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Quantum criticality in spin chains with non-Ohmic dissipation
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We investigate the critical behavior of a spin chain coupled to bosonic baths characterized by a spectral density
proportional to ωs , with s > 1. Varying s changes the effective dimension deff = d + z of the system, where z is
the dynamical critical exponent and the number of spatial dimensions d is set to one. We consider two extreme
cases of clock models, namely Ising-like and U(1)-symmetric ones, and find the critical exponents using Monte
Carlo methods. The dynamical critical exponent and the anomalous scaling dimension η are independent of the
order parameter symmetry for all values of s. The dynamical critical exponent varies continuously from z ≈ 2 for
s = 1 to z = 1 for s = 2, and the anomalous scaling dimension evolves correspondingly from η � 0 to η = 1/4.
The latter exponent values are readily understood from the effective dimensionality of the system, being deff ≈ 3
for s = 1, while for s = 2 the anomalous dimension takes the well-known exact value for the two-dimensional
Ising and XY models, since then deff = 2. However, a noteworthy feature is that z approaches unity and η

approaches 1/4 for values of s < 2, while naive scaling would predict the dissipation to become irrelevant for
s = 2. Instead, we find that z = 1,η = 1/4 for s ≈ 1.75 for both Ising-like and U(1) order parameter symmetry.
These results lead us to conjecture that for all site-dissipative Zq chains, these two exponents are related by the
scaling relation z = max{(2 − η)/s,1}. We also connect our results to quantum criticality in nondissipative spin
chains with long-range spatial interactions.
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I. INTRODUCTION

The spin-boson model1,2 (SBM) represents one of the
most well-established frameworks for describing the effect of
dissipation on a quantum system. In its simplest incarnation,
it describes a two-level system coupled to an infinite number
of harmonic oscillators with low-frequency spectral density
J (ω) ∝ ωs , with ohmic damping (s = 1) being the most
commonly studied case. Generalizations of this model include
extensions to finite (spatial) dimensions d > 03,4 and models
where the Z2 (Ising) spin symmetry has been replaced by
a higher symmetry.5,6 Extended versions of such systems
may also find applications in the study of quantum critical
points in quantum magnets and strongly correlated systems,6–9

and hence they are of considerable interest in contemporary
condensed-matter physics.

Another generalization is to consider non-Ohmic spectral
densities (s �= 1), which may be relevant in the description
of several different physical phenomena.10–17 From a more
fundamental physics point of view, the sub-Ohmic (s < 1)
SBM and related models have been studied intensively in
recent years18–20 following claims that the so-called quantum-
to-classical mapping may be violated in even the simplest
variant of SBM for s < 1/2.21 Its super-Ohmic counterpart
s > 1 has, on the other hand, received relatively little attention.
This may be due to the fact that the (0 + 1)-dimensional
[(0 + 1)D] SBM exhibits a (quantum) phase transition only
for values of s � 1. For d � 1, however, the possibility of a
phase transition arises for all s.

The SBM is generally described, via the quantum-to-
classical mapping, by a classical (d + 1)D spin model with
long-range interactions that decay as 1/τ 1+s in imaginary time
τ . Long-range interactions are interesting, as they allow one to
increase the effective dimensionality continuously by tuning
s to lower values. In classical spin glasses, for instance, low-
dimensional models with long-range interactions have been
studied to infer properties of higher-dimensional realizations

of the same systems with purely short-range interactions.22–24

In quantum models, the effective dimensionality is expressed
by deff = d + z, with z being the dynamical critical exponent
defined from the divergence of the correlation time ξτ ∼ ξz,
where ξ is the spatial correlation length. At a second-order
phase transition, we have in standard notation ξ ∼ |K − Kc|−ν

as the coupling parameter K approaches its critical value Kc.
The presence of dissipation in general causes z to deviate from
the value z = 1, with a naive scaling estimate z0 = 2/s.25

Although this result is exact in mean-field theory (deff � 4),
deviations may appear when decreasing deff . For the Ohmic
case, it is known26 that z obeys the scaling law z = z0 − η,
where η in general denotes the anomalous scaling dimension
at the transition point to a disordered state. Below deff = 4
one has η > 0, and previous work3 on s = 1 for d = 1 found
η ≈ 0.015 and z ≈ 1.985.

One issue we address in this paper is how the exponents z

and η evolve as one varies the dissipation parameter s > 1.
For the Ohmic case considered previously, the deviations
from naive scaling (i.e., from z = z0) are barely significant
due to the small value of η when deff ≈ 3. This deviation
should become more noticeable as the effective dimensionality
decreases, although one cannot expect the relation z = z0 − η,
valid for s = 1, to hold also for larger s. In the limit d + z → 2,
the anomalous dimension might be expected to approach the
relatively large value η = 1/4, which it takes for both the
two-dimensional (2D) Ising and 2D XY model. A related
issue is the value of s beyond which the dissipation term is
irrelevant in the renormalization group sense, giving z = 1.
Naive scaling indicates that z = 1 for s � 2, but as z is likely
to decrease faster than z0 = 2/s as s increases, dissipation
might turn irrelevant for a value of s smaller than 2.

Another issue which we address is how the critical
exponents, in particular z and η, depend on the symmetry of
the order parameter. In the limit s = 1, there is no significant
difference between the values of η (and thereby z) for
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discrete and continuous order parameter fields,3,5 but it is not
inconceivable that such a difference becomes noticeable for
lower effective dimensions, that is, as s is increased.

In order to answer these questions and to study a class
of dissipative models for which relatively little is known
precisely, we present results from Monte Carlo simulations
on both XY and Ising-like spin chains with non-Ohmic dis-
sipation. In both cases, we consider super-Ohmic dissipation,
which for the XY case allows us to interpolate between the
universality class describing the three-dimensional (3D) XY

model and the very different Berezinskii-Kosterlitz-Thouless
(BKT) criticality of the 2D XY model. The models are
presented in the next section, where we also describe the
finite-size scaling procedure used to find the critical exponents.
The dependence of these exponents on s are presented and
discussed in Sec. III, before we give a summary of our findings
in Sec. IV.

II. MODEL AND FINITE-SIZE SCALING METHODS

The starting point of the models we consider may be
taken as a general (1 + 1)D φ4-type quantum field theory of
an O(N ) order parameter field φ. Including dissipation, the
Fourier transform of its inverse bare propagator is of the form
q2 + ω2 + |ω|s , where the damping term ∝|ω|s arises from the
coupling of the field to baths of harmonic oscillators27 with
a low-frequency power-law spectral density characterized by
the exponent s.

Parameterizing the order parameter field of such a N = 2
quantum rotor model by an angle variable θ , we may formulate
the discretized action as

S = −K

L∑
x=1

Lτ∑
τ=1

cos(θx,τ − θx+1,τ )

−Kτ

L∑
x=1

Lτ∑
τ=1

cos(θx,τ − θx,τ+1)

− α

2

L∑
x=1

Lτ∑
τ �=τ ′

(
π

Lτ

)1+s cos (θx,τ − θx,τ ′ )

sin1+s
(

π
Lτ

|τ − τ ′|) (1)

on a quadratic L × Lτ lattice. Above, K is the spatial coupling
constant to be varied, whereas the quantum coupling constant
Kτ and the dissipation strength α are taken as fixed values
during the simulations.

In order to study both continuous and discrete symmetry of
the order parameter field, we consider two possible domains
of the angle variables: U(1) symmetry is equivalent with
θ ∈ [0,2π〉, and for a discrete symmetry (Z4), we choose to
enforce the restriction θ ∈ {0, π

2 ,π, 3π
2 }. We refer to the former

as the XY model and to the latter as the Z4 model. Such a Z4

model will be in the same universality class as a corresponding
Z2 (Ising) model, which is why we refer to this model as Ising-
like. This equivalence is easily shown using the substitution
cos θx,τ = (σx,τ + μx,τ )/2 and sin θx,τ = (σx,τ − μx,τ )/2 to
rewrite the action as that of two Ising models in terms of
decoupled Ising spins σ and μ. The order parameter for both
symmetry variants is defined as m = (LLτ )−1 ∑

x,τ exp (iθx,τ )
in the standard manner.

When determining critical exponents of a quantum system
using finite-size scaling (FSS), the system dimensions L, Lτ

used have to be chosen such that they respect the system
anisotropy reflected by the dynamical critical exponent, Lτ ∝
Lz. This is a problem when we do not know dynamical critical
exponents a priori, and one usually has to first determine
z by simulating several values of Lτ for each L, before
running new simulations with L/Lz

τ fixed. We circumvent
this problem by using the same data to determine z and
to evaluate the FSS observables, by interpolating data for
multiple Lτ values to Lτ = L∗

τ (L). Here, L∗
τ is a characteristic

temporal system size found for each spatial system size L, as
explained below, and it is assumed that L∗

τ ∝ Lz. This has the
advantage that one (along with z) can find all other critical
exponents simultaneously, utilizing all (or most of) the data
generated. Furthermore, we are also able to appropriately take
the uncertainty in z into account when finding the uncertainty
in the other exponents, by repeating the entire procedure for a
number of jackknife bins based on the original data.

The procedure to find z is explained in more detail in, for
example, Ref. 4, and is based on the Binder ratio

Q = 〈m4〉
〈m2〉2

= Q(|K − Kc|L1/ν,Lτ /L
z), (2)

where brackets 〈· · ·〉 indicate ensemble averages and Q is a
universal scaling function. The characteristic values L∗

τ (L) are
found from the minima of Q as a function of Lτ for a given
L, and the critical coupling Kc is found from the crossing
points of these minima as a function of K . The correlation
length exponent ν is determined through finite-size scaling of
the related quantity

(∂〈m2〉/∂K)2

∂〈m4〉/∂K
∝ L1/ν, (3)

where the derivatives are calculated by ∂〈mn〉/∂K =
〈Ex〉〈mn〉 − 〈Exm

n〉, with Ex = −∑
x,τ cos(θx,τ − θx+1,τ ).

To extract critical exponents β and γ , we use the usual FSS
forms for the magnetization

〈|m|〉 ∝ L−β/ν (4)

and the magnetic susceptibility

χ = LLτ 〈m2〉 ∝ Lγ/ν, (5)

respectively. The anomalous dimension η is then found from
the scaling relation η = 2 − γ /ν. We have also checked that
the value of η obtained from the susceptibility data is in
correspondence with that obtained (through z + η) from the
critical two-point correlation function of the order parameter
field, G(L/2) ∝ L2−d−z−η. All of the above observables are
evaluated at Lτ = L∗

τ , and we are careful to only use system
sizes Lτ relatively close to L∗

τ in the interpolation. Using a
polynomial fit of as low order as 3 works very well in most
cases, although more care must be taken when extracting ν.

The error estimates we report are jackknife estimates of
statistical errors only, but include contributions from the
uncertainty in L∗

τ and the critical coupling Kc. The value of
Kc is in general extrapolated from the scaling form K∗

c (L) =
Kc + cL−ω′

for the crossing points K∗
c (L) of Q(K,Lτ = L∗

τ )
for adjacent system sizes L. For regions of s where the crossing
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points coincide and the extrapolation procedure breaks down,
we base the estimate of Kc on the largest values of L. When
extracting critical exponents, we make sure to use system sizes
large enough for the above mentioned FSS forms to be valid.
Possible corrections to scaling are discussed below. We note
in particular that we initially assume a second-order phase
transition for all values of s we use, so critical exponents
obtained in the case of a BKT transition should be regarded
as effective exponents only. The special case of s ≈ 2 for the
XY model is therefore re-examined separately in Sec. III B.
Corrections to the scaling form L∗

τ ∝ Lz are discussed for a
special case in Sec. III C.

The Monte Carlo simulations are performed using a Wolff
cluster algorithm28 for long-range interactions.29 The results
are obtained using an implementation of the MERSENNE

TWISTER30 random number generator, but other random
number generators produce consistent results. Ferrenberg-
Swendsen reweighting techniques31 were applied to the data.
For the simulations of the XY case, we use a model with Z32

symmetry to emulate the continuous U(1) symmetry.

III. RESULTS AND DISCUSSION

When extracting critical exponents for the model we
consider in this paper, we anticipate that the only parameter
in Eq. (1) relevant in determining the universality class is
the interaction decay exponent s. (The values we present
Monte Carlo results for are s =1, 1.25, 1.5, 1.625, 1.75,
1.875, and 2.) Nevertheless, we also find that the corrections to
scaling are strongly affected by the strength of the dissipation
term as quantified by α, for finite systems. In order to
minimize finite-size effects and ensure a relatively fast onset of
asymptotic values of the exponents, a specific value of α could
in principle be tailored to each value of s.32 Instead of adjusting
α for each individual value of the decay exponent s, we have
divided the span of s values into two regions where we have
applied different sets of coupling constants. For s > 1.625,
where we expect the dissipation term to be weakly relevant (in
the sense of a small correction-to-scaling exponent) or even
irrelevant, we set the coupling values according to α = 0.1
and Kτ = − ln (tanh 1

2 ) ≈ 0.7719. For s � 1.5 we find that
it is more appropriate to choose a larger value of α while
reducing Kτ in order to observe a rapid finite-size crossover
to the asymptotic exponents. In this region we use α = 0.5
and Kτ = 0.4. For the intermediate value s = 1.625, we use
α = 0.3 and Kτ = 0.4. We can easily confirm for the smallest
values of s that the universality class does not depend on the
value of α, but corrections to scaling makes this harder for
larger s, as discussed in Sec. III C.

A. Results for the critical exponents

In Fig. 1 we present the dynamical critical exponent z as a
function of s. A notable feature of the results is the similarity
between the two order parameter symmetries. To the accuracy
of our simulations, there is essentially no difference between
the continuous U(1) symmetry and the discrete Z4 symmetry.
Also, the calculated z values do not conform to the scaling
estimate z0 = 2/s, but instead fall off faster for increasing s

than expected from naive scaling.

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

s

z

Z4
XY
z0 = 2/s

FIG. 1. (Color online) Dynamical critical exponent z as a function
of s for the Z4 and the XY model. The naive scaling estimate z0 (the
solid curve) does not coincide with the calculated z for values of s

other than the integer-valued end points of our span of s values.

We present the evolution of η as a function of s in
Fig. 2. Again, we find coinciding values for the two order
parameter symmetries. For both Z4 and U(1), η increases
steadily with decreasing effective dimension of the system.
Also shown in Fig. 2 is the quantity η0 = 2/s − z, which
quantifies the difference between the naive scaling estimate
z0 and the calculated z. For s � 1.25 the evolution of η0

closely follows the calculated values of η, making the scaling
relation z = 2/s − η a fair approximation also for s � 1. For
larger values of s, however, this scaling relation has clearly
broken down, as the values of z again approach the naive
estimate as s → 2. In this limit, η approaches the value
η = 1/4, which is expected for both the 2D Ising model at the

1 1.2 1.4 1.6 1.8 2
−0.05
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η

Z4
XY
η0 = 2/s − z

FIG. 2. (Color online) Anomalous scaling dimension η as a
function of s for the Z4 and the XY model. η0 indicates the
discrepancy between the naive scaling estimate z0 = 2/s and the
actually calculated value of the dynamical critical exponent z (based
on the mean for the Z4 and XY model).
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FIG. 3. (Color online) Critical exponent ratio β/ν as a function of
s. This ratio appears to be independent of order parameter symmetry
and is also well defined in the limit of large s. The dashed line
represents β/ν = 1/8.

critical point, as well as for the 2D XY model at the critical
end point.

Next, we turn to the remaining critical exponents. Figure 3
shows the results for the ratio β/ν as obtained from the
magnetization. We do not show the ratio γ /ν, although its
behavior is easily inferred from Fig. 2 and the relation γ /ν =
2 − η. Again, the FSS exponent seems to take essentially the
same values for the XY model as for the Z4 model. This is
also the case for s → 2, where we expect the dissipation to
be irrelevant so that the effective dimensionality is reduced
to deff = 2. For the XY model, the U(1) symmetry of the
variables then cannot be spontaneously broken, and the strong-
coupling phase of the model features only quasi-long-range
order (QLRO). Nonetheless, the system develops a finite
magnetization m as a finite-size effect, with a well-defined
FSS exponent. The value β/ν ≈ 0.125 = 1/8 of this exponent
when s = 2 (as well as the corresponding susceptibility ratio
γ /ν ≈ 7/4) is also found for the classical 2D XY model
and is, incidentally, the same as the corresponding ratio in
the 2D Ising model. We discuss this issue in more detail
in Sec. III E.

The correlation length exponent ν is shown in Fig. 4, while
the critical exponent β is shown in Fig. 5. We do not show the
results for the exponent γ here, but its behavior is qualitatively
very similar to that of the exponent ν. In the Z4 case, both
exponents start out close to the 3D Ising limit for s = 1
and approach the 2D Ising limit indicated by the dashed line
when s → 2. Consider now the XY case. When s = 1, these
exponents take on values close to those of the 3D XY model.
However, the exponents β, ν, and γ are not well defined
when deff = d + z = 2, as their values are formally infinite
at a transition separating a disordered phase and a QLRO
phase. This is the case when s = 2. Our FSS analysis for these
exponents, which presupposes a second-order phase transition,
is strictly speaking not applicable to the BKT transition. The
resulting (effective) exponents β, ν, and γ appear to diverge as
L → ∞ close to s = 2. Note that although ξ is exponentially
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FIG. 4. (Color online) Correlation length exponent ν as a function
of s. As the dissipation term becomes more short ranged with
larger s, the exponent for the Z4 model approaches the 2D Ising
value ν = 1. In the XY case, ν is expected to diverge in the
limit deff → 2. The results (obtained for finite L) presented for the
largest values of s should therefore be regarded only as effective
exponents.

divergent at a BKT transition, we may still define z through
the relation ξτ ∝ ξz.

Another observation in the U(1) case is that while the
combination β/ν is monotonically decreasing with increasing
s, β itself is exhibiting a nonmonotonic evolution as a function
of s. The value of β is at first decreasing as the increasing value
of s drives the system away from the 3D behavior, just as for
the Z4 case. However, as mentioned above, β is divergent in
the 2D XY limit, and the reduction of β is therefore reversed
at an intermediate value of s.
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FIG. 5. (Color online) Critical exponent β as a function of s. For
the Z4 model, β evolves smoothly from the 3D Ising to the 2D Ising
limit as s is increased from 1 to 2. The XY result, on the other hand,
starts out near the 3D XY value for s = 1 and features a nonmonotic
evolution of β with s, with a divergent β in the limit of large s;
cf. Fig. 4.
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B. Berezinskii-Kosterlitz-Thouless phase transition
and the helicity modulus

The helicity modulus

ϒ = 1

LLτ

〈
L∑

x=1

Lτ∑
τ=1

cos(θx,τ − θx+1,τ )

〉

− K

LLτ

〈(
L∑

x=1

Lτ∑
τ=1

sin(θx,τ − θx+1,τ )

)2〉
, (6)

is expected to scale as ϒ ∝ Lκ at a critical point where a U(1)
symmetry is spontaneously broken, with κ ≡ 2β/ν − η. For
a 2D XY model, however, the exponent κ is exactly zero,
reflecting the fact that at the BKT phase transition, the helicity
modulus jumps to a finite value with logarithmic finite-size
corrections. By direct comparison of the calculated values of ϒ

for s = 2 and the scaling form expected for a BKT transition,33

unambiguous conclusions regarding the universality class of
the phase transition at s = 2 could not be drawn. The presence
of the presumably irrelevant dissipation term is still effective in
driving the system away from BKT-type criticality at all but the
very largest system sizes. In practice, the logarithmic scaling
analysis33 is usually best suited for small to moderate system
sizes. Consequently, instead of scaling the helicity modulus
directly, we resort to calculating κ via other observables and
find that 2β/ν − η = 0 within statistical uncertainty for s = 2.
Moreover, 2β/ν − η is very close to zero for all s � 1.75.
For even smaller values of s (where direct scaling of ϒ

is more reliable), we have confirmed that the scaling law
κ = 2β/ν − η is valid also in the presence of dissipation.
This scaling form is also equivalent to κ = deff − 2. Thus, the
helicity modulus vanishes continuously as K → K+

c , provided
deff = d + z > 2. The above equivalence assumes that hyper-
scaling is valid, and we have confirmed this validity for all
values of s.

C. Boundary between long-range and short-range
critical behavior

From Figs. 1 to 5, it is evident that all critical exponents
are very close to their short-range values for s � 1.75. The
naive scaling estimate places the boundary at which the
dissipation term becomes irrelevant at s = 2. For classical
models with (isotropic) long-range interactions decaying with
distance r as 1/r1+s , it has long been debated34,35 whether the
models feature the exponents of the corresponding short-range
model already when s exceeds a value s∗ = 2 − ηSR. Here,
ηSR denotes the anomalous dimension of the short-range
model. Using large-scale Monte Carlo simulations, it has been
shown36 that for the long-range 2D Ising model, the anomalous
dimension follows the conjectured exact34 relation η = 2 − s

for s < 1.75, but that η = 0.25 = ηSR for s > s∗ = 1.75.
Although the long-range interaction of the dissipative quantum
models we consider is highly anisotropic, in contrast to the
isotropic classical long-ranged models, it is plausible that
also in these models the threshold value of s beyond which
dissipation is irrelevant is reduced from s = 2 to some lower
value.

In order to establish this boundary more accurately also
for the present case of anisotropic interactions, we have

performed a more careful analysis of the case s = 1.875
for the Z4 model. Including corrections to scaling, using the
ansatz L∗

τ = aLz(1 + bL−ω), we find z = 1.002(11). Hence,
the decay exponent s = 1.875 may serve as an upper bound
for the boundary value s∗ necessary to render the dissipation
term effectively short ranged. This, in turn, would render the
system effectively Lorentz invariant with z = 1. To get the
statistics required to include corrections to scaling in a stable
manner, we included three different values of the dissipation
strength α in a joint fit. This also provides an a posteriori
justification of the choice of lower values of α for higher values
of s.37 Probably due to logarithmic corrections expected at
the presumed boundary value s∗ = 1.75,36 we are not able to
acquire the same level of accuracy for this value of s. Therefore
we cannot rule out that the dissipation term is rendered
effectively short ranged at some other value s∗ ∈ (1.75,
1.875). An exceedingly slow crossover to asymptotic critical
exponents for values s ≈ s∗ can conceivably be understood
from the competition between the fixed point corresponding
to short-range (Lorentz-invariant) criticality and the fixed
point corresponding to long-range (dissipation-dominated)
criticality.

We close this section with a remark on the evolution of
the anomalous dimension. In the quantum dissipative model
we have studied, the anomalous dimension increases for
increasing s. This is a consequence of the effective dimen-
sionality deff = d + z decreasing with increasing s. Lowering
the dimensionality from the upper critical dimension, where
η = 0, tends to increase η. This is quite different from
the situation encountered in classical models with isotropic
long-range interactions. Classical models with short-range
interactions and an action of the form S ∼ q2φqφ−q (where
φq is an appropriate order-parameter field) have propagators
G(q) ∼ 1/|q|2−η. The corresponding long-range models with
an action of the form S ∼ |q|sφqφ−q have propagators G(q) ∼
1/|q|s , when s < 2 − ηSR. One may now, as is customarily
done in the literature on long-range classical isotropic models,
define an effective anomalous scaling dimension for such
systems by comparing with the corresponding expression
for the short-range case, finding η = 2 − s, which decreases
with increasing s. This relation is best viewed as a result of
somewhat artificially imposing the standard scaling form of
a propagator for short-range systems (1/|q|2−η) on the form
of the propagator for systems with long-range interactions,
1/|q|s .

D. Scaling relation between z and η

In Fig. 2, we demonstrated how the scaling relation
z = z0 − η cannot be valid except close to the Ohmic limit
s = 1 and that η ≈ 1/4 for all s � 1.75. Moreover, from our
numerics we think it is likely that z(s) = 1 for s � 1.75. A
scaling relation between z and η which would fit well with
these observations is

z = max

{
2 − η

s
,1

}
. (7)

The scaling relation z = (2 − η)/s has been suggested previ-
ously in Ref. 17 in the context of a damped nonlinear σ model.
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FIG. 6. (Color online) The dynamical critical exponent z as in
Fig. 1, but compared with the scaling estimate z′ = (2 − η)/s. The
values of η used in the scaling estimates are the same as reported in
Fig. 2, with the left panel corresponding to the Z4 model and the right
panel to the XY model.

In Fig. 6, we show the same data for the dynamical exponent
z as in Fig. 1 but compared with the ansatz (7) instead of the
naive scaling estimate z0 = 2/s. Although there are probably
still some corrections to finite-size scaling, Eq. (7) seems to fit
the data far better than the alternatives.

We next provide a heuristic argument for why the scaling
relation (7) may be reasonable for s < 2 − ηSR. Building
on the arguments in Sec. III C for classical isotropic long-
range-interacting systems, we take as a starting point that a
dissipative quantum model with action of the form S ∼ (q2 +
|ω|s)φq,ωφ−q,−ω can be viewed as an anisotropic long-range-
interacting system. Introducing the suitably chosen frequency
coordinate ω̃s = q2 + |ω|s , the propagator takes the isotropic
form G(ω̃) ∼ 1/|ω̃|s . Recall that in the quantum case, the
anomalous scaling dimension η is defined from the spatial
correlation function G(x) ∼ 1/xd+z−2+η ≡ 1/xθx . To find η,
we Fourier transform the propagator to obtain the imaginary-
time correlation function. In terms of the frequency coordinate
ω̃, the system effectively has d ′

eff = 1 + d/z dimensions.
Therefore, the correlation function decay exponent in terms of
the isotropic space-time coordinate τ̃ ≡ (τ 2 + x2z)1/2 would
be θτ̃ = (z + d)/z − s. Comparing with the imaginary-time
decay exponent θτ = θx/z = (d + z − 2 + η)/z, we find sz =
2 − η, which is equivalent to Eq. (7).

Finally, we point out that our results for the scaling relation
(7) for dissipative models should also have relevance for
nondissipative quantum spin chains with long-range spatial
interactions.38,39 One arrives at exactly such a model by
simply interchanging the x and τ coordinates of the action
we have considered. The dynamical critical exponent of this
model is given by z′ = 1/z = s/(2 − η), with the quantity
η(s) evolving as shown in Fig. 2. This quantity will, however,
not be identical to the anomalous scaling dimension of the
model, η′, which is given by the classical result η′ = 2 − s.
Hence, there exists no independent scaling relation between the
dynamical critical exponent z′ and the anomalous dimension
η′ for a nondissipative quantum spin chain with long-range
interactions.

E. Dependence on symmetry

For s = 1, we have z ≈ 2, deff ≈ 3, while for s = 2, we
have z = 1, deff = 2. For these two cases, it is known either
analytically or numerically that the exponent η is very similar
for the Ising and XY models.40 There appears to be no
particular deep reason for this. For instance, the well-known
value η = 1/4 comes about for completely different reasons
in the 2D Ising and 2D XY models, and their similarity
thus appears to be accidental. Using the scaling relations
2β/ν − η = deff − 2 [assuming Eq. (7)] and γ /ν = 2 − η, it
follows that the similarities in β/ν and γ /ν for the Ising and
XY models are as coincidental as they are for η, both in 2D and
3D. It appears that these coincidences persist in all dimensions
between 2 and 3. There is good reason to expect that the same
also holds in the sub-Ohmic regime s < 1. Such values of
s increase the effective dimensionality beyond 3, eventually
driving all exponents to their universal mean-field values at
the upper critical dimension.

We next comment on other values of q, and how our results
apply to those cases. The Ising and XY models represent
extreme cases of Zq clock models, with q = 2, q = ∞,
respectively. The partition function for the q = 4 case is simply
the square of the case q = 2, and hence they give identical
results. For larger q > 4, anisotropy is irrelevant,41 and we thus
expect the results of U(1) to emerge. We therefore conjecture
that the results of this paper for z, η, β/ν, and γ /ν, are valid for
all Zq clock models. The only possible exception is the case
q = 3, also equivalent to the three-state Potts model, where the
anisotropy with respect to a U(1)-symmetric model is known
to be relevant. Although we have not checked this, it may still
be possible that Eq. (7) holds also for a dissipative Z3 clock
model, at least for s > 1.42

An alternative perspective on this, supporting the notion
that the scaling relation z = (2 − η)/s is valid for all q,
may be provided by the following qualitative argument. The
variation of z with the parameter s determining the range of
the dissipation expresses a variation in the effective space-time
dimensionality of the system. This is determined by the
interaction of the spins at a given site in the imaginary-time
direction. Due to the long-range character of this interaction,
each spin interacts with a large number of fluctuating copies
of itself along a chain in the imaginary-time direction. Due
to the summation over many spins at different Trotter slices,
the discrete nature of the spins in a Zq clock model is washed
out, even in the case q = 2. Therefore, the manner in which
the dissipation affects the effective dimensionality does not
depend on whether the spins at each space-time lattice point
take on discrete or continuous values.

IV. SUMMARY

We have performed Monte Carlo simulations on a gener-
alized spin-boson model in one spatial dimension featuring
non-Ohmic site dissipation and two variants of order param-
eter symmetry, namely Ising-like and U(1). By tuning the
imaginary-time decay exponent of the dissipative interaction,
s ∈ [1,2], we are able to continuously vary the effective
dimensionality of the system. Apparently, the order parameter
symmetry has very little bearing on the evolution of the
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effective dimensionality, deff = d + z, as a function of the
decay parameter s. While naive scaling estimates a crossover
from criticality dominated by the dissipation term to an
irrelevant dissipation term at s = 2, we measure exponents
in relatively good correspondence with the underlying, short-
range interacting model at a somewhat lower value s ≈ 1.75.
Our results also suggest that for 1 � s � 2, the exponents
z and η to a good approximation obey the scaling relation
z = max{(2 − η)/s,1}.
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