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Vibrational exciton mediated quantum state transfer: Simple model
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A communication protocol is proposed in which quantum state transfer is mediated by a vibrational exciton.
We consider two distant molecular groups grafted on the sides of a one-dimensional lattice. These groups behave
as two quantum computers where the information in encoded and received. The lattice plays the role of a
communication channel along which the exciton propagates and interacts with a phonon bath. Special attention
is paid to describing the system involving an exciton dressed by a single phonon mode. The Hamiltonian is thus
solved exactly so that the relevance of the perturbation theory is checked. Within the nonadiabatic weak-coupling
limit, it is shown that the system supports three quasidegenerate states that define the relevant paths followed by
the exciton to tunnel between the computers. When the model parameters are judiciously chosen, constructive
interferences take place between these paths. Phonon-induced decoherence is minimized and a high-fidelity
quantum state transfer occurs over a broad temperature range.
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I. INTRODUCTION

Over short length scales, high-fidelity quantum state trans-
fer (QST) from one region to another is a fundamental task
in quantum information processing.1 It is required to ensure
a perfect communication between the different parts of a
quantum computer (QC) or between adjacent QCs. In that case,
a solid-state-based system is the ideal candidate for scalable
computing for at least two main reasons.2 First, in a lattice the
information is encoded on elementary excitations that naturally
propagate owing to inherent interactions between neighboring
sites. QST is thus spontaneously achieved without any external
control. Second, no interfacing is needed between the QCs
and the communication channel (CC) that involves the same
elementary excitations. Because the CC depends on the way
the information is implemented, different strategies have been
elaborated, such as trapped ions,3 optical lattices,4,5 arrays
of quantum dots,6,7 conducting polymers,8 phonons in crys-
tals with reduced dimensionality,9–11 and spin networks.12–27

However, it has been shown that qubits may be encoded on
intramolecular vibrations28–34 so that vibration-mediated QST
is a promising alternative for quantum information processing.

In this paper, we propose a protocol in which a one-
dimensional molecular lattice plays the role of the CC,
QST being mediated by high-frequency vibrational excitons.
Indeed, molecular lattices exhibit regularly distributed atomic
subunits. Owing to dipole-dipole interactions, the energy of a
specific internal vibration delocalizes between these subunits,
giving rise to narrowband excitons. Although many properties
of the excitons have been studied,35–46 their potential interest
for QST has been suggested very recently.47–49 The main idea
is to encode the information on a vibrational qubit defined as a
superimposition involving the vacuum and one-exciton states.

Unfortunately, the exciton does not propagate freely along
the lattice. It interacts with a phonon bath that tends to destroy
the coherent nature of any vibrational qubit. The exciton
properties are thus described by a reduced density matrix
(RDM) whose behavior is governed by a generalized master
equation (GME).50–52 To understand quantum decoherence,
we have studied excitonic coherences, that is, the RDM matrix
elements that measure the ability of the exciton to be in a

qubit state.53–56 The dynamics was described using a Fröhlich
model57 within the nonadiabatic weak-coupling limit, that is,
a common situation for vibrational excitons. It has been shown
that high-fidelity QST requires the use of a finite-size system.

Indeed, in an infinite lattice,53,54 the phonons behave as
a reservoir. The Markov limit is reached and standard GME
approaches can be used. Dephasing limited-coherent motion
takes place so that the coherences localize, preventing any
efficient QST. By contrast, in a finite-size lattice, a strong non-
Markovian regime occurs, resulting in the breakdown of GME
methods.55,56 To overcome this problem, perturbation theory
(PT) has been applied successfully.47–49 It has been shown
that the phonons evolve differently depending on whether
the exciton occupies the vacuum or an excited state. Exciton-
phonon entanglement takes place, resulting in the decay of the
excitonic coherences. Nevertheless, the decoherence depends
on the nature of the one-exciton state.

In particular, for odd lattice sizes, the coherence involving
the state located at the band center survives over an extremely
long time scale, even at high temperature. Unfortunately, this
state is a stationary wave unable to carry information between
the lattice sides. Nevertheless, we can take advantage of its
robustness against decoherence to define a protocol quite
similar to that introduced in spin chains.17–22 The main idea
is to consider QST between two distant molecular groups that
are grafted on the lattice sides. The structure must be designed
so that a vibration of each molecular group is resonant with
the robust state of the lattice while remaining insensitive to the
phonons. The grafted groups play the role of the QCs, whereas
the lattice defines the CC. Dipole-dipole interactions couple
the QCs with the CC and allow the exciton propagation so that
neither control nor interfacing is required.

In such a confined system, strong non-Markovian effects
will occur so that the dynamics will be addressed within the
effective Hamiltonian concept provided by PT.58,59 However,
the fundamental question arises whether PT is relevant or
not, depending on the model parameters. To answer that
question, we restrict our attention to a system in which only the
lowest-frequency phonon mode (LFPM) is considered. Due to
its simplicity, this model can be solved exactly so that the
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PT performance can been checked easily. Note that such a
choice is not the result of chance. Indeed, in a finite size
lattice, we have shown that the LFPM favors the breakdown
of the GME method, the GME exhibiting unstable solutions
due to parametric resonances.56 Similarly, in a confined
system, this mode yields the largest perturbation of the exciton
dynamics when standard PT is used.47,48 Nevertheless, this
quite academic work remains a first step to proving the
accuracy of PT. The generalization in which the influence
of all the phonon modes is considered will be presented in a
forthcoming paper.

The paper is organized as follows. In Sec. II, the exciton-
phonon Hamiltonian is described and QST is formulated
in terms of the excitonic coherences. Then, PT is applied
to evaluate the system eigenproperties and to determine an
approximate expression of the exciton RDM. In Sec. III, a
numerical analysis is performed in which PT is compared with
exact calculations. The results are discussed and interpreted in
Sec. IV.

II. THEORETICAL BACKGROUND

A. Model Hamiltonian

We consider a CC formed by a one-dimensional (1D)
molecular lattice that contains an odd number of sites N

(Fig. 1). Each site x = 1, . . . ,N is occupied by an atomic
subunit whose internal dynamics is described by a two-level
system. Let |x〉 be the first excited state of the xth two-level
system and ω0 the corresponding Bohr frequency. The vacuum
state |�cc〉 describes all the two-level systems in their ground
state. In the CC, the exciton Hamiltonian is defined in terms
of the hopping constant � as (h̄ = 1)

Hcc =
N∑

x=1

ω0|x〉〈x| +
N−1∑
x=1

�(|x + 1〉〈x| + |x〉〈x + 1|). (1)

Owing to the confinement, one-exciton states are N stationary
waves with quantized wave vectors Kk = kπ/L, with k =
1, . . . ,N and L = N + 1, expressed as

|ϕk〉 =
N∑

x=1

√
2

L
sin(Kkx)|x〉. (2)

The corresponding eigenenergies ω0
k = ω0 + 2� cos(Kk)

form N discrete energy levels centered on ω0, that is, the
energy of the so-called robust stationary wave |ϕL/2〉. The
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FIG. 1. Communication protocol between two distant computers
x = 0 and x = L. The information is carried by an exciton that
propagates along a finite-size lattice.

phonons of the CC refer to the external motions of the lattice
sites that behave as point masses M connected via force
constants W . They define N normal modes with wave vectors
Qp = pπ/L and frequencies �p = �c sin(Qp/2), with p =
1, . . . ,N and �c = √

4W/M . Restricting our attention to the
LFPM p = 1, the phonon Hamiltonian is defined as HB =
�a†a, with � ≡ �1, a† and a being standard boson operators.
In the phonon Hilbert space EB , the eigenstates are thus the
well-known number states |n〉. As detailed previously,47 the
exciton-phonon interaction V = M(a† + a) favors the exciton
scattering from |ϕk〉 to |ϕk±1〉 mediated by phonon exchanges.
The matrix elements of the M operator are defined as

Mkk′ = η(δk,k′+1 + δk,k′−1), (3)

where η = [(EB�/L)(1 − (�/�c)2)]1/2, EB being the small
polaron binding energy expressed in terms of the coupling
strength χ as EB = χ2/W .

The QCs are formed by two molecular groups x = 0 and
x = L whose internal dynamics is described by a two-level
system (Fig. 1). Let |0〉 (|L〉) be the first excited state of the
0th (Lth) molecular group and ωS the corresponding Bohr
frequency. The vacuum state |�qc〉 describes the two groups
in their ground state. Located far enough from each other, these
groups do not interact. Their internal dynamics is governed by
the Hamiltonian Hqc = ωS(|0〉〈0| + |L〉〈L|).

The QCs, assumed to be sufficiently far from the lattice,
are insensitive to the phonons. By contrast, owing to dipole-
dipole interactions, they interact with the lattice exciton. This
interaction originates in a vibrational energy transfer between
the group 0 (L) and the lattice site x = 1 (x = N ) as

W = �S(|0〉〈1| + |1〉〈0| + |L〉〈N | + |N〉〈L|), (4)

where �S = ε�, ε being the strength of the coupling between
the QCs and the CC.

Within this model, the exciton dynamics is governed by
the Hamiltonian HA = Hcc + Hqc + W . It acts in the Hilbert
space EA whose dimension is N + 3. EA is generated by
the vacuum |�〉 = |�cc〉 ⊗ |�qc〉 and by N + 2 one-exciton
eigenstates |ψμ〉, associated with the eigenfrequencies ωμ,
with μ = 0, . . . ,L. The exciton Hamiltonian is thus rewritten
as HA = ∑L

μ=0 ωμ|ψμ〉〈ψμ|. To determine these one-exciton
states, we first fix ωS to ω0 so that a resonance occurs between
the two localized states |0〉 and |L〉 and the robust stationary
wave |ϕL/2〉 (Fig. 2). Then, ε is assumed to be sufficiently small
so that off-resonant interactions between the localized states
and the remaining stationary waves can be disregarded. This
condition is satisfied provided that ε 	 π

√
2/L. As a result,

the one-exciton eigenstates |ψμ〉 are split into two groups
(Fig. 2).

The first group contains N − 1 states that reduce to the
stationary waves |ϕk〉, with k 
= L/2. For μ = 0, . . . ,L/2 − 2,
they are defined as |ψμ〉 = |ϕμ+1〉 (ωμ = ω0

μ+1), whereas for
μ = L/2 + 2, . . . ,L, they reduce to |ψμ〉 = |ϕμ−1〉 (ωμ =
ω0

μ−1). The second group results from the hybridization
between the degenerate states |0〉, |ϕL/2〉, and |L〉. Indeed,
|0〉 (|L〉) interacts with |ϕL/2〉 through the coupling con-
stant g = ε�

√
2/L [g′ = g sin(Nπ/2)]. When ε 
= 0, these

couplings raise the degeneracy so that the eigenstates are
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FIG. 2. (Left side) Exciton energy spectrum when the coupling ε

between the QCs and the CC vanishes. (Right side) Exciton energy
spectrum for ε 
= 0. The coupling raises the degeneracy between the
localized states |0〉 and |L〉 and the robust stationary wave |ϕL/2〉. It
yields three quasidegenerate states |ψ±〉 and |ψo〉.

defined as

|ψ±〉 = 1

2
|0〉 ± 1√

2
|ϕL/2〉 + �N

2
|L〉,

(5)

|ψo〉 = 1√
2
|0〉 − �N√

2
|L〉,

where �N = sin(Nπ/2) and with the convention μ = L/2 ∓
1 ≡ ± and μ = L/2 ≡ o. The corresponding eigenfrequen-
cies are expressed as

ω± = ω0 ± 2ε�/
√

L, ωo = ω0. (6)

|ψ±〉 and |ψo〉 define three quasidegenerate states that involve
a superimposition of the localized states, either symmetric or
antisymmetric. Note that |ψo〉 is exactly located at the band
center and does not depend on the stationary wave |ϕL/2〉. This
is no longer the case for |ψ+〉 and |ψ−〉 that lie just above and
just below the band center, respectively.

The exciton-phonon Hamiltonian is thus written as H =
H0 + V , where H0 = HA + HB is the unperturbed Hamil-
tonian. It acts in the Hilbert space E = EA ⊗ EB that is
partitioned into independent subspaces as E = E0 ⊕ E1. In
the zero-exciton subspace E0, V = 0 so that the unperturbed
states are eigenstates of H . They correspond to tensor products
|�〉 ⊗ |n〉 that describe n free phonons. In the one-exciton
subspace E1, the unperturbed states |
0

μ,n〉 = |ψμ〉 ⊗ |n〉 refer
to free phonons accompanied by an exciton in state |ψμ〉.
Because V turns on, they are no longer eigenstates of H . The
exact eigenstates |
i〉, with eigenenergies Ei , correspond to
entangled exciton-phonon states.

The coupling V favors exciton scattering from |ψμ〉 to
|ψμ′ 〉 through phonon exchanges. The allowed transitions are
specified by the selection rules 〈ψμ|M|ψμ′ 〉 
= 0 [Eq.(3)]. Be-
cause |ψμ〉 interacts with the phonons through its dependence
with respect to the stationary waves, these rules are quite
similar to those that characterize the CC (|ψμ〉 is coupled

with |ψμ±1〉). However, two main differences occur. First,
because |ψo〉 depends only on the localized states, it remains
insensitive to the phonon bath. Second, a splitting occurs
for the transitions involving |ψ±〉. Indeed, because |ψL/2±2〉
reduces to |ϕL/2±1〉, it interacts with |ψ+〉 and |ψ−〉, both states
depending on |ϕL/2〉. Nevertheless, within the nonadiabatic
limit, that is, for 4� < �c and ε 	 π

√
2/L, the allowed

transitions do not conserve the energy. There is no resonance
between the coupled unperturbed states so that second-order
PT can be applied to treat V in the weak coupling limit (EB 	
�). As detailed previously,47,48 PT is valid at temperature
T provided that L < L∗, with L∗ ≈ 0.2�2

c/EBkBT . When
L > L∗, quasiresonances take place between the unperturbed
coupled states and PT breaks down.

B. Excitonic coherences and QST

Without any perturbation, the CC and the QCs are in thermal
equilibrium at temperature T . Assuming that ω0 � kBT , all
the two-level systems are in their ground state. By contrast,
the phonons form a thermal bath described by the density
matrix ρB = exp(−βHB )/ZB , ZB being the phonon partition
function (β = 1/kBT ). In that case, one assumes that the
internal vibrations interact with an external source so that the
exciton is initially prepared in a state |ψA〉 
= |�〉. This step is
supposed to be rather fast when compared with the typical time
evolution of the phonons. The full system is thus brought in a
configuration out of equilibrium and its initial density matrix
is defined as ρ(0) = |ψA〉〈ψA| ⊗ ρB .

To study QST between the QCs, |ψA〉 defines a qubit
implemented on the molecular group x = 0 as

|ψA〉 = α|�〉 + β|0〉, (7)

where |α|2 + |β|2 = 1. Our aim is thus to measure the ability
of the system to freely evolve in time so that this initial
qubit is copied on the second QC x = L (Fig. 1). Whatever
its duration, QST must be realized with the largest fidelity
despite the coupling with the phonons. To define this fidelity
measure, different objects have been introduced,60 one of
the most widely used being certainly the so-called average
Schumacher’s fidelity.12 Here, we restrict our attention to
the excitonic coherences. Indeed, the exciton properties are
encoded in the RDM σ (t) = TrB[ρ(t)], where TrB is a partial
trace over the phonon degrees of freedom. The coherences are
thus the off-diagonal matrix elements σx�(t). They provide
information about the ability of the xth two-level system to
develop a superimposition between its ground state and its
first excited state a time t .

When the initial qubit is implemented on the 0th QC, the
coherence σ0�(0) is turned on at time t = 0. Therefore, the
ability of the Lth QC to develop a superimposition involving
|�〉 and |L〉 at time t is given by σL�(t) = GL0(t)σ0�(0) with

GL0(t) = 〈L|TrB[ρBeiHBt e−iH t ]|0〉. (8)

The effective exciton propagator GL0(t) generalizes the con-
cept of transition amplitude. It yields the probability amplitude
to observe the exciton in |L〉 at time t given that it was in |0〉 at
t = 0. Its effective nature results from the fact that the exciton
interacts with the phonons during its transition.
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The effective propagator is the central object of the present
study. The condition |GL0(t)| = 1 reveals that the Lth QC
reaches a state at time t that is equivalent to the initial
state, to a phase factor. Note that this condition is exactly
the QST fidelity when the coupling with the phonons is
disregarded.12 Consequently, depending on the value of the
model parameters, studying the maximum value of |GL0(t)|
provides key information about the fidelity of the QST.

C. Perturbation theory

In its operatorial formulation,58 standard PT involves a
unitary transformation that provides a new point of view
in which the exciton-phonon dynamics is described by an
effective Hamiltonian. The key point is that this Hamiltonian
is diagonal in the unperturbed basis. Quite powerful to
treat finite-size lattices,47,48 this approach breaks down in
the present situation because the unperturbed Hamiltonian
exhibits quasidegenerate states. For small ε values, |
0

+,n〉
and |
0

−,n〉 have almost the same energy. Although they do
not directly interact through V , they are coupled with the
same unperturbed states. Consequently, effective couplings
occur between quasidegenerate states, resulting in errors in
the calculations of the corrected energies.

To overcome this problem, quasidegenerate PT is applied59

(Appendix A). To proceed, we take advantage of the fact
that the effective couplings conserve the phonon number.
Therefore, our procedure involves a transformation U =
exp(S) that generates a new point of view in which the effective
Hamiltonian Ĥ = UHU † is block diagonal in the unperturbed
basis. The generator S is expanded as a Taylor series in the
coupling V so that Ĥ becomes diagonal with respect to the
phonon number states, only. Up to second order, it is written
as

Ĥ = HA + δHA + (� + δ�)a†a, (9)

where δHA and δ� are operators in EA whose matrix elements
are defined as (in the unperturbed basis {|ψμ〉})

δHAμ1μ2 = 1

2

L∑
μ=0

Mμ2μMμμ1

ωμ1 − ωμ − �
+ Mμ1μMμμ2

ωμ2 − ωμ − �
,

δ�μ1μ2 = 1

2

L∑
μ=0

Mμ2μMμμ1

ωμ1 − ωμ − �
+ Mμ1μMμμ2

ωμ2 − ωμ − �

+ 1

2

L∑
μ=0

Mμ2μMμμ1

ωμ1 − ωμ + �
+ Mμ1μMμμ2

ωμ2 − ωμ + �
. (10)

δHA is the correction of the exciton Hamiltonian owing to the
coupling with the phonons. It results from the spontaneous
emission of a phonon during which the exciton realizes a
transition from |ψμ1〉 to |ψμ〉. However, in the nonadiabatic
limit, the energy is not conserved during the transition. The
emitted phonon is immediately reabsorbed and the exciton
realizes a second transition from |ψμ〉 to |ψμ2〉. In other
words, the exciton does no longer propagate freely but it is
dressed by a virtual phonon cloud. This dressing renormalizes
the excitonic energies ωμ by an amount δωμ = δHAμμ. In

addition, it induces effective interactions δHAμ1μ2 between
distinct excitonic states that can no longer be neglected for
quasidegenerate states.

Similarly, δ� defines the correction of the phonon fre-
quency. It has two origins. First, the phonon can be absorbed
giving rise to excitonic transitions. Because this process does
not conserve the energy, the phonon is immediately re-emitted.
Second, the phonon can induce the stimulated emission of a
second phonon during which the exciton realizes transitions.
However, as previously, the emitted phonon is immediately
reabsorbed. Both mechanisms are virtual processes indicating
that the phonons are dressed by virtual excitonic transitions.

To diagonalize Ĥ for each phonon number, we use the fact
that δ� is smaller than δHA within the weak coupling limit.
Consequently, let |χν〉 be the eigenstates of HA + δHA and
ω̂ν the corresponding eigenfrequencies (ν = 0, . . . ,L). Up to
second order in V , one introduces δ�ν = 〈χν |δ�|χν〉 as the
correction of the phonon frequency induced by the exciton that
occupies the state |χν〉. Within these notations, Ĥ is rewritten
as

Ĥ ≈
L∑

ν=0

ω̂ν |χν〉〈χν | + Ĥ
(ν)
B ⊗ |χν〉〈χν |, (11)

where Ĥ
(ν)
B = (� + δ�ν)a†a is the Hamiltonian that governs

the phonon dynamics when the exciton is in the state |χν〉.
In the new point of view, the exciton-phonon dynamics

is thus governed by the effective Hamiltonian Ĥ that is
diagonal in the basis |χν〉 ⊗ |n〉. Its eigenvalues define the
system eigenfrequencies up to second order in V as Eν,n =
ω̂ν + n(� + δ�ν). Ĥ does no longer refer to independent
excitations but it characterizes entangled exciton-phonon
states. A state |χν〉 describes an exciton dressed by a virtual
phonon cloud, whereas the number state |n〉 describes n

phonons clothed by virtual excitonic transitions. This entan-
glement is clearly highlighted in the starting point of view
in which the eigenstates no longer factorize as |
ν,n〉 =
U †|χν〉 ⊗ |n〉.

As detailed previously,48 PT is particularly suitable for
deriving an approximate expression for GL0(t). To proceed,
we first introduce U and diagonalize H in Eq. (8). Then, we
define the effective density matrix

ρ
(ν)
B (t) = 1

Z
(ν)
B (t)

exp[−(β� + iδ�νt)a
†a], (12)

where Z
(ν)
B (t) = (1 − exp[−(β� + iδ�νt)])−1. Strictly

speaking, ρ(ν)
B (t) is not a density matrix since it yields complex

values for the phonon population. However, it is isomorphic
to ρB with the correspondence β� → β� + iδ�νt and
it provides averages equivalent to thermal averages.
Consequently, after simple algebraic manipulations, GL0(t) is
rewritten as48

GL0(t) =
L∑

ν=0

Z
(ν)
B (t)

ZB

exp[−iω̂ν t]

× TrB
[
ρ

(ν)
B (t)〈L|U †

ν (t)|χν〉〈χν |Uν(0)|0〉]. (13)
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where Uν(t) = eiĤ
(ν)
B tUe−iĤ

(ν)
B t . Expanding U in a Taylor

series with respect to V , one finally obtains the second-order
expression of GL0(t), as detailed in Appendix B.

III. NUMERICAL RESULTS

In this section, numerical calculations are carried out to
show the relevance of PT for describing QST. To proceed,
the previous formalism is applied to amide-I vibrations in α

helices, a system for which the parameters are well known35–40:
ω0 = 1660 cm−1, W = 15 Nm−1, M = 1.8 × 10−25 kg, �c =
96.86 cm−1, and � = 7.8 cm−1. To avoid PT breakdown,
the size is set to L = 10 and the exciton-phonon coupling
strength is fixed to χ = 10 pN. Special attention will be paid
to characterizing the influence of the coupling ε between the
QCs and the CC.

The difference �E = Ei − Eν,n between exact and approx-
imate energies is shown in Fig. 3. For ε = 0.01, PT provides a
very good estimate of the energy spectrum over a broad energy
scale. The smaller the energy is, the better is the agreement. Of
course, �E increases with Ei , indicating that the PT accuracy
decreases with the phonon number n because V scales as

√
n.

For instance, for Ei ≈ 100� (n ≈ 50), �E is approximately
equal to 10−3�, whereas it reaches 5 × 10−3� for Ei ≈ 200�.
Nevertheless, we have verified that �E is smaller than the
energy level spacing, indicating that PT remains valid, even
for quite large energies. As shown in the inset, the curve �E vs
Ei behaves almost periodically, with a period approximately
equal to �, indicating that the PT accuracy depends on the
nature of the unperturbed states. PT is exact for the unperturbed
states that involve the exciton state insensitive to the phonons.
By contrast, unperturbed states located in the neighborhood of
quasidegenerate states are the less well corrected.

As shown in Fig. 4, �E slightly increases with χ so
that PT remains valid in the intermediate coupling regime. It
reproduces the influence of the exciton-phonon coupling on the
energy levels up to χ = 20 pN (η = 1.41 cm−1). In particular,
PT accounts for the energy level crossing process that affects

FIG. 3. Difference between the exact exciton-phonon energies
Ei and the approximate energies Eν,n provided by PT. The coupling
between the QCs and the CC is fixed to ε = 0.01, whereas χ = 10
pN and L = 10.

FIG. 4. Variations of the exact exciton-phonon energies Ei (thin
×’s) and of the approximate exciton-phonon energies Eν,n (solid
lines) with the exciton-phonon coupling strength η. The coupling
between the QCs and the CC is fixed to ε = 0.01 and L = 10.

the dressed states. Owing to the coupling V , unperturbed
states hybridize, giving rise to an energy shift and a splitting
characteristic of anticrossing phenomena. Some energy levels
repel each other, whereas other energy levels get closer. These
levels describing exact uncoupled eigenstates, energy level
crossing takes place.

The ε dependence of the exciton energy correction δωμ is
shown in Fig. 5. Owing to the dressing by virtual phonons, the
exciton energy is redshifted and δωμ decreases linearly with
EB . However, this behavior depends on the exciton state. For
the state |ψo〉 insensitive to the phonons, δωo = 0. By contrast,
the stationary waves μ 
= o,± experience an energy correction
approximately equal to −0.2EB . This shift reduces to −0.1EB

for the states |ψ0〉 and |ψL〉, whose energies define the band
edges, and for the quasidegenerate states |ψ±〉. Moreover,
Fig. 5 reveals that the energy correction of the stationary
waves is almost ε independent. This is no longer the case
for the quasidegenerate states because δω+ (δω−) decreases

o

FIG. 5. (Color online) Variation of the exciton energy correction
δωμ with respect to the coupling ε between the QCs and the CC for
χ = 10 pN and L = 10.
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FIG. 6. (Color online) ε dependence of the difference between the
energy ω̂μ of a dressed state |χμ〉 and the corrected energy ωμ + δωμ

of a bare state |ψμ〉. Note that χ = 10 pN and L = 10.

(increases) linearly with ε (not well distinguishable in Fig. 5).
Note that δω+ = δω− = 0.108EB when ε = 0.

Figure 6 shows the ε dependence of the difference between
the energy ω̂μ of a dressed state |χμ〉 and the corrected
energy ωμ + δωμ of a bare state |ψμ〉. For the stationary
waves μ 
= o,±, a correspondence occurs between both
energies, suggesting that the dressing mainly induces an energy
renormalization without significantly modifying the state. In
fact, we have verified that |χμ〉 ≈ |ψμ〉 for μ 
= ±. Note that
the correspondence is exact for the state insensitive to the
phonons so that one defines a dressed state |χo〉 ≡ |ψo〉 (ν =
L/2 ≡ o). By contrast, the correspondence disappears for the
quasidegenerate states and the smaller ε is, the larger is the
energy difference. A strong hybridization occurs between |ψ±〉
that results in the formation of two quasidegenerate dressed
states. Denoted |χ±〉 (ν = L/2 ∓ 1 ≡ ±), these dressed states
mainly correspond to superimpositions involving |ψ+〉 and
|ψ−〉.

The ε dependence of the energy ω̂± of the quasidegenerate
dressed state |χ±〉 is shown in Fig. 7. For quite large ε values,
ω̂+ (ω̂−) is slightly redshifted when compared with ω+ (ω−).
In that case, ω̂± follows the ε dependence of the corrected
bare energy ω± + δω± and |χ+〉 (|χ−〉) basically corresponds
to |ψ+〉 (|ψ−〉). As ε decreases down to zero, ω̂+ decreases,

FIG. 7. (Color online) ε dependence of the energy ω̂± of the
quasidegenerate dressed state |χ±〉 (solid lines). The figure shows
also the ε dependence of the energy ω± of the quasidegenerate bare
state |ψ±〉 (dashed lines). Note that χ = 10 pN and L = 10.

(+)

(-)
(o)

FIG. 8. (Color online) Variation of the phonon frequency correc-
tion δ�ν with respect to the coupling ε between the QCs and the CC
for χ = 10 pN and L = 10.

and it reaches ω0. By contrast, ω̂− increases and it converges to
a value located below the band center. The energy difference
characterizes an anticrossing phenomena so that the energy
levels of the dressed states repel each other. This is the
signature of the hybridization between |ψ+〉 and |ψ−〉 that
results in the formation of two quasidegenerate dressed states
|χ±〉 ≈ (|ψ+〉 ± |ψ−〉)/√2.

The ε dependence of the phonon frequency correction δ�ν

is shown in Fig. 8. The phonon frequency is either redshifted or
blueshifted depending on the nature of the exciton. A redshift
is induced when the exciton occupies a dressed state |χν〉
with ν = 0, . . . ,L/2 − 1. The closer to the band edge the
exciton energy is located, the larger is the shift. By contrast,
an exciton that occupies a state |χν〉 with ν = L/2 + 1, . . . ,L

yields a blueshift of the phonon frequency. As previously,
excitonic states near the band edge favor the largest phonon
frequency shift. Note that in the state |χo〉, the exciton produces
no phonon frequency shift. As shown in Fig. 8, when the
exciton occupies a state isomorphic to a stationary wave, the
phonon frequency shift is ε independent. By contrast, a strong
ε dependence occurs when the exciton is in a quasidegenerate
dressed state |χ±〉. In that case, δ�+ < 0 increases when
ε decreases, whereas δ�− > 0 decreases when ε decreases.
For nonvanishing ε values, it turns out that δ�− ≈ −δ�+.
However, when ε tends to zero, δ�+ converges to zero,
whereas δ�− reaches a quite small nonvanishing value. In
other words, when ε → 0, the frequency shift is negligible
when the phonon is accompanied by an exciton in either |χo〉,
|χ+〉 or |χ−〉.

The key ingredients entering PT being characterized, let
us now study the effective exciton propagator |GL0(t)| whose
time evolution is displayed in Fig. 9. The figure shows that PT
perfectly agrees with exact calculations over a long time scale.
Initially equal to zero, |GL0(t)| first increases with time. Then,
at time TM , it reaches a maximum value GM quite close to
unity. Finally, it develops damped oscillations that fluctuate
around 1/2. These oscillations support a high-frequency
small-amplitude modulation whose behavior depends on ε.
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FIG. 9. (Color online) Time evolution of the effective exciton
propagator |GL0(t)| between the two QCs for χ = 10 pN, L = 10,
and T = 300 K. Exact calculations (dashed lines) and PT calculations
(solid lines).

When ε = 0.020, |GL0(t)| exhibits a double maximum. At
t = 248.47�−1, |GL0(t)| first reaches a local maximum whose
value is equal to 0.83. Then, the absolute maximum GM =
0.88 occurs at TM = 495.48�−1. Such a temporal structure is
very sensitive to ε. When ε slightly varies around 0.020, the
absolute maximum jumps between the two values of the double
maximum so that TM exhibits a discontinuous character with
respect to ε. By contrast, when ε = 0.013, |GL0(t)| exhibits a
single absolute maximum whose behavior remains quite stable
when ε varies. It occurs at TM = 699.85�−1 and its value
GM = 0.97 is very close to unity.

The ε dependence of the maximum value GM =
Max[|GL0(t)|] is illustrated in Fig. 10 for different temper-
atures. The figure shows that PT provides results in a quite
good agreement with exact calculations. A small discrepancy

T=100 K

T=200 K

T=300 K

FIG. 10. (Color online) Maximum value of the effective exciton
propagator Max[|GL0(t)|] versus the coupling ε between the QCs and
the CC (χ = 10 pN and L = 10). Exact calculations (dashed lines)
and PT calculations (solid lines).

occurs at high temperature and for small ε values only. When
ε decreases from 0.05, the curve GM vs ε exhibits a series of
minima and maxima whose value depends on the temperature.
A local minimum corresponds to a singularity. The curve
exhibits a kind of cusp in the neighborhood of which the
time TM (ε) is discontinuous. By contrast, a local maximum
corresponds to a well-defined point where the first derivative
of GM (ε) vanishes. Close to a local maximum, TM (ε) remains
continuous. Whatever the temperature, it turns out that the
absolute minimum of GM (ε) occurs for ε ≈ 0.021. Its value
slightly decreases with the temperature and it varies from 0.86
for T = 100 K to 0.84 for T = 300 K. By contrast, the absolute
maximum takes place for ε ≈ 0.013 ∀ T . Equal to 0.99 for
T = 100 K, it decreases to 0.97 for T = 300 K. Note that
if one defines P = 100 × (1 − GM ) as the percentage of the
lost information, one obtains P ≈ 3% at high temperature.
When ε tends to zero, the maxima and the minima are
becoming more frequent but less pronounced. GM tends to
a temperature-dependent value approximately equal to 0.99
and 0.95 for T = 100 K and 300 K, respectively. We have
verified that the curve GM vs ε depends on both the lattice size
and the exciton-phonon coupling strength. These parameters
modify the position and the value of the minima and of the
maxima. For instance, for ε = 0.01 and T = 300 K, one
obtains GM = 0.93 for L = 10 and χ = 10 pN, GM = 0.89
for L = 20 and χ = 10 pN, and GM = 0.73 for L = 10
and χ = 20 pN. Increasing either L or χ reduces the QST
fidelity.

Finally, the temperature dependence of GM is illustrated
in Fig. 11 for different ε values. The calculations have been
carried out using PT that is particularly suitable for the
considered ε values. When ε = 0.021, the curve GM (ε) lies
in the neighborhood of its absolute minimum. Consequently,
over the temperature range displayed in the figure, GM takes
the smallest values. Almost uniform, it is approximately equal
to 0.86 ± 0.01. The corresponding lost information is thus
about 14%. For ε = 0.01 and 0.02, a critical temperature
T ∗ discriminates between two regimes. When T < T ∗, GM

rapidly decreases with the temperature. By contrast, when

FIG. 11. (Color online) Maximum value of the effective exciton
propagator Max[|GL0(t)|] versus the temperature T for χ = 10 pN
and L = 10. Different values for the coupling ε between the QCs and
the CC have been considered. Note that the calculations have been
carried out using PT that is particularly suitable for the considered ε

values.
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T > T ∗, smooth variations take place. Note that T ∗ ≈ 40 K
for ε = 0.01, whereas T ∗ ≈ 130 K for ε = 0.02. Finally, for
ε = 0.013, the curve GM (ε) lies in the neighborhood of its
absolute maximum. Consequently, GM slightly decreases with
the temperature. It varies from (almost) unity for T = 10 K
to 0.97 for T = 300 K. It scales as GM ≈ 1 − (T/T0)2 with
T0 ≈ 1510 K so that the lost information remains smaller
than 3%.

IV. DISCUSSION

According to the numerical results, PT is a powerful
tool for describing the exciton-phonon dynamics. Within the
nonadiabatic weak-coupling limit, it accurately accounts for
the spectral properties of the system over a broad energy
scale. Moreover, PT is particularly suitable for characterizing
the time evolution of the effective exciton propagator over a
long-time scale, even at high temperature. In that context, both
exact and approximate calculations have revealed the potential
powerfulness of the proposed communication protocol. The
key point is that its efficiency strongly depends on the coupling
ε between the QCs and the CC. When ε is judiciously
chosen, it turns out that the maximum value of |GL0(t)| is
quite close to unity. A high-fidelity QST occurs over a broad
temperature range, the lost information during the transfer
remaining smaller than 3%. By contrast, specific ε values
induce a hole in the transmission curves. The maximum
value of the effective exciton propagator deviates from unity
resulting in the impoverishment of the transferred information.
The lost information drastically increases and it can represent
almost 15% of the initially implemented information at high
temperature. Of course, these results depend on both the lattice
size and the exciton-phonon coupling strength whose increase
reduces the fidelity of the transfer.

To interpret these results, PT can be used for deriving a
simplified expression of GL0(t). Indeed, our numerical studies
have revealed that the so-called diagonal approximation works
quite well. Consequently, the exact exciton-phonon eigenstates
|
i〉 basically reduce to the effective Hamiltonian eigenstates
|χν〉 ⊗ |n〉. The transformation U in Eq. (13) behaves as the
unit operator and the exciton-phonon entanglement mainly
results from the modification of the exciton states |ψμ〉 →
|χν〉, the renormalization of the exciton energies ωμ → ω̂ν ,
and the correction of the phonon frequency � → � + δ�ν .
GL0(t) is thus rewritten as

GL0(t) ≈
L∑

ν=0

Fν(t)e−iω̂ν t 〈L|χν〉〈χν |0〉, (14)

where Fν(t) = Z
(ν)
B (t)/ZB is the decoherence factor as

Fν(t) = 1 − e−β�

1 − e−β�−iδ�ν t
. (15)

In Eq. (14), GL0(t) is the sum of the probability amplitudes
associated to the different paths that the exciton can follow
to tunnel between the QCs. A given path defines a transition
through the dressed state |χν〉. The corresponding amplitude
involves the weight of the localized states in the dressed
state, a phase factor that accounts for the free evolution of
the dressed exciton and the decoherence factor. This later

contribution originates in the exciton-phonon interaction.
Indeed, when Eq. (8) is developed in the phonon number
state basis, GL0(t) can be interpreted as follows. The system
being prepared in the factorized state |0〉 ⊗ |n〉, GL0(t) is the
probability amplitude to observe the system in a factorized
state |L〉 ⊗ exp(−in�t)|n〉. It thus describes an excitonic
transition during which the phonons evolve freely. When
the exciton occupies the state |χν〉, the phonon frequency is
modified. The probability amplitude that the phonons evolve
freely reduces to a phase factor exp(−inδ�νt). Of course,
such a phase factor does not affect the excitonic coherence
when the phonons are initially in a pure state. However, at
finite temperature, the phonons are described by a statistical
mixture of number states. A thermal average is required and it
yields a sum over different phase factors which interfere with
the other. The interferences lead to a decay of the excitonic
coherence encoded in the decoherence factor.

At this step, Eq. (14) can be simplified because only the
dressed states that involve the localized states |0〉 and |L〉
contribute significantly to the exciton propagator. Indeed,
the bare states |ψμ〉 that correspond to the stationary waves
of the CC (μ 
= o,±) are not degenerated. The dressing
by virtual phonons mainly induces energy renormalization
without significantly modifying their nature. Therefore, the
system exhibits N − 1 dressed states isomorphic to these
stationary waves, that is, |χμ〉 ≈ |ψμ〉 and ω̂μ ≈ ωμ + δωμ for
μ 
= o,±. Because these dressed states are almost independent
on the localized states, their contribution to GL0(t) can be
disregarded. Note that |ψμ〉 is coupled with zμ neighboring
states through phonon exchanges. In the nonadiabatic limit
(|ωμ − ωμ±1| 	 �), Eq. (10) yields δωμ ≈ −zμEB/L, as
observed in Fig. 5. Because z1 = zL = 1, the shift experienced
by the band edge states μ = 1 and μ = L is two times smaller
than the shift experienced by the remaining stationary waves
for which zμ = 2. In a marked contrast, the bare state |ψo〉
does not interact with the phonons. The corresponding dressed
state |χo〉 ≡ |ψo〉 involves only the localized states |0〉 and
|L〉 [see Eq. (5)] and the decoherence factor Fo(t) reduces to
unity. Consequently, |χo〉 defines an ideal path for the excitonic
transition between the QCs.

The fundamental point concerns the quasidegenerate states
|ψ±〉 that are profoundly perturbed by the dressing mechanism.
As for the stationary waves, the exciton-phonon interaction
induces a redshift δω± of each energy ω±. This interaction
originates in the dependence of |ψ±〉 with respect to the
robust stationary wave |ϕL/2〉. Therefore, each quasidegenerate
state is coupled with two stationary waves through phonon
exchanges. In that case, it is easy to extract δω± from Eq. (10).
In doing so, the shifts can be expanded as a Taylor series
with respect to ε as δω± = −∑∞

r=0(−1)rErε
r . The positive

coefficients Er are defined as

Er = η2

2

(
Ēr

(� + �ω)r+1
+ Ēr

(� − �ω)r+1

)
, (16)

where Ē = 2�/
√

L and �ω = |ω0
L/2 − ω0

L/2±1|. In the nona-
diabatic limit, E0 ≈ −EB/L so that δω+ (δω−) decreases
(increases) linearly with ε form −EB/L, in a quite good
agreement with the results displayed in Fig. 5. Note that δω± is
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similar to the shift experienced by the band edge states because
the weight of |ϕL/2〉 in |ψ±〉 is equal to 1/

√
2.

In addition to energy renormalization, the exciton-phonon
interaction yields an effective coupling v+− = −(δω+ +
δω−)/2 between |ψ+〉 and |ψ−〉 [Eq. (10)]. Quite similar in
magnitude to the energy shifts, this coupling can no longer
be neglected, resulting in a strong hybridization between the
quasidegenerate states. These states behave as a two-level
system independent on the remaining states whose eigenstates
define two quasidegenerate dressed states as

|χ+〉 ≈ + cos(θ )|ψ+〉 + sin(θ )|ψ−〉,
(17)

|χ−〉 ≈ − sin(θ )|ψ+〉 + cos(θ )|ψ−〉.
The corresponding eigenenergies are expressed as

ω̂± = ω0 + δω+ + δω−
2

± 1

2

√
�, (18)

where

� = (ω+ + δω+ − ω− − δω−)2 + 4v2
+−,

(19)
cos(2θ ) = ω+ + δω+ − ω− − δω−√

�
.

The hybridization is encoded in the θ parameter whose
value depends on both the exciton-phonon coupling strength,
measured by δω±, and the energy difference δ = ω+ − ω− ≡
2Ēε. Two asymptotic situations occur. For quite large ε values,
|δω±| 	 δ so that the influence of the quasidegeneracy is
negligible. The hybridization is weak and the dressed states
reduce to the bare states, that is, |χ±〉 ≈ |ψ±〉 and ω̂± ≈
ω± + δω±. The bare energies experience a similar redshift
approximately equal to −EB/L, as displayed in Fig. 7 for
ε ≈ 0.05. By contrast, for small ε values, |δω±| � δ and
the hybridization is strong. One obtains θ ≈ π/4 and |χ±〉 ≈
(|ψ+〉 ± |ψ−〉)/√2. The energy ω̂+ reaches the band center
and it scales as ω̂+ ≈ ω0 + (Ē − E1)2ε2/2E0. By contrast,
ω̂− ≈ ω0 − 2E0 − 2E2ε

2 − (Ē − E1)2ε2/2E0 lies close to
ω0 − 2EB/L, in a good agreement with the results displayed in
Fig. 7. Note that in that case |χ+〉 reduces to a superimposition
of the localized states, whereas |χ−〉 tends to the robust
stationary wave.

By combining Eqs. (5) and (17), it is easy to show that the
quasidegenerate dressed states depend on the localized states.
They thus define two relevant paths for the excitonic transition
between the QCs. However, when the exciton occupies |χ±〉,
it induces a shift δ�± of the phonon frequency. Quantum
decoherence is no longer negligible and the decoherence
factors is expressed as

F±(t) ≈ e−in̄δ�±t√
1 + 4�n̄2 sin2(δ�±t/2)

, (20)

where n̄ = [exp(β�) − 1]−1 and �n̄2 = n̄(n̄ + 1). Note that
Eq. (20) has been obtained from Eq. (15) by simplifying the
time dependence of the argument of the decoherence factor.
By inserting Eq. (17) into Eq. (10), the phonon frequency shift
is written as

δ�± ≈ ∓2 cos(2θ )
∞∑

r=0

E2r+1ε
2r+1. (21)

In a quite good agreement with the results displayed in Fig. 8,
Eq. (21) reveals that when the exciton occupies the state
|χ+〉 (|χ−〉), it induces a redshift (blueshift) of the phonon
frequency. Moreover, as observed in Fig. 8 when ε is not
too small, one obtains δ�− = −δ�+. However, when ε tends
to zero, Eq. (21) yields δ�± ≈ ∓2E1(Ē − E1)ε2/E0. Such a
behavior slightly differs from our numerical results. As shown
in Fig. 8, δ�+ vanishes when ε tends to zero, whereas δ�−
reaches a rather small value. This discrepancy originates in
the fact that the exact dressed states |χ±〉 slightly depend on
the stationary waves |ψμ〉, with μ 
= o,±. When ε tends to
zero, such a dependence is more pronounced for |χ−〉. These
additional components, which are not taken into account in
Eq. (17), yield a nonvanishing δ�− value.

In that context, it turns out that |χo〉, |χ+〉, and |χ−〉 define
the main paths followed by the exciton to tunnel between the
QCs. Consequently, GL0(t) is rewritten as

GL0(t) ≈ −�N exp(−iω0t)

× [+ 1
2 − 1

4 |F+(t)| exp(−iW+t)[1 + sin(2θ )]

− 1
4 |F−(t)| exp(+iW−t)[1 − sin(2θ )]

]
, (22)

where W± = ±(ω̂± − ω0 + n̄δ�±) defines a positive fre-
quency relative to the band center ω0. According to Eq. (22),
GL0(t) is the sum of the three transition amplitudes, τo = 1/2
and τ± = −|F±(t)| exp(∓iW±t)[1 ± sin(2θ )]/4, connected to
the three relevant paths. Because |χo〉 is insensitive to the
phonons, the probability amplitude τo is the weight 1/2 of
the localized states. By contrast, the probability amplitude
τ± that the exciton tunnels through |χ±〉 involves a phase
factor whose time evolution is governed by T± = π/W±.
This phase factor is weighted by both the decoherence
factor and the weight of the localized states. Consequently,
depending on the value of the model parameters, W±, θ ,
and F±(t) will take particular values so that each probability
amplitude will develop a specific time evolution. Quantum
interferences between the different amplitudes will occur,
resulting in a characteristic time evolution of |GL0(t)|. As
time evolves, |GL0(t)| will reach a maximum whose value GM

will depend on the model parameters through the interference
pattern.

To understand this phenomenon intuitively, let us focus our
attention on the influence of the coupling ε between the QCs
and the CC. Provided that ε is not too small, the numerical
results suggest that δ�− ≈ −δ�+ > 0. The modulus of the
decoherence factor is thus almost independent on the nature of
the exciton so that |Fν(t)| ≈ F (t) ∀ ν = ±. Moreover, it turns
out that the influence of θ remains negligible, that is, sin(2θ ) ≈
0. Therefore, after straightforward algebraic manipulations,
one obtains

|GL0(t)|2 ≈ 1
4 [1 + F 2(t) cos2(Wf t)

− 2F (t) cos(Wst) cos(Wf t)], (23)

where Ws = (W− − W+)/2 and Wf = (W− + W+)/2. On the
right-hand side of Eq. (23), the first term is the probability |τo|2
that the exciton realizes a transition through |χo〉. The second
term reduces to |τ+ + τ−|2 and it refers to the probability
that the exciton tunnels through either |χ+〉 or |χ−〉. The last
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FIG. 12. (a) ε dependence of the maximum value of the effective
exciton propagator GM (ε) = Max[|GL0(t)|] for χ = 10 pN, L = 10
and T = 300 K. The calculations have been carried out using PT.
(b) ε dependence of the ratio α = Ws/Wf (c) ε dependence of the
ratio TM/Tf . As discussed in the text, when α = 1/2, constructive
interferences occur between the paths followed by the exciton to
tunnel between the QCs. The curve GM (ε) reaches its maximum and
the time TM is continuous. When α = 1/3, a hole takes place in the
transmission curve owing to the quantum interferences and the time
TM for which |GL0(t)| is maximum shows a discontinuity.

term describes the quantum interferences that arise when the
exciton follows the paths involving either |χ0〉 or |χ+〉, and
|χ0〉 or |χ−〉. It mixes W+ and W− and it behaves as an
amplitude-modulated signal f (t) = F (t) cos(Wst) cos(Wf t).
It thus exhibits a slowly varying envelope with frequency
Ws that supports a fast modulation with frequency Wf , both
components being damped by the decoherence factor F (t).
Such a behavior allows us us to introduce the fundamental
times Tf = π/Wf and Ts = π/Ws .

The time evolution of |GL0(t)| is mainly encoded in
the quantum interference term f (t). Consequently, |GL0(t)|
reaches its maximum value GM (ε) for a time TM (ε) that
minimizes f (t). As illustrated in Fig. 12(c), such a situation
occurs when TM is a multiple of Tf ; that is, TM = nTf , with
n = 1,2, . . .. However, the integer n and the magnitude of
GM (ε) depend on ε through the value of the ratio α = Ws/Wf .
This ratio extends from zero for large ε values to unity for

small ε values, as displayed in Fig. 12(b). Therefore, as ε

varies, different regimes take place.
For specific ε values, α is such that a situation arises

in which the quantum interference term f (t) exhibits two
equivalent minima at two distinct times. In that case, the curve
GM vs ε exhibits a local minimum and the time TM shows a
discontinuity between two multiples of Tf . We have observed
that in that case there are two equivalent configurations for
which the probability amplitudes τ+ and τ− are in phase with
each other but are not exactly in phase with the amplitude τo.
At high temperature, such a situation occurs for the ε values
that provide α = (2q − 1)/(2q + 1), with q = 1,2, . . .. The
time TM exhibits discontinuities between qTf and (q + 1)Tf

and one obtains T+ = 2qT− and Tf = 2T+/(2q + 1). Note
that, as shown in Fig. 12, the largest hole in the transmission
curve occurs for q = 1, that is, for α = 1/3, so that TM varies
between Tf and 2Tf .

In a marked contrast, for particular ε values, α is such
that the quantum interference term f (t) exhibits an isolated
minimum close to −1. Such a situation takes place at a
time TM (ε) so that the probability amplitudes τ+ and τ− are
simultaneously in phase with the probability amplitude τo.
Constructive interferences occur between the different paths
followed by the exciton to tunnel between the QCs. As a
result, the curve GM vs ε exhibits a local maximum [see
Figs. 10 and 12(a)]. Such a situation appears for the ε values
that yield α = (q − p)/(q + p + 1), where p and q are two
positive integers such that q > p. One thus obtains TM =
(2p + 1)T+ = (2q + 1)T−, that is, TM = (p + q + 1)Tf . In
that case, f (TM ) = −F (TM ) so that the maximum value of
the exciton effective propagator is approximately equal to
GM = [1 + F (TM )]/2.

As shown in Figs. 10 and 12(a), the largest local maximum
occurs for a specific value ε∗. When ε = ε∗, p = 0 and q = 1
so that α = 1/2 and TM = T+ = 3T−. Solving the equation
T+ = 3T− by expanding the parameters with respect to ε

provides an analytical expression for ε∗ written as

ε∗ ≈
√

2E0√
(Ē − E1)2 − 4n̄E1(Ē − E1) − 2E0E2

. (24)

Over the temperature range T = 100K–300 K and for χ =
10 pN and L = 10, Eq. (24) yields ε∗ ≈ 0.011 in a quite good
agreement with the numerical estimate ε∗ ≈ 0.013 (Fig. 10).
Therefore, when ε = ε∗, T+(ε∗) defines the shortest time for
which constructive interferences occur. The decay provided
by the decoherence factor is thus minimized and the QST is
optimized. In the nonadiabatic weak-coupling limit one thus
obtains

GM (ε∗) ≈
[

1 − π2

4

�n̄2

δn2

]
, (25)

where δn = n0 − n̄ and n0 = |ω̂+(ε∗) − ω0|/|δ�+(ε∗)|.
Equation (25) clearly shows that the impoverishment of the
transferred information results from the thermal fluctuations
�n̄ of the phonon number. Fortunately, in the weak coupling
limit, n0 � n̄ so that �n̄ is always smaller than δn. Because
�n̄ is proportional to kBT /�, the optimized value of the
effective exciton propagator scales as GM (ε∗) ≈ 1 − (T/T0)2

with T0 = 2n0�/π . As observed in Fig. 11, GM (ε∗) only
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slightly deviates from unity provided that T remains smaller
than the critical temperature T0. With the parameters used in the
simulation (χ = 10 pN and L = 10), T0 ≈ 1600 K, indicating
that the lost information during the transfer is negligible, even
at room temperature.

Consequently, when ε is judiciously chosen, constructive
interferences take place between the different paths followed
by the exciton to tunnel between the QCs. The influence of
the quantum decoherence is minimized and an ideal QST
occurs over a broad temperature range. The fidelity of the
transfer remains quite close to unity, even at high temperature,
indicating the powerfulness of the proposed communication
protocol.

V. CONCLUSION

In the present paper, a new communication protocol has
been proposed in which QST is achieved by a high-frequency
vibrational exciton. The main idea was to use two distant
molecular groups grafted on the sides of a molecular lattice.
These groups behave as two QCs on which the information is
encoded and received. By contrast, the lattice defines the CC
along which the exciton propagates and interacts with a phonon
bath. To minimize the impact of the quantum decoherence, the
structure was designed so that a vibrational resonance occurs
between the QCs and the robust stationary wave of the lattice
whose energy is exactly located at the band center.

To highlight the relevance of PT, special attention has
been paid for describing a simple model in which an exciton
is dressed by a single phonon mode only. In that case, the
Hamiltonian was solved exactly so that the PT accuracy has
been checked. Within the nonadiabatic weak-coupling limit, it
has been shown that PT is a powerful tool for characterizing
the exciton-phonon dynamics. Provided that the lattice size is
not too large, it yields a very good estimate of the spectral
properties over a broad energy scale. Moreover, it has been
observed that PT is particularly suitable for describing the
time evolution of the exciton RDM, even at high temperature.

In that context, it has been shown that the system supports
three quasidegenerate exciton states that involve the states
localized on the QCs. When the exciton occupies one of these
states, it does not significantly modify the phonon bath and
keeps its coherent nature over a long time scale. These states
define the relevant paths followed by the exciton to tunnel
between the QCs. Consequently, when the coupling between
the QCs and the CC is judiciously chosen, constructive
interferences take place between these paths. The quantum
decoherence is minimized and an almost ideal QST occurs.
The fidelity of the transfer remains quite close to unity over
a broad temperature range, indicating the powerfulness of the
proposed communication protocol.

Finally, because the present approach has clearly revealed
the relevance of PT, it will be generalized for describing the
influence of all the phonon modes. The main idea is to check
the efficiency of the proposed protocol with a more realistic
system whose dynamics cannot be solved exactly.

To conclude, let us mention that this work was quite
academic and presented solely theoretical results. However,
we believe that the proposed protocol could emerge owing
to the fast innovation of the experimental physics. For

instance, surface science offers many possibilities to imple-
ment our protocol. Indeed, it allows the formation of molecular
nanostructures with a well-defined geometry.61 In particular,
surfaces that exhibit self-organized defects can be used to
prepare nanodevices such as 1D wires. Surfaces also behave
as ideal template for the adsorption of biopolymers.62 The
interest of adsorbed structures is reinforced by the use of local
probes such as the scanning tunneling microscopy (STM), for
at least two reasons. First, these probes can serve as tools
to design the structures by manipulating the adsorbate. Then,
the STM can be used to excite the intramolecular vibration
of the adsorbed molecules63 and thus to encode vibrational
qubits.

APPENDIX A: QUASIDEGENERATE SECOND-ORDER
PERTURBATION THEORY

Quasidegenerate PT involves a unitary transformation U =
exp(S) that provides a block-diagonal transformed Hamil-
tonian Ĥ = UHU † in the unperturbed basis |
0

μ,n〉. More
precisely, the desired Hamiltonian must be diagonal with
respect to the phonon number states only. To proceed, any
operator O acting in E can be split as O = OD + OND , where
OD is the diagonal part with respect to the phonon number
states, whereas OND is the remaining nondiagonal part. Note
that such a partition is equivalent to that provided by a projector
formalism.59 In the unperturbed basis, these operators are
defined as

〈

0

μ,n

∣∣OD

∣∣
0
μ′,n′

〉 = 〈

0

μ,n

∣∣O∣∣
0
μ′,n

〉
δnn′ ,

(A1)〈

0

μ,n

∣∣OND

∣∣
0
μ′,n′

〉 = 〈

0

μ,n

∣∣O∣∣
0
μ′,n′

〉
(1 − δnn′ ).

In that context, because VD = 0, one seeks the anti-Hermitian
generator S ≡ SND as a nondiagonal operator with respect to
the phonon number states. It is expanded as a Taylor series as
S = S1 + S2 + · · ·, where Sq is the qth order correction in the
coupling V . Consequently, Ĥ becomes

Ĥ = H0 + V + [S1,H0] + [S1,V ] + [S2,H0]

+ 1
2 [S1,[S1,H0]] + · · · . (A2)

From Eq. (A2), S is derived order by order to obtain a block-
diagonal form for Ĥ at the desired order. Up to second order,
the solution is given by the equations

[H0,S1] = VND, [H0,S2] = 1
2 [S1,V ]ND,

(A3)
Ĥ = H0 + 1

2 [S1,V ]D.

Because V = M(a† + a) is a linear combination of creation
and annihilation phonon operators, S1 is of the form S1 =
Za† − Z†a. The unknown operator Z acts in EA, only. No
restriction affects this operator because S

†
1 = −S1. There-

fore, inserting this expression into Eq. (A3) yields Zμμ′ =
Mμμ′/(ωμ − ωμ′ + �).

The knowledge of S1 allows us to compute the commutator
[S1,V ] that is required to derive both Ĥ and S2. This
commutator is defined as

1
2 [S1,V ] = A + Ba†a† + B†aa + (B + B†)a†a, (A4)
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where B = [Z,M]/2 and A = −(Z†M + MZ)/2. From the
diagonal part of Eq. (A4), Ĥ reduces to

Ĥ = HA + A + (� + B + B†)a†a. (A5)

We thus recover Eq. (9) with δHA = A and δ� = B + B†

whose representation in the unperturbed basis yields Eq. (10).
From the nondiagonal part of Eq. (A4), one seeks S2 of the
form S2 = Ea†a† − E†aa. The unknown operator E acts in
EA, only. Inserting this expression into Eq. (A3) yields Eμμ′ =
Bμμ′/(ωμ − ωμ′ + 2�).

APPENDIX B: EFFECTIVE EXCITON PROPAGATOR

Expanding U as a Taylor series with respect to V , Eq. (13)
yields the second-order expression of the effective exciton

propagator as

GL0(t) =
L∑

ν=0

Z
(ν)
B (t)

ZB

e−iω̂ν t [〈L|χν〉〈χν |0〉

+ 〈L|Z|χν〉〈χν |Z†|0〉n(ν)(t)ei(�+δ�ν )t

+〈L|Z†|χν〉〈χν |Z|0〉(n(ν)(t) + 1)e−i(�+δ�ν )t

−〈L|ZZ†|χν〉〈χν |0〉n(ν)(t)/2

−〈L|Z†Z|χν〉〈χν |0〉(n(ν)(t) + 1)/2

−〈L|χν〉〈χν |ZZ†|0〉n(ν)(t)/2

−〈L|χν〉〈χν |Z†Z|0〉(n(ν)(t) + 1)/2], (B1)

where n(ν)(t) = [exp(β� + iδ�νt) − 1]−1.
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