaAs/InxGa1−xAs/GaAs (x ≈ 0.2) containing Mn
δ-layer separated from the InGaAs QW by a 3–5 nm thick
GaAs spacer.30 It is clear that the aforementioned results can
hardly be explained by a simple tunneling of holes from the
QW to FM layer through the spacer since, even under a

pressing voltage, the characteristic depth of such tunneling
does not exceed 1 nm.

In 2D DMS structures containing spatially separated 2D
hole gas in the QW and FM δ-layers, the mutual influence of
these two subsystems has three effects that have a bearing
on the magnetic properties. First, interpenetration of the
wave-function tails between the QW and the FM layers
polarizes the spins of itinerant charge carriers in the QW
and modifies the effective coupling between local spins in
the FM layer.19,31 Second, quantum fluctuations in the QW
stabilize magnetic order in the FM layer, suppressing at the
same time the amplitude of the magnetic moment and the
transition temperature with respect to those found by mean-
field estimates.32 Third, electrostatic charge redistribution
occurs between the QW and the FM layers due to their different
density of states and depths; and as a result, modification of
the magnetic characteristics of the FM layer occurs even on
purely classical grounds.33

Recently, different ways have been proposed to describe
self-consistently ferromagnetic ordering and spin polarization
of charge carriers in the 2D DMS structures under discussion.
Assuming that Mn atoms form isolated paramagnetic centers
inside the δ-layer, the authors of Ref. 31 proposed a model
of indirect RKKY-type exchange coupling between local
moments of Mn atoms in the δ-layer via the “tails” of the
wave function of itinerant hole states in QW. In the framework
of the same assumption about a localized character of the
hole states in the δ-layer, the authors of Ref. 34 formulated the
problem in terms of the Anderson-Fano model of configuration
interaction between the localized hole states at Mn centers
and itinerant hole states in the QW. In the framework of the
method of Ref. 34, the spin splitting of itinerant hole states
in an external magnetic field is strongly enhanced due to
their hybridization with localized hole states. This leads to
a resonant enhancement of the interband radiation recombina-
tion of itinerant holes and causes circular polarization of the
luminescence in the QW.

On the other hand, an alternative approach based on the
assumption of an itinerant character of the hole states in both
the QW and FM δ-layer was successfully used.35,36 It has been
shown that a thin layer of FM metal located in a bulk SC
matrix induces quasi-2D spin-polarized collective states and
a half-metallic type of an electron spectrum of the system is
formed.35,36 These states (called also confinement states) have
rather extended character along the structure axis of growth
because of their small binding energies, so they penetrate deep
into the spacer and can reach the QW. It may be shown (see
the next section) that hybridization of confinement states in
the FM δ-layer, with one-electron states in the QW, leads to
the spin polarization of carriers in the QW.

In the model,35,36 the holes in the QW play mostly an
“observer” (passive) role in the exchange coupling inside
the δ-layer, although this does not mean that they have no
effect on the FM ordering in the system.31,34 If one assumes
an easy-plane character of magnetic anisotropy of the “free”
δ-layer (i.e., in the absence of the QW), then introducing
a QW near the δ-layer can drastically change the type of
magnetic anisotropy. As a result, the easy axis of magnetization
appears to be directed along the normal to the δ-layer plane.37

Experiments19,22,30 as well as recent direct measurements of
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magnetic anisotropy26 give clear indication of the existence of
such an orientational transition.

In addition to the effects of induced spin polarization of
holes in the QW and the reorientation of magnetization in
the FM δ-layer, there exist purely electrostatic (Coulomb)
effects of charge redistribution between these two subsystems.
As it was shown in Ref. 29, the long-range fluctuations
of electrostatic potential, which are inevitable due to an
inhomogeneous distribution of magnetic metal ions over the
FM δ-layer, are projected onto the QW and give rise to similar
fluctuations of electrostatic potential in the QW. Due to this
fact, the transport measurements involving charge carriers
in the QW can reveal some tiny details of disorder in the
distribution of magnetic metal ions in the FM δ-layer, the latter
being inaccessible by the direct magnetic measurements.

It is evident from the above discussion that in comparison
with bulk DMS systems, 2D DMS structures have a number of
additional experimental and theoretical complications arising
from the use of indirect probes for magnetism as well as the
interplay between the magnetic δ-layer and the QW. The choice
of the indirect probe is dictated not only by the convenience
of measurement, but also by the level of detail one is seeking
as regards the properties.

Resistivity measurement, although an indirect probe of
magnetism, is one of the most widely used probes in both bulk
and 2D DMS systems given its simplicity. In both systems, the
observation of an anomaly in the temperature dependence of
the resistivity is associated with the onset of significant ferro-
magnetic correlations. Unfortunately, such a measurement is
unsuitable for shedding light on the microscopic interactions
governing FM: both the RKKY and double-exchange models
can describe the resistivity anomaly observed in DMSs. This
is not surprising since as far as such static properties are
concerned, both can be described by effective Heisenberg
models. The differences manifest themselves, however, in
the dynamic properties such as the autocorrelation function
since the damping of magnetic excitations is sensitive to
the microscopic details governing the fluctuations. In the
following, we shall show how the magnetization dynamics
can be probed through resistivity noise measurements. While
our analysis is applied to 2D DMS structures, we note that this
method of deducing the mechanism of FM from the analysis
of dynamic susceptibility is quite general and can be used for
other systems.

In this paper, we present a theoretical and experimental
study of resistivity noise as an indirect probe of magnetic
dynamics in 2D DMS structures δ-doped by magnetic atoms.
We show how resistivity noise can distinguish between
RKKY/Zener and double-exchange mechanisms. We find that
in our structures the noise measurements are consistent with
a disordered RKKY picture. The experiments reported in
this paper were performed using the GaAs/InxGa1−xAs/GaAs
QW structure δ-doped by Mn. Such structures produced by
selective doping exhibit a high enough hole mobility (more
than 2000 cm2/V s at 5 K) and show clear evidence of a 2D
excitation spectrum as well as FM at moderately high temper-
atures of about 30 K.22,23 In Fig. 1, we illustrate a schematic
layout of the fabricated structures. Similar 2D heterostructures
were also reported elsewhere; however, the ferromagnetic

FIG. 1. (Color online) Layout of the Mn δ-doped
GaAs/InxGa1−xAs/GaAs QW heterostructures used in this
work and in Ref. 29. The carbon (C) layer is a nonmagnetic source
of holes. Noise measurements reported in this paper correspond
to Sample 4 in Ref. 29, an insulating sample on the border of a
percolative metal-insulator transition.

ordering was obtained at a much lower (millikelvin) range
of temperatures.25,26,28

Depending on Mn content, the samples of the type presented
in Fig. 1 exhibit metallic or activation conductivity on
both sides of the metal-insulator transition. The insulating
samples are most interesting as they can give us valuable
insights into the mechanism of ferromagnetism in these DMS
heterostructures, and we will focus on the sample very close to
the percolation transition since it demonstrates some features
of both metallic and insulating behavior.

The rest of the paper is organized as follows. In Sec. II, we
clarify the role of magnetic proximity effects in the interplay
of ferromagnetism and carrier transport in 2D DMS structures
with a spatially separated FM δ-layer and the QW. In Sec. III,
we present our model for the resistivity noise in the QW and
obtain its relation to charge and magnetization dynamics in
the FM δ-layer. It is shown how magnetization dynamics is
sensitive to the microscopic nature of FM correlations and can
be used to distinguish between RKKY and double-exchange
types of coupling. Disorder effects are also analyzed. In
Sec. IV, we compare these findings with our experimental
data on frequency and temperature dependences of resistivity
noise. It is argued that the data support the picture of a
disordered RKKY type of FM over a double-exchange type
of FM. Section V contains a discussion of our results.

II. MAGNETIC PROXIMITY EFFECT IN 2D DMS
STRUCTURES WITH REMOTE FM δ-LAYER

AND QUANTUM WELL

Before proceeding to the point at issue of our work,
in this section we shall try to shed additional light on a
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key physical problem of the systems under consideration,
namely, how magnetic correlations in the FM δ-layer affect
charge transport in the QW. Let us recall the microscopic
Anderson-type model for a single FM δ-layer embedded
into the SC host proposed in Refs. 35 and 36. It has been
shown that FM order in such system can be attributed to
the intrinsic physical properties of the δ-layer. The relevant
effects described by this model are the hybridization of the
electron states of the metal and semiconductor atoms, the
strong charge and spin redistributions around the δ-layer, and
the electron-electron correlation on the metal atom. Following
Refs. 35 and 36, confinement states in the form of quasi-2D
spin-polarized subbands located within the SC band gap arise
in the host near the δ-layer. This leads to the half-metallic
character of the electron spectrum of the system. Under certain
approximations, a picture of the low-energy branches of these
confinement states can be qualitatively reproduced by a simple
phenomenological Hamiltonian Hδ:

Hδ = Hhost + Vδ(z). (1)

Here, the 3D Hamiltonian Hhost describes itinerant electron
states in a bulk SC, and Vδ(z) is the effective one-dimensional
spin-polarized potential of the charge carriers in a single FM
δ-layer:

Vδ(z) = −[V1 + V2e · σ ]δ(z + L) < 0, (V1,V2) > 0. (2)

The z axis is oriented along the direction of the structure
growth, the FM δ-layer lies in the z = −L plane, δ(z) is
the delta function, V1 and V2 are parameters derived from
the model described in Ref. 36, σ is the vector composed of
the Pauli matrices in the spin space, and e is the unit vector
along the direction of magnetization of the FM δ-layer.

Let us introduce the energy parameters ωα(q) < 0 specify-
ing the positions of the spin-polarized subbands of confinement
states described by Hamiltonian (1) for a single FM δ-layer in
the absence of the QW, with the wave functions φα(q,z) and
characteristic lengths λα(q) = 1/

√
2m|ωα(q)| [q is the crystal

momentum in the (x,y) plane perpendicular to the z axis, α =
± is the spin-projection index in the diagonal representation
for the σ matrix]. Below, we discuss a half-metallic regime,
when |ω−(q)| < |ω+(q)| and the φ−(q,z) states are empty at
all q, while the φ+(q,z) states are partially occupied depending
on the Fermi level position.

The low-energy branches in the spectrum of charge carriers
in a single nonmagnetic QW are successfully modeled by a
phenomenological Hamiltonian HQW:

HQW = Hhost + VQW(z). (3)

Here, VQW(z) is an effective one-dimensional potential of the
charge carriers in a single nonmagnetic QW:

VQW(z) = −U (z) < 0. (4)

Without the effects of charge redistribution between the FM
δ-layer and the QW, one can simply assume that U = U0 > 0
at 0 < z < W and U = 0 at z < 0 and z > W , where W is
the nominal QW thickness; the charge redistribution leads to a
more intricate form of U (z) due to appearance of a QW/spacer
interface.

Let us introduce the energy parameters εnα(q) < 0 spec-
ifying the position of the nth spin-degenerate subband of
2D states in the spectrum of QW described by Hamiltonian
(3) of a single QW in the absence of the FM δ-layer
(n = 0,1, . . .). The corresponding wave functions ψnα(q,z)
exponentially decay with |z| away from QW, |z| � lnα(q),
where lnα(q) = 1/

√
2m|εnα| are characteristic lengths, and m

is the effective mass of charge carriers. In the simplest case,
only one spin-degenerate subband of 2D states ψ0α(q,z), with
the parameters ε0α(q) = ε0(q) and l0α(q) = l0(q), exists in the
QW. The states ψ0α(q,z) are partially occupied depending on
the Fermi level position.

Let us now treat the 2D DMS structure containing both the
FM δ-layer and the QW as a triple-layer quantum system with
an effective one-dimensional potential V (z) composed of two
wells with different widths and depths separated by the barrier
(spacer) of width L. We can write the model Hamiltonian
Hstruct describing the low-energy states of the charge carriers
in the following form:

Hstruct = Hhost + V (z). (5)

Evidently, the effective potential V (z) can not be correctly
modeled as a simple sum of the potentials VQW(z) and Vδ(z),
due to a strong redistribution of the carriers between the
QW and FM δ-layer. In principle, using an appropriate form
of V (z), one can calculate (analytically or numerically) the
eigenenergies and eigenstates of Hamiltonian (5) at all values
of the spacer thickness L, but this method seems to be tedious.
However, to reveal the main physics of the magnetic proximity
effect between the FM δ-layer and the QW in the quantum
structure described by Hamiltonian (5), we consider only the
situation of a relatively thick spacer L � max{l0(q),λα(q)}.
We assume that the minima of ε0(q) and ωα(q) lie at q = 0
and the occupation number of φ+(q,z) states in the FM
δ-layer significantly exceeds that of ψ0α(q,z) states in the
QW. Thus, in the half-metallic regime, we have |ω+(q)| >

|ε0(q)| > |ω−(q)| and λ−(q) > l0(q) > λ+(q) and the Fermi
level μ < 0 lies between two minima |ω−(0)| and |ε0(0)|,
i.e., |ω+(0)| > |ε0(0)| > |μ| > |ω−(0)|. This corresponds to
the fact that the charge carrier density in the FM δ-layer is
much higher than that in the QW.

We now write the wave function χα(q,z) of the system with
Hamiltonian (5) in the variational form

χα(q,z) = Aα(q)ψ0α(q,z) + Bα(q)φα(q,z), (6)

where Aα(q) and Bα(q) are coefficients obeying an evident
normalization condition:

|Aα(q)|2 + |Bα(q)|2 + 2Aα(q)Bα(q)Sα(q) = 1, (7)

Sα(q) =
∫

ψ0α(q,z)φα(q,z)dz. (8)

Note that the functions ψ0α(q,z) and φα(q,z) are not orthogo-
nal, so Sα(q) �= 0.

Obviously, this simplest approach treats only qualitatively
the problem of interference of the charge carrier states of two
subsystems as a simple superposition of the wave functions
ψ0α(q,z) and φα(q,z). Moreover, it is unable to capture
in full measure possible resonance effects (for example,
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arising additional bound states). However, even with such an
approximate method, we can project the states φα(q,z) of the
FM δ-layer onto the states ψ0α(q,z) of QW using a redefinition
V (z) = Ṽδ(z) + VQW(z), where Ṽδ(z) = V (z) − VQW(z) and
treating Ṽδ(z) as a small perturbation to VQW(z) at L �
max{l0(q),λα(q)}. Omitting the cumbersome but straightfor-
ward calculations, we write the final expression for the energy
spectrum of the charge carriers in QW in the second order of
the perturbation series expansion in terms of Ṽδ(z):

EQW
α (q) = ε0(q) + �QW

α (q), (9)

where

�QW
α (q) ≈ Ṽ

′α
δ (q) + [

Ṽ
′′α
δ (q)

]2
/[ε0(q) − ωα(q)], (10)

Ṽ
′α
δ (q) =

∫
ψ0α(q,z)Ṽ α

δ (q)ψ0α(q,z)dz, (11)

Ṽ
′′α
δ (q) =

∫
ψ0α(q,z)Ṽ α

δ (q)φα(q,z)dz. (12)

The approach discussed above, although very rough, nev-
ertheless captures the main physics of the magnetic proximity
mechanism acting in our system due to the tunneling of
confined spin-polarized charge carriers from the FM δ-layer
to the QW. As we see from Eq. (9), the energy bands
EQW

α (q) originating from the nonmagnetic QW states become
spin polarized due to their quantum interference with the
spin-polarized states of the FM δ-layer. It can be easily shown
that to exponential accuracy, the spin splitting of the states
in the QW �QW(q) = �

QW
+ (q) − �

QW
− (q) contains different

contributions decreasing at L � max{l0(q),λα(q)}, but the
principal contribution at λ−(q) > l0(q) > λ+(q) is �QW(q) ∼
exp[−2L/λ−(q)]. Note that the lengths {l0(q),λα(q)} decrease
at large values of the crystal momentum q > {l0(0),λα(0)}−1,
i.e., corresponding components of �QW

α (q) are exponentially
vanishing. That is why, using Eq. (9), we shall limit our-
selves only to the range of small crystal momenta q �
{l0(0),λα(0)}−1. Qualitative estimates show that for our system,
λ−(0) ∼ 3–4 nm, l0(0) ∼ 1–1.5 nm, and λ−(0) ∼ 0.5–0.8 nm,
so for the hole densities in QW, n

QW
h ∼ q2

F < 1017 m−2, our
approximation seems to be reasonable (here, qF is the Fermi
crystal momentum of holes in the QW).

Thus, we regard the energies given by Eq. (9) [at small wave
vectors q � {l0(0),λα(0)}−1] as eigenvalues of an effective 2D
Hamiltonian H eff

QW of charge carriers in the carriers in QW:

H eff
QW = ε0(−i∇ρ) + U0 + J0e · σ , (13)

(J0,U0) = 1
2 [�QW

+ (0) ∓ �
QW
− (0)], (14)

where ρ is a 2D lateral vector in the (x,y) plane, and e is the
unit vector along the arbitrary quantization axis. Hamiltonian
(13) describes 2D carriers in the QW moving in an “external”
homogeneous field induced by their quantum interference with
the spin-polarized carriers in the FM δ-layer. This field has the
“Coulomb” (U0) and “exchange” (J0) components.

Let us now suppose that due to the lateral long-range
fluctuations of the Mn density within the FM δ-layer on length
scales exceeding λ−(0) ∼ 3–4 nm, the components U0 and J0

become slowly varying functions of ρ due to the corresponding
variation of the potentials Ṽ α

δ in Eq. (10). In other words, we
may treat U0(ρ) and J0(ρ) as slowly varying components of

an effective random field projecting the long-range disorder
from the FM δ-layer to the QW. We can also include in U0(ρ)
the “true” long-range fluctuating Coulomb potential φ(ρ) of
charge carriers provided by their inhomogeneous distribution
in the δ-layer. The effective random field [U0(ρ),J0(ρ)] may
induce a percolative metal-insulator transition in the QW
and the formation of an inhomogeneous structure with the
activation-type conductivity. In this situation, the QW can
be considered as a set of metallic FM droplets separated
by insulating spacers. It is evident from Eq. (13) that for
a hopping between ith and j th FM droplets with different
orientations (ei ,ej ) of their magnetic moments, a charge carrier
in the QW has to overcome an additional energy barrier
J0[1 − (ei · ej )] resulting from the effect of the proximity-
induced spin polarization.

III. MODELS

In this section, we first of all recall some important
methodological aspects of our preceding study29 of the
GaAs/InxGa1−xAs/GaAs QW structure δ-doped by Mn and
discuss existing principal difficulties of an adequate descrip-
tion of magnetism in these multicomponent systems. Strictly
speaking, there is no universal model of magnetism in 2D
DMS structures, and the choice of a suitable description of FM
ordering in such structures is in some aspects more difficult
than that in bulk DMSs. For example, let us qualitatively
discuss the Zener/RKKY and double-exchange pictures of
magnetism in the context of the GaAs/InxGa1−xAs/GaAs QW
structure δ-doped by Mn earlier studied in Ref. 29. These
structures demonstrate an activation character of conductivity,
and the key problem is how their FM behavior may be mediated
by the holes both in the QW and in the δ-layer. Let us
suppose that the effect of “external” holes in the QW on
the FM ordering in the δ-layer is less significant than that
of “intrinsic” holes in the δ-layer itself. The surface density
of manganese ions estimated for the sample studied in the
paper (see Sec. IV, sample 4 in Ref. 29 is nMn ≈ 0.4 × 1018

m−2) , corresponding to the intermanganese distance of about
1.6 nm. We consider nMn as a nominal concentration of local
magnetic moments in the δ-layer. Unfortunately, we are unable
to directly extract from the conductivity measurements the
density of charge carriers (holes) in the δ-layer nδ

h due to their
low mobility. We can roughly treat nMn as an upper limit for nδ

h,
while the compensation between acceptors and donors in the
δ-layer can diminish this estimate by an order of magnitude.
Assuming further that only holes in the QW participate in the
conductivity, it is possible to determine a lower limit for nδ

h as
being of the order of the hole density in the QW, n

QW
h . Taking

n
QW
h ≈ 2 × 1016 m−2 � nMn from the conductivity data, we

obtain the interhole distance in the δ-layer rδ
h falling within the

1.6–7 nm range.
A naive estimate of the hole effective radius in the δ-layer

(aδ
h) in the model of a single shallow acceptor gives aδ

h ≈ aB ≈
5.3 nm, where aB is the Bohr radius of a light hole in GaAs.
This value can be treated as an upper limit for aδ

h, while it is
obviously overestimated and even exceeds the thickness of the
δ-layer. In the more realistic model of a single deep impurity
acceptor, we obtain aδ

h ≈ 0.9 nm for the heavy hole in GaAs
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using experimentally known binding energy EMn ≈ 90 meV
for Mn2+ ion in GaAs. This value can be treated as a lower
limit for aδ

h. So, we get an estimate 0.9 nm < aδ
h < 5.3 nm.

At rδ
h < 2aδ

h, i.e., at a sufficiently high hole density, the
Zener/RKKY mechanism is relevant for our system and
describes well the FM ordering in the δ-layer within the
framework of an effective Heisenberg spin Hamiltonian with
an effective coupling via itinerant holes. On the other hand,
the magnetism in the polaron model arises by double-exchange
mechanism, which is relevant at a sufficiently low concentra-
tion of the holes in the δ-layer, such that rδ

h > 2aδ
h. In the

polaron percolation picture of Kaminski and Das Sarma,38 the
holes are localized at the length scale of aδ

h with strong Hund’s
rule coupling to Mn atoms.

The above estimates are a priori unable to show preference
to one or another model of ferromagnetism in our system due
to evident uncertainties in the parameters rδ

h and aδ
h. Thus, we

have to present additional arguments supporting or rejecting
the model under consideration. In the following, we analyze the
peculiarities of dynamic spin fluctuations in different models
and calculate the frequency and time dependences of the
resistivity noise power. We show that magnetization dynamics
is sensitive to the microscopic nature of FM correlations and
thus can be used to distinguish between Zener/RKKY and
double-exchange models of FM.

Now, let us come back to the main issue of the this
paper. In an earlier work,29 we had studied the role of charge
disorder and magnetization in the Mn δ-layer on the resistivity
of the quantum well. At low charge carrier densities, the
random distribution of ionized Mn atoms in the Mn layer
creates a fluctuating potential for the holes and leads to
accumulation of holes in droplets. Conduction takes place
through hopping of holes between the droplets. The building
of magnetic correlations between the charge droplets gives rise
to a dip/shoulderlike feature in the temperature dependence of
resistance. The temperature dependence of the resistivity of
the droplet phase in these DMS heterostructures was modeled
as

ρ(T ) = ρ0e
�/T +(J0/T )(1−〈cos θij 〉), (15)

where θij is the angle between the orientations of the
magnetizations Si and Sj associated with the neighboring ith

and j th droplets, respectively, and 〈cos θij 〉 ∝ 〈Si · Sj 〉. The
temperature dependence of the static magnetic correlation for
a 2D ferromagnet above the transition temperature will in
general take the form

〈Si · Sj 〉 ∼ e−Rij /ξM (T ),

where ξM is the magnetic correlation length. The static
magnetic susceptibility χ0 is related to ξM through χ0(T ) ∼
T ξ 2

M. The two mechanisms that are generally considered
for ferromagnetism in DMS systems are double exchange
and p-d Zener/RKKY. The low-energy excitations of both
these models are known to have the same dispersion relation
ωq ∝ q2, and as far as static properties are concerned, both
can be represented by an effective Heisenberg model of spins
at low energies. Therefore, the two models predict the same
behavior of the resistivity and can not distinguish between the
two mechanisms of ferromagnetism in the Mn layer. For a

Heisenberg model of spin interactions

HHeisen = −
∑
〈ij〉

Jij Si · Sj , (16)

the magnetic correlation length is given by

ξM (T ) ∼ a
√

JS/T eπTC/2T . (17)

The real system is likely to deviate from an isotropic
Heisenberg ferromagnet due to spin-orbit interactions as well
as the 2D distribution of the Mn doping. For instance, for a
uniaxial ferromagnet, we have

HHeisen = −J
∑
〈ij〉

Si · Sj − K
∑

i

(Siz)
2. (18)

For this uniaxial magnet, Sz is a conserved order parameter. For
small but finite K > 0, the model shows Ising-type behavior
at sufficiently low temperatures, undergoing a transition to a
ferromagnetically ordered state39 at a temperature T0 � TC :

T0 ∼ TC

ln(π2J/K)
. (19)

For temperatures TC � T � T0, the correlation length is ap-
proximately given by Eq. (17). As the temperature approaches
T0, Eq. (17) for the magnetic correlation length should perhaps
be replaced with a power law

ξM ∼ a/(T/T0 − 1)γ , (20)

where γ = 1.25 for the limiting case of the Ising model. For a
general anisotropic Heisenberg model, the order parameter is
not conserved. In Ref. 29, we considered an isotropic Heisen-
berg model and obtained quantitative agreement with the
resistivity of the insulating samples over a broad temperature
range.

As is clear from the above discussion, resistivity mea-
surements in these DMS structures are unable to distinguish
between RKKY and double-exchange mechanisms since the
static correlations in both cases can be described by an
equivalent effective Heisenberg model. It is then natural to ex-
amine dynamic properties such as the (frequency-dependent)
resistivity noise. Resistivity noise can of course also arise
from charge fluctuations in the puddles in the quantum well.
However, if noise from magnetic fluctuations dominates that
from charge fluctuations, resistivity noise can be a useful
tool for probing the microscopic origin of ferromagnetic
interactions. This happens to be true in our case.

We develop now a theory for the effect of magnetic and
charge fluctuations on the resistivity noise. We will also
examine the effect of various kinds of disorder on the noise.

A. Resistivity noise from magnetic fluctuations

We consider the magnetic fluctuations first. We will
study the implication of increasing magnetic anisotropy
on the frequency dependence of the resistivity noise. For
homogeneously disordered magnets, it is known that the
resistivity noise Sρ(ω) = 〈|δρ(ω)|2〉 and the magnetization
noise SM (ω) = 〈|δM(ω)|2〉 are related through40 Sρ(ω) =
SM (ω)(dρ/dM)2. A similar relation can be obtained for
our phase-segregated model. We assume that the magnetic
moments in a droplet are aligned with the polarization in the
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Mn layer directly above the droplet and disregard fluctuations
of the magnitude of the droplet magnetic moment. Our
model for resistivity is a simple nearest-neighbor-hopping
type and the hopping is a function of the relative orientation
of the magnetizations at the sites of the two puddles in
question: ρ ≡ ρij (Mi · Mj ) = ρij (

∑
α Mα

i Mα
j ). Fluctuations

of the orientation of the magnetizations of the droplets cause
resistivity fluctuations. For our model of resistivity, δρ/

δMα
i = −(J0/T )ρMα

j . We thus obtain δρ = ∑
α( δρ

δMα
i

δMα
i +

δρ

δMα
j

δMα
j ) = −(J0/T )

∑
α ρ(Mα

i δMα
j + Mα

j δMα
i ). Here, ρ

and Mα
k refer to the static values, and the time dependence

is expressed in the fluctuations δMα
k . The Greek labels refer to

the orientation of the magnetization and the Latin indices label
the charge puddles in the quantum well. i and j in the above
expressions refer to nearest-neighbor puddles in the quantum
well and are not summed over. The resistivity noise takes the
form

Sρ(ω) =
∑
ij,αβ

(
δρ

δMα
i

)(
δρ

δM
β

j

)
Cαβ(Rij ,ω), (21)

where Cαβ(Rij ,ω) = ∫
dt eiωt 〈δMα

i (t)δMβ

j (0)〉 is the correla-
tion function of the magnetization, α,β refer to magnetiza-
tion directions, and i,j refer to neighboring droplets. From
Eqs. (15) and (21), it thus follows that

Sρ(ω)/ρ2

∼ (J0/T )2
∑

α

[Cαα(0,ω) + 〈cos θij 〉Cαα(Rij ,ω)]

≈ (J0/T )2
∑

α

[Cαα(0,ω) + e−Rij /ξM (T )Cαα(Rij ,ω)]. (22)

The spin-correlation function is related to the dynamic suscep-
tibility through the fluctuation-dissipation relationship

Cαβ(q,ω) = 2T

ω
Im χαβ(q,ω).

B. Resistivity noise for different models of magnetism

The magnetization dynamics is crucially dependent on
whether the order parameter is a conserved quantity. If the
order parameter is not conserved, then the spin relaxation
has a finite lifetime even as q → 0. This is the case for
an Ising or anisotropic Heisenberg ferromagnet. If the order
parameter is conserved, then the spin-relaxation lifetime
diverges as q → 0. This would be the case, for example, for
a uniaxial or isotropic Heisenberg ferromagnet. We follow
the hydrodynamic approach of Hohenberg and Halperin41 for
low-energy dynamics of all these cases.

Consider first the case where the order parameter is not a
conserved quantity. This could be the case, for example, for
anisotropic magnets. Such a case corresponds to Model A of

Ref. 41, defined by the Markoffian equations of motion

∂ψα(r,t)
∂t

= −�0
δF0

δψα(r,t)
+ θα(r,t) + �0hα(r,t),

F0 =
∫

dr
[

1

2
ξ−2
M ψ2 + 1

2
|∇ψ |2 + u0ψ

4

]
, (23)

ψ2 =
n∑

α=1

ψ2
α ; ψ4 = (ψ2)2.

θα(r,t) is a Gaussian white-noise source

〈θα(r,t)〉 = 0,
(24)

〈θα(r,t)θα′(r′,t ′)〉 = 2�0δ(r − r′)δ(t − t ′)δαα′ ,

and hα(r,t) are arbitrary external fields. The dynamic suscep-
tibility for this model has the form

χ
(A)
αβ (q,ω) = χ0(T )δαβ

1 + (qξM )2 − iωξ 2
M/�0

. (25)

The constant �0 will in general depend on ξM and q, but
the relaxation rate �0(q)/ξ 2

M = const as q → 0.41 At finite
temperatures, the autocorrelation function will exhibit an
exponential relaxation with time

Cαβ(Rij ,t) ∼ δαβT e−�0t/ξ
2
M−Rij /ξM .

The resistivity noise from magnetic fluctuations is of the
random telegraph type

〈|δρω|2〉/ρ2 ∼ J 2
0 ξ 2

M/T �0
1 + e−2Rij /ξM(
ωξ 2

M/�0
)2 + 1

. (26)

Consider now the case where the order parameter is
conserved (Model B in the parlance of Ref. 41). This would be
the case, for example, for a uniaxial or isotropic ferromagnet.
The dynamical susceptibility has a form similar to Eq. (25),
except that now spin-relaxation lifetime diverges as q → 0 so
that χ (0,ω) = 0. The RKKY and double-exchange models as
well as the pure Heisenberg model model fall in this category.
For a pure Heisenberg model, the damping mechanism is
magnon-magnon scattering and one has �0(q)/ξ 2

M ∝ q2. Thus,
in this case

χ
(B)
αβ (q,ω) = χ0(T )δαβ

1 + (qξM )2 − iω/Dq2
. (27)

The autocorrelation function Cαβ(Rij ,ω) is given by

Cαβ(Rij ,ω) = δαβ

T χ0

π

∫ ∞

0
dq q

Dq2J0(qRij )

[Dq2(1 + (qξM )2]2 + ω2

= δαβ

T χ0

πD

∫ ∞

0
dy

y3J0(yRij /ξM )

[y2(1 + y2)]2 + (
ωξ 2

M/D
)2 .

(28)

For separations Rij such that (ωξ 2
M/D)1/4Rij/ξM � 1,

Eq. (34) has the following limiting behavior:

Cαβ(0,ω) ≈ δαβ

T χ0

2πD

{
ln

(
D/ωξ 2

M

) − 1 + 3π
2

(
ωξ 2

M/D
)
, ωξ 2

M/D � 1
π
4

(
D/ωξ 2

M

) − π

4
√

2

(
D/ωξ 2

M

)2
, ωξ 2

M/D � 1.
(29)
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Equation (29) should be contrasted with the Lorentzian
behavior of the autocorrelation function for random telegraph
noise. It is also useful to study the time dependence of the
autocorrelation function:

Cαβ(Rij ,t) = δαβ

χ0

4π

∫
dq q

e−Dq2[1+(qξM )2]t J0(qRij )

1 + (qξM )2
. (30)

At small separations Rij such that (Rij/ξM )(ξ 2
M/Dt)1/4 � 1,

we may ignore the Bessel function in Eq. (30) and obtain

Cαβ(0,t) ∼ δαβ

χ0

ξ 2
M

{
ln

(
ξ 2
M/Dt

)
, Dt/ξ 2

M � 1(
ξ 2
M/Dt

) − 1
3

(
ξ 2
M/Dt

)2
, Dt/ξ 2

M � 1.

(31)

Next, we consider the RKKY mechanism in a clean
metal. In this case, the magnons can decay into particle-hole
excitations for which one can show42 �0(q) ∼ γ q. However, in
the presence of impurities, one must take into account diffusion
corrections,43 which result in

χRKKY
αβ (q,ω) ≈ χs(T )δαβ

1 + (qξM )2 − iω/Dsq2
, (32)

where χs and Ds are the uniform spin susceptibility and spin-
diffusion constant, respectively, for the disordered system.
Note that this gives us the same results for the autocorrelation
function as the pure Heisenberg model with conserved spin
dynamics. The mechanism of damping is, however, different:
here it is magnon decay into incoherent particle-hole excita-
tions.

Finally, let us consider the double-exchange model for
which the spin-wave lifetime is given by �0(q)/ξ 2

M ∝ q5 in
two dimensions.44,45 For this model, we have

χDE
αβ (q,ω) = δαβχDE

0 (T )

1 + (qξM )2 − iω/Aq5
. (33)

The autocorrelation function Cαβ(Rij ,ω) is given by

Cαβ(Rij ,ω) = δαβ

T χ0

π

∫ ∞

0
dq q

Aq5J0(qRij )

{Aq5[1 + (qξM )2]}2 + ω2

= δαβ

T ξ 3
Mχ0

πA

∫ ∞

0
dy

y6J0(yRij /ξM )

[y5(1 + y2)]2 + (
ωξ 5

M/A
)2 .

(34)

For small enough Rij , the autocorrelation function for the
double-exchange ferromagnet has the following limiting be-
havior:

Cαβ(0,ω)

≈ δαβ

T ξ 3
Mχ0

πA

{
π

8 cos(π/5)
1

(ωξ 5
M/A)3/5 , ωξ 5

M/A � 1
π
14

1
(ωξ 5

M/A)
, ωξ 5

M/A � 1.
(35)

Thus, at long times, the autocorrelation function (and con-
sequently the resistivity noise) for the 2D double-exchange
ferromagnet decays as Cαβ(0,t) ∼ 1/t2/5. This is to be con-
trasted with the 1/t decay for the Heisenberg and disordered
RKKY ferromagnets. As we shall see in the following, the
experimental data on resistivity noise is consistent with the
RKKY model and not the double-exchange model.

C. Disorder effects

In Sec. III B, we considered the effect of disorder on the
dynamic susceptibility of the holes in the Mn layer. We found
that unlike the case of a clean metal where �0(q) ∼ γ q, weak
localization effects give us �0(q) ∼ Dsq

2 instead. Thus, the
magnetization dynamics of disordered RKKY magnets incor-
porating weak localization effects and a purely Heisenberg
magnet are the same. In this section, we discuss the effects of
disorder arising from randomness in the positions of the Mn
spins. We model such disorder in the form of site dilution and
randomly varying exchange interaction, respectively, starting
from a uniform Heisenberg model.

First, we consider a nearest-neighbor Heisenberg model
with a fraction c = 1 − p of missing sites, which mimics
random concentration of Mn atoms. c = 1 − p does not refer
to the monolayer doping density of Mn atoms; rather, it refers
to missing sites on an effective sublattice made of the Mn
atoms with a lattice constant of the order of the typical inter-Mn
separation. The exchange energy scale in the model is set by
the value at typical Mn-Mn separations. A missing site can
be related to regions with no Mn atoms on the sublattice.
For p > pc (the critical threshold for percolation), the ground
state is ferromagnetic and the low-energy spin dynamics
is the same as that for the pure Heisenberg model, albeit
with a reduced zero-temperature spin-wave stiffness.46 The
temperature dependence of the magnetic correlation length for
T � TC is thus ξM ∼ exp[πTC(p)/2T ].47 In particular, for the
2D isotropic model on a square lattice, TC(p) ∼ (p − pc)1.296

for p → pc,
47 and TC(p) ∝ 1.33p2 − 0.33 for p ∼ 1.46 Thus,

disorder due to site dilution will not affect the frequency and
temperature dependences of noise for T � TC as long as one
remains above the site percolation threshold on this sublattice.
In actual systems, the long range of exchange interactions
means that the percolation transition may not occur, and one
remains in the Heisenberg universality class even for random
concentration changes.

Next, we consider a nearest-neighbor Heisenberg model
with random exchange interactions chosen with zero mean.
More realistically, the exchange interactions between pairs of
spins will be a rapidly oscillating function of their separation.
However, for the spin-glass state we are describing, the
long-range nature of the interaction is not believed to play an
important role and we therefore discuss the nearest-neighbor
Heisenberg model with couplings of random sign as opposed
to the actual system with random site positions. The low-
energy excitations of this model are gapless linearly dispersing
magnons48 (as in a Heisenberg antiferromagnet), and the lower
critical dimension is two. The transverse susceptibility at low
temperatures is expected to behave like χ (T ) ∼ eπTC/T as
is the case for the Heisenberg ferromagnet/antiferromagnet
models. The dynamics of the spin glass depends on whether
one has dissipative equations of motion or the total spin is
conserved.49 For dissipative dynamics, Model A discussed
above is evidently appropriate while for conserved dynamics,
the spin dynamics is diffusive (like in Model B).48,49 To
summarize, disorder in the form of site dilution (while
remaining above the percolation threshold) as well as in
the form of a rapidly oscillating function of the inter-Mn
separation does not qualitatively change the results for Model
A and Model B dynamics discussed above for pure systems.
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Finally, let us consider the case where the disordered
magnetic system is in a Griffiths phase. At a finite temperature,
the system is organized into clusters that are weakly coupled
to their neighbors but within the clusters, the spins are
ferromagnetically ordered. (If the exchange coupling J to
a neighboring spin is less than the temperature T , we may
regard the coupling to be weak.) The long-time behavior of the
autocorrelation function is dominated by the slow relaxation of
atypically large, compact clusters. The relaxation of the cluster
spin is through spin diffusion. The probability that a site i

belongs to a cluster of size L is of the order of e−c(L/ξ )2
, where

ξ is the magnetic correlation length, and c is a constant. The
autocorrelation function C(t) ∼ ∑

L e−c(L/ξ )2−D′t/L2
is domi-

nated by contributions from clusters of size L2
∗ = ξ

√
D′t/c,

whence50

C(t) ∼ e−2
√
D′ct/ξ .

The resistivity noise at low frequencies has the following
behavior:

〈|δρω|2〉/ρ2 ∼ (
J 2

0 ξ 2/D′c
)
(1 + e−2Rij /ξ ). (36)

D. Resistivity noise from charge fluctuations

Resistivity noise can arise from charge fluctuations due
to interdroplet hopping. The effect of interdroplet hopping
on the resistivity noise has been studied in the literature in
the context of electronic phase separation in manganites,51

and we make a similar analysis for our droplet phase. We
begin with the ground state consisting of a large number N

of neutral (uncharged) droplets. At finite temperatures, let N0

be the number of neutral droplets and N± be the number of
droplets with one extra (less) charge. Evidently, N+ = N−
and N = N0 + 2N+. Let EC denote the charging energy of
the droplets, and ω0 be the rate of escape of a hole from a
charge-neutral droplet. In equilibrium, N+ = Ne−EC/T . There
are four elementary charge transfer processes: (1) from one
neutral droplet to another, (2) from a droplet with one excess
charge to another with one deficient charge, (3) from a droplet
with one excess charge to a neutral droplet, and (4) from
a neutral droplet to another with one deficient charge. The
latter two processes do not involve a free-energy cost. At low
temperatures, we may ignore processes involving transfers
of larger charges. The rates for processes (1) and (2) are,
respectively,

1

τ1,2(rij )
= ω0e

−rij /ξloc∓EC/T , (37)

where rij is the distance between the two droplets. For
processes (3) and (4), one has

1

τ3,4(rij )
= ω0e

−rij /ξloc . (38)

In the presence of magnetic correlations, we should replace
ω0 by ωM = ω0e

−(J0/T )(1−cos θij ). Similar considerations also
apply for the fluctuations of the number of charged and
neutral droplets; for example, for process (2), δṄ+(t,ri) =
−∑

j δN+(t,ri)/τ2(rij ), where the summation is over all

droplets with one deficient charge. The average fluctuation
of N+ is 〈δN2

+〉T = N+/2.

Resistivity fluctuations are related to fluctuations of N+
through the following relationship51:

δρ

ρ
= −δN+

N+
(1 − 2e−EC/T ).

This leads us to

〈|δρω|2〉
ρ2

= 〈δN2
+〉T 1 − 2e−EC/T

N2+

∑
j

2τ2(rij )

1 + [ωτ2(rij )]2

= (1 − 2e−EC/T )
∑

j

2τ2(rij )

1 + [ωτ2(rij )]2
, (39)

where the sum ij is over all pairs of droplets corresponding
to process (2). The dominant contribution is from relaxation
to nearest-neighbor droplets. This is especially true for the
insulating samples where the interdroplet distance R > ξloc.

Retaining only the nearest-neighbor contributions, the normal-
ized resistivity noise due to droplet charge fluctuations takes
the form

〈|δρω|2〉
ρ2

≈ z(1 − 2e−EC/T )
2τ2(R)

1 + [ωτ2(R)]2
, (40)

where z is the droplet coordination number and

1

τ2(R)
≈ ω0e

−R/ξloc+EC/T −(J0/T )[1−exp(−R/ξM )]. (41)

The temperature dependence of τ2(R) is different from that of
the resistivity [see Eq. (15)] but nevertheless shows an anoma-
lous behavior around a temperature where ξM (T ) ∼ R. In the
low-temperature limit where R/ξM � 1, τ2(R) ∼ e−EC/T . In
the high-temperature regime, we have τ2(R) ∼ e−(EC−J )/T .

IV. COMPARISON WITH EXPERIMENT

The measurements of the resistivity noise were performed
with the sample, the structure of which is presented in
Fig. 1. Parameters of this sample are as follows: Mn content
is 0.35 ML and it corresponds to 2 × 1014 cm−2 surface
concentration; the thickness of the spacer separating the Mn
δ-layer and the QW is 3 nm; indium concentration in the
Ga1−xInxAs QW x = 0.17 and so its depth is about 70 meV;
the hole density p and their mobility μp in QW are 1.4 × 1012

cm−2 (77 K) or 0.5 × 1012 cm−2 (5 K) and 2370 cm2/V s
(77 K) or 3400 cm2/V s (5 K), respectively. As it was
shown Ref. 29, this sample is close to the metal-insulator
transition of the percolation type having high enough value of
resistance R(5 K) = 19.7 k� and R(5 K)/R(70 K) ≈ 1.5. The
temperature dependence of its resistivity can be fitted to the
Arrhenius law with an activation energy ≈20 K. Ferromagnetic
ordering is established for this sample through observations
of the anomalous Hall effect and resistivity anomaly (peak
at the temperature dependence of the resistance). The direct
magnetic measurements for samples from the same set
show magnetic hysteresis even for samples with smaller Mn
content.23 The temperature corresponding to the onset of
strong ferromagnetic correlations for this sample was found to
be about 30 K as measured by the resistivity anomaly. As it was
shown previously,29 the Mn δ-layer consists of FM droplets
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FIG. 2. (Color online) Plots of the measured fre-
quency dependence of f Sρ(f ) = f 〈|δρf |2〉 for various
values of the temperature.

affecting the magnetic state in the QW giving rise to a set of
metallic FM droplets, which is responsible for metal-insulator
transition. So, there are two characteristic temperatures: the
first corresponds to the FM ordering inside droplets and the
second is related to the formation of the long-range FM state
in the sample, which can be treated as a kind of the “FM
percolation transition.” The characteristic temperature found
from the resistive anomaly corresponds to the second case. At
this temperature, magnetic correlations became significant.

A. Frequency and time dependences

The data (see Fig. 2) on the frequency dependence of
noise show f Sρ(f ) = f 〈|δρf |2〉 (ω = 2πf ) as a function
of frequency for a number of temperatures (mostly below
the resistivity peak). The noise is nonmonotonous at all
these temperatures, and especially so at lower temperatures.
The curves at higher temperatures suggest more than one
relaxation time, while the low-temperature data indicate a
single relaxation time.

The data in Fig. 2 correspond to temperatures well below
the resistivity anomaly. This is the regime where ferromagnetic
correlations are significant. Note that the resistivity noise
amplitude decreases with increase of temperature for the
high-frequency as well as the low-frequency limits. Thus, we
try power-law fits in the low- and high-frequency ranges away
from the peak in the resistivity noise (see Fig. 3). This behavior
is consistent with both the magnetic and charge fluctuation
models. We will discuss the temperature dependence of
resistivity noise later in Sec. IV B.

We consider power-law fits at the low- and high-frequency
ends. At high frequencies, we find (see Fig. 3), for example,
for the T = 4 K data, Sρ(f ) ∼ f −1.5, which should be
contrasted with a f −2 decrease expected for a Lorentzian.
At low frequencies, one can find a fit to Sρ(f ) ∼ A − Bf 2 or
Sρ(f ) ∼ A − B ln f − Cf. The former would be consistent
with a Lorentzian (no conserved order parameter), while the
logarithmic behavior in the latter can arise from Model B
dynamics (conserved order parameter).

By analyzing the long-time behavior of Sρ(t), we find that
the agreement is better with Model B dynamics. Figure 4
shows the time dependence of the resistivity autocorrelation

function numerically obtained by a discrete Fourier trans-
form of the frequency data. The long-time behavior shows
a good fit to Sρ(t) ∼ A/t1.05 + B ln(t/t0). For disordered
RKKY ferromagnets, one expects Sρ(t) ∼ 1/t, while for the
double-exchange case, Sρ(t) ∼ 1/t2/5. We found that fits to
exponential relaxation Sρ ∼ e−t/τ or a Griffiths relaxation
Sρ ∼ e−√

t/τ are not as good as the power-law fits. The
1/t power-law relaxation supports the case of the RKKY
ferromagnet.

In Fig. 5, the time traces of resistivity fluctuations are
shown, while the main stable contribution to the resistivity
is subtracted. Note that the time traces of the resistivity
show distinct telegraphlike switching at low temperature. This
switching is not so prominent once the temperature exceeds
about 200 K: this is near to but below the temperature at
which one observes the anomalous peak in the resistivity and
noise. The advent of telegraphlike switching can be understood
if the magnetic model has uniaxial symmetry instead of
complete rotational symmetry. This is possible given the planar
geometry of the structure. Nevertheless, at the moment we are
unable to say whether at still longer times the autocorrelation

1 10 100

1 10 15

2 10 15

5 10 15

1 10 14

2 10 14

5 10 14

1 10 13

f(Hz)

Sρ(f)

FIG. 3. (Color online) Frequency dependence of noise at T =
4 K (solid curve) together with fits to the low- and high-frequency
regimes. At the low-frequency end, the dashed curve and the
dotted curve are fits to Sρ ∼ A − Bf 2 and Sρ ∼ A − B ln f − Cf,

respectively. At the high-frequency end, the fit is to Sρ ∼ Af −1.53.
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FIG. 4. (Color online) Plot showing the long-time dependence
of the resistivity autocorrelation function Sρ(t) extracted from the
resistivity noise data at T = 4.0 K (solid curve) together with fits to a
power-law time dependence with logarithmic corrections. The dashed
curve is a fit to Sρ(t) = A/t1.05 + B ln(t/t0), while the dotted-dashed
curve is a fit to Sρ(t) = A/t2/5 + B ln(t/t0). In two dimensions,
Sρ(t) ∼ t−1 behavior is expected for a disordered RKKY ferromagnet
[see Eq. (32)] and Sρ(t) ∼ t−2/5 for double-exchange ferromagnets
[see Eq. (33)]. The logarithmic time dependence indicates 1/f noise
contributions. The fit to the RKKY model is better than to the double
exchange.

relaxation will remain a power law or become exponential.
The logarithmic term indicates 1/f noise, possibly from other
mechanisms.

FIG. 5. Time traces of resistivity fluctuations showing distinct
telegraphlike switching at low temperatures. At temperatures higher
than around 20 K, the telegraphlike switching is not so prominent.

B. Temperature dependence

Figure 6 shows the temperature dependence of the resis-
tivity noise at two difference frequencies. The temperature
range shown in in the figure corresponds to the low-frequency
regime for both f = 10 and 150 Hz. This can be deduced
from Fig. 2 where the crossover frequency (between the
low- and high-frequency regimes) for T ∼ 13 K is around
200 Hz, and the data in Fig. 6 are taken at T > 13 K. We
analyze the temperature dependence in the context of the
magnetic and charge fluctuation models we have developed
above.

For models A and B as well as for the Griffiths picture, the
temperature dependence of the normalized resistivity noise is
directly related to the temperature dependence of the magnetic
correlation length ξM, as well as the coefficients �0 (Model
A) and D (Model B). In all cases, 〈|δρω|2〉/ρ2 ∼ ξ 2

M. We do
not yet know the contribution to �0 and D from the change
of hole resistivity with temperature. Suppose the holes in the
quantum well do contribute to �0 and D. In this case, as
the temperature is reduced, �0 and D can show a decrease
mirroring the resistivity, and that it has an anomaly when the
correlation length becomes comparable with the interdroplet
separation.

For models A and B in the low-frequency regime, in
accordance with Eqs. (26) and (29), we fit the temperature
dependence data in Fig. 6 to 〈|δρω|2〉 = Cρ2ξ 2

M, where C is
a constant. The exponential temperature dependence of ρ and
ξM together with the scatter in the data make it difficult to
extract the subleading power laws and logarithms; thus, we do
not attempt to distinguish models A and B here. For the charge
fluctuation model, following Eq. (40), we tried fitting the data
to 〈|δρω|2〉 = Mρ3 exp(−2�/T ), where M is a constant. We
consider TC and � > 0 as fitting parameters. We could not
obtain a satisfactory fit for the charge fluctuation result for any
positive value of �.

Figure 7 shows the resistivity noise data for f = 150 Hz and
a fit to our model of magnetic fluctuations. Possible variation of
�0 or D across the resistivity anomaly is not taken into account

0 10 20 30 40 50 60 70
T(K)

10−16

10−15

10−14

10−13

S
ρ(f

)

f=10Hz
f=150Hz

FIG. 6. (Color online) Temperature dependence of the resistivity
noise Sρ(f ) measured at f = 10 Hz (solid curve) and f = 150 Hz
(dashed curve).
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FIG. 7. (Color online) Temperature dependence of the resistivity
noise Sρ(f ) for f = 150 Hz (dots) and a fit (solid curve) to our model
of magnetic fluctuations Sρ(f ) ∼ Cρ2eπTC/T . The fit corresponds to
TC = 53.22 K. The model does not take into account changes in the
damping parameters �0 or D across the resistivity anomaly.

in the fit. From this fitting, we have got TC = 53.22 K that by
two times exceeds the temperature of the resistance anomaly
and maximum of Sρ(f ) versus temperature, while it is in a
good agreement with TC = 49 K, which was found from fitting
of the resistivity temperature dependence.29 That additionally
proves the earlier result that there are two characteristic
temperatures in such systems: the local Curie temperature
at which ferromagnetic ordering occurs inside the magnetic
droplets and the global Curie temperature of the long-range
ferromagnetic ordering establishment at the scale of the whole
sample “magnetic percolation transition.”

V. DISCUSSION

We experimentally studied and analyzed the resistivity
noise in 2D DMS structures. We have shown how noise
measurements can be used to probe the microscopic dynam-
ics governing ferromagnetism in DMS heterostructures. For
insulating DMS systems, we obtained a relation between
the resistivity noise and the spin autocorrelation function,
which enables us to probe magnetization dynamics through
transport measurements. We studied a number of microscopic
models describing ferromagnetism in the Mn δ-layer mo-
tivated by the hydrodynamic approach of Hohenberg and
Halperin.41 The models studied fall into two broad classes:
(a) those where the order parameter is not a conserved
quantity (Model A) such as Ising magnets and (b) those
where the order parameter is conserved (Model B) such as
uniaxial Heisenberg ferromagnets, RKKY ferromagnets, and
double-exchange ferromagnets. Model B dynamics, where
observed, can be very useful in understanding the microscopic
origin of ferromagnetism. In particular, we showed that
resistivity noise arising from magnetization fluctuations of
RKKY and double-exchange ferromagnets are qualitatively
different and can thus be used to address the long-standing
question of whether ferromagnetism in DMS systems arises
from an RKKY or a double-exchange mechanism. We
also analyzed the effect of disorder on the magnetization
dynamics.

Our results are summarized as follows.
(a) The resistivity noise for uniaxial Heisenberg ferromag-

nets as well as disordered RKKY ferromagnets decreases
as Sρ(t) ∼ 1/t for times long compared with the time scale
τ = ξ 2

M/D of spin diffusion over the magnetic correlation
length. In contrast, Sρ(t) ∼ 1/t2/5 for a double-exchange
ferromagnet. These cases all involve a conserved order
parameter. When the order parameter is not conserved, such
as in an Ising ferromagnet (or an antiferromagnet), the
resistivity noise has a random-telegraph behavior and follows
Sρ(t) ∼ e−�0t at long times. The differences arise from the
momentum dependence of the damping rate �(q) of magnetic
fluctuations. �(q) = �0 for the Ising case; �(q) ∼ Dq2 for
uniaxial Heisenberg ferromagnets and disordered RKKY
ferromagnets; and �(q) ∼ Aq5 for the 2D double-exchange
case.

(b) Magnetic disorder in the form of site dilution and
random sign of nearest-neighbor exchange interaction was
considered. As long as one remains above the classical
percolation threshold, site dilution was seen to degrade the
Curie temperature and spin stiffness but otherwise retain the
same dynamics as the undiluted case. This is in effect a
confirmation of the validity of the Harris criterion in our
systems. When the sign of interimpurity exchange interaction
varies randomly, as may be the case at low Mn density together
with a RKKY interaction of the Mn atoms, the ground state
is a spin glass instead of a ferromagnet. It was shown that the
damping rate of magnetic fluctuations for this case also goes
as �(q) ∼ Dq2.

(c) Fluctuations of charge in the puddles in the quan-
tum well result in a random telegraph noise of the
form Sρ(t) ∼ e−t/τ at long times. In terms of frequency,
this is a Lorentzian behavior that has been obtained in
Sec. III D and discussed in relation to the experimental data
in Sec. IV A.

(d) Our experimental data indicate that Sρ(t) ∼ 1/t , which
is evidence in favor of a disordered RKKY ferromagnet for
these samples. However, as we have discussed in Secs. II
and III, the RKKY behavior is not universal, and depends
on sample parameters such as the ratio of the interhole
distance and the Bohr radius in the Mn layer. The temperature
dependence of resistivity noise qualitatively agrees with the
theory, although the agreement is not as good as the frequency
or time dependence.

(e) Our method of probing the microscopic interactions
governing ferromagnetism is not specific to 2D DMS struc-
tures and can prove useful in the study of other ferromagnetic
systems.
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