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Staggered and extreme localization of electron states in fractal space

Biplab Pal and Arunava Chakrabarti*

Department of Physics, University of Kalyani, Kalyani, West Bengal 741 235, India
(Received 24 April 2012; published 13 June 2012)

We present exact analytical results revealing the existence of a countable infinity of unusual single-particle
states, which are localized with a multitude of localization lengths in a Vicsek fractal network with diamond-
shaped loops as the “unit cells.” The family of localized states forms clusters of increasing size, much in the
sense of Aharonov-Bohm cages [J. Vidal et al., Phys. Rev. Lett. 81, 5888 (1998)], but now without a magnetic
field. The length scale at which the localization effect for each of these states sets in can be uniquely predicted
following a well-defined prescription developed within the framework of a real-space renormalization group. The
scheme allows an exact evaluation of the energy eigenvalue for every such state which is ensured to remain in
the spectrum of the system even in the thermodynamic limit. In addition, we discuss the existence of a perfectly
conducting state at the band center of this geometry and the influence of a uniform magnetic field threading
each elementary plaquette of the lattice on its spectral properties. Of particular interest is the case of extreme
localization of single-particle states when the magnetic flux equals half the fundamental flux quantum.
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I. INTRODUCTION

The interplay of lattice topology and quantum interference
effects is known to give rise to an exotic electronic spectrum
in solid systems that has been studied in detail for several
decades now. The subject is still being pursued with vigor to
achieve comprehensive control over coherent transport in low
dimensions.

In quantum interference and related transport mechanisms
a pivotal role is played by the localization of electronic eigen-
states in the presence of disorder. Such a localization, known
as the Anderson localization,1 upholds a central result that, in
one dimension with arbitrary disorder, all the single-particle
states will be exponentially localized, and the same was shown
to be true in two dimensions as well.2 Since then, extensive
research has been undertaken to understand the fundamentals
of localization effects, studies ranging from electronic states
in random lattice models3–8 to the Anderson localization of
light,9,10 spin freezing in one-dimensional semiconductors,11

and localization in optical lattices,12 to name a few. Matter
waves can also be localized in deterministic potentials sharing
certain features of random disorder.13,14 Recent experiments
revealed the Anderson localization of noninteracting Bose-
Einstein condensates in one-dimensional matter waveguides,
where the random potential has been generated by laser
speckles.15 Similar experiments have also been reported to
study the Anderson localization in optical lattices16,17 and in
the cases of microwaves18 and of classical waves in a weakly
disordered one-dimensional stack of metamaterials.19

Variations of the classic Anderson localization are also
well known by now. Isolated delocalized (extended) single-
particle states exist, even in a disordered one-dimensional
chain of atomic potentials, resulting out of a kind of spatial
correlation,20–22 in one-dimensional quasiperiodic chains,23–27

or in certain kinds of deterministic fractal geometries.28–30

Crossovers from an insulating to a metallic spectral behavior
in correlated disordered two-legged ladder networks have also
been reported recently.31,32

A curious point, apparently unnoticed or unappreciated so
far, is that, while a precise determination of the eigenvalues

corresponding to the extended single-particle states is possible
in the above cases of correlated and aperiodic order, the
task seems to be practically impossible when it comes to
an exact evaluation of eigenvalues of the localized states in
a random or even an aperiodically ordered system in the
thermodynamic limit. It should be appreciated that, although
a direct diagonalization of the Hamiltonian for a finite size
of the system yields eigenvalues of the localized states (for
a disordered or an aperiodically ordered system), there is
no a priori reason to assume that these eigenvalues remain
in the spectrum when the system grows in size and tends
to infinity. In fact, for a deterministic fractal geometry that
offers a singular continuous spectrum, it is almost impossible
to find the exact eigenvalues corresponding to the states that
will finally be localized on an infinite lattice. To the best of
our knowledge, this issue remains unaddressed so far in the
literature.

Can one really identify the localized states and extract
the corresponding eigenvalues for an aperiodically ordered
system? In this paper we address ourselves this question and
take up the task of critically examining the spectral properties
of a Vicsek fractal network33 consisting of diamond-shaped
loops within a tight-binding formalism. While looking for the
localized state eigenvalues and the nature of localization are in-
deed the major factors driving this work, other interests in such
a study are related to the general spectral character and magne-
totransport in such systems. The motivation behind the latter
part of this work may be summarized as follows. A diamond-
Vicsek network (see Fig. 1) provides an interesting geometry
in which the “open” character of a typical Vicsek pattern is
preserved along with the presence of closed loops in shorter
scales of length. This is in marked contrast to the much studied
Sierpinski gasket,34,35 which is a closed structure, or to the
other open tree fractals36 or even an alternative version of the
Vicsek fractal without any local closed loops.37 The presence
of these loops effectively generates a longer-ranged interaction
between the atomic sites occupying the various vertices, and
its effect on the electron localization or delocalization is worth
studying.
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FIG. 1. (Color online) (a) Schematic view of the second generation of an infinite diamond-Vicsek network with each diamond plaquette
threaded by a uniform magnetic flux �. The edge sites are denoted by A (blue circles), and the bulk sites are denoted by B (orange circles);
the arrow indicates the direction of the forward hopping. We exclude any next-nearest-neighbor hopping at the beginning. (b) Renormalized
version of (a), with the dotted lines indicating the diagonal hopping which is generated due to renormalization.

Second, linear arrays of diamond networks have already
drawn considerable attention in recent years in the context of
charge and spin transport properties,38–40 having been shown
to behave as a flux-controlled n- or p-type semiconductor,38

or as a prospective candidate of an elegant spin filter.39,40 The
influence of a topological variation in the arrangement of such
loops on the spectral properties of the system is thus worth
investigating, both from the standpoint of fundamental physics
and from the perspective of device technology. We choose such
a deterministic geometry to make an analytical approach to the
system possible.

We find extremely interesting results in the context of the
localization of electronic states. In the absence of any external
magnetic field, a countable infinity of localized states can be
precisely detected with a multitude of localization lengths.
One can work out an exact mathematical prescription to
specify the length scale at which the onset of localization
takes place. The localization can, in principle, be delayed
(staggered) in position space, and the corresponding energy
eigenvalues can be exactly evaluated following the same
prescription based on a real-space renormalization group
(RSRG) method. In addition, it is shown that, for a given
set of parameters, the center of the spectrum corresponds to
a perfectly extended eigenstate, with the parameters of the
Hamiltonian exhibiting a fixed point behavior. Switching on a
magnetic field opens up gaps in the spectrum in general and
even leads to an extreme localization of all the single-particle
states in the sense of the formation of the Aharonov-Bohm
cages.41

In what follows we describe the results. In Sec. II, the
model and the mathematical method of handling the problem
are presented. Sections III and IV include the results and their
analyses related to the spectral properties without and with
the magnetic field, respectively. The two-terminal transport
study is carried out in Sec. V, and in Sec. VI we draw our
conclusions.

II. THE SYSTEM AND THE MATHEMATICAL
FORMULATION

A. The Hamiltonian

We refer to Fig. 1(a), which illustrates the second generation
of a Vicsek geometry with diamond-shaped loops. As, at
one stage, we shall be considering the effect of a magnetic
field on the spectral properties, we show in Fig. 1(a) the
flux distribution. Each plaquette is threaded by a uniform
magnetic flux �. The atomic sites are assigned a different
status depending on their positions and neighborhood in the
lattice; namely, the sites in the bulk are called B sites, while A

sites refer to the sites sitting at the edges. The magnetic field
breaks the time-reversal symmetry along the edges of every
diamond. The Hamiltonian, in the tight-binding formalism, is
written as

H =
∑

i

εi |i〉〈i| +
∑
〈ij〉

[tij e
iθij |i〉〈j | + tj ie

−iθij |j 〉〈i|], (1)

where εi is the on-site potential at the ith site and has a
value εA or εB depending on whether it is an edge site or
a bulk one. The uniform nearest-neighbor hopping amplitude
is tij = t along the edges and tij = λ when i and j refer to
opposite vertices, connected by a diagonal. Thus we keep the
provision of including hopping beyond the nearest neighbors.
θij is the Peierls phase,42 given by θij = 2π�/4�0 for hopping
along an edge. �0 = hc/e is the fundamental flux quantum.
From symmetry considerations, θij = 0 when the electron
hops across a diagonal, that is, when tij = λ.

B. The RSRG scheme

An elegant way of handling such self-similar systems is to
use the RSRG method43 where one can decimate out a subset
of atomic sites from the original lattice to get a scaled version
of it [Fig. 1(b)]. This is easily done by writing down in detail
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the set of difference equations,

(E − εi) ψi =
∑

j

tij e
iθij ψj , (2)

where ψi denotes the amplitude of the wave function at
the ith site and θij is the Peierls phase associated with the
hopping matrix element connecting the ith and the j th sites.
We begin with nearest-neighbor hopping only (that is, we
set λ = 0 at the beginning). However, such a decimation
automatically generates the next-nearest-neighbor hopping
across the diagonals of an inflated diamond, as shown by the
dotted lines in Fig. 1(b). The range of interactions, of course,
does not increase beyond this on further renormalization. It
is therefore advisable to retain λ in the Hamiltonian from the
very beginning. One can easily compare the results obtained
by switching λ on or off. The recursion relations of the on-site
potentials and the hopping integrals are provided below.

ε′
A = εA + [ptf + p∗tb + αλ1],

ε′
B = εB + 2 [ptf + p∗tb + αλ1], (3)

t ′f = βλ1, t ′b = β∗λ1, λ′ = γ λ1,

where α = [(E − ε̄B)λ1]/ξ3, β = [(E − ε̄B)t̄f + λ2 t̄b]/ξ3,
β∗ = [(E − ε̄B)t̄b + λ2 t̄f ]/ξ3, γ = λ1λ2/ξ3, ξ3 = (E − ε̄B)2 −
λ2

2, with ε̄B = ε̃B + w∗tf + wtb, t̄f = utf + vtb, t̄b = vtf +
utb, λ2 = λ + wtf + w∗tb. Here u = [(E − ε̃B)λ1]/ξ2, v =
λλ1/ξ2, w = [(E − ε̃B)tf + λtb]/ξ2, w∗ = [(E − ε̃B)tb +
λtf ]/ξ2, ξ2 = (E − ε̃B)2 − λ2, with ε̃B = εB + ptf + p∗tb,
λ1 = λ + p∗tf + ptb, and p = [(E − εA)tb + λtf ]/ξ1, p∗ =
[(E − εA)tf + λtb]/ξ1, ξ1 = (E − εA)2 − λ2. In the above
expression, tf = t∗b = teiθ , where θ = 2π�/4�0 is the
constant Peierls phase. The above recursion relations are then
used to obtain information about the local density of states
(LDOS) at specific sites of the system and the character of the
single-particle states, as discussed below.

III. SPECTRAL PROPERTIES WITH ZERO
MAGNETIC FIELD

A. Local density of states in zero magnetic field and with λ = 0

Using the standard decimation procedure,43 the LDOS at
the edge (A) and the bulk (B) sites can easily be obtained
through the local Green’s functions. For simplicity we present
in Fig. 2(a) the LDOS at a B site only, given by

ρ(B)(E) = lim
η→0

[
− 1

π
Im {G(B)(E + iη)}

]
, (4)

where G(B)(E + iη) = (E + iη − ε∗
B)−1, with ε∗

B being the
fixed point value of the relevant on-site potential at the B site,
obtained by iterating Eq. (3). We have set εA = εB = 0, t = 1,
and λ = 0, and there is no magnetic field (i.e., � = 0). The
LDOS shows a dense packing of eigenstates over a finite range
of energy centered at E = 0. We have minutely examined
this continuum by finely scanning an energy interval around
E = 0, and we show it in Fig. 2(b). The continuum seems to
persist. In the neighborhood of the band center and within the
apparent “continuum,” the hopping integral remains nonzero
over a substantial number of RSRG iteration steps.
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FIG. 2. (Color online) (a) LDOS versus E plot at the bulk sites
(B type) of an infinite diamond-Vicsek network in the absence of
the magnetic field (� = 0). The other parameters are εA = εB = 0,
t = 1, and λ = 0. (b) A highlighted version of (a) around the center
E = 0. Energy, in units of t , is scanned in an interval of 0.001, and
the imaginary part η has been chosen as 10−5.

In addition to the band center, similar clusterings of states
are observed in other parts of the spectrum as well. A
finer scan of the energy interval in all such cases reveals
similar dense clustering and apparent continua of states. The
hopping integrals in all such intervals survive for quite a
number of RSRG steps. The number of such steps n depends
on the chosen energy and indicates that the corresponding
eigenfunction is either of an extended character or, at least,
has a very large localization length. This aspect will be further
discussed in the following section in relation to the so-called
staggered localization effect.

A particularly interesting state is the band center, viz., E =
0, where the entire parameter space {εA,εB,t,λ} exhibits a one-
cycle fixed-point behavior, viz., {εA(n + 1),εB(n + 1),t(n +
1),λ(n + 1)} = {εA(n),εB(n),t(n),λ(n)} for n � 1, where n

stands for the RSRG iteration step. λ at this special energy
remains zero throughout the iteration. We conclude that the
eigenstate at the band center is definitely extended, but it is of
a non-Bloch character. The general behavior of the hopping
integrals under successive RSRG iterations is suggestive of the
fact that this central extended eigenstate might be flanked on
either side by a countable infinity of eigenstates which either
belong to the extended category or have very large localization
lengths.

B. Exact construction of eigenstates

The inherent self-similarity of the deterministic fractals
allows for the construction of the exact distribution of
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FIG. 3. (Color online) (a) Distribution of amplitudes of the wave functions at E = √
6 [obtained by solving Eq. (5) for n = 1] on a

second-generation lattice. The dark gray shaded plaquettes embrace atomic sites with nonzero amplitudes (solid circles), and the light yellow
shaded plaquettes are surrounded by atomic sites with zero amplitudes (open circles). The initial parameters are chosen as � = 0, εA = εB = 0,
t = 1, and λ = 0. Here a = √

6/4 and b = 1/2. (b) Distribution of amplitudes of the wave functions at E = √
6 on a third-generation lattice;

the other parameters and symbols are the same as in (a). In (a) and (b), the highlighted thick blue lines represent one-step and two-step
renormalized lattices, respectively.

amplitudes of the eigenstates by suitably exploiting Eq. (2).
Previous attempts in this regard have unfolded extended
non-Bloch states (atypically extended states) in the cases
of an open-loop Vicsek fractal44 or a closed-loop diamond
hierarchical geometry.45 The present lattice offers a richer
spectrum, allowing one to explicitly construct localized states
extending over clusters of lattice points of various sizes on the
parent lattice. The planar extent of such clusters depends on
the eigenvalue corresponding to the localized state and can be
small or enormous.

To elaborate, let us consider the solutions of the equation

E = εB(n) − 2λ(n), (5)

where n refers to the stage of renormalization. This is, in
general, a polynomial equation in E. The zeroes of the
polynomial will be eigenvalues of the infinite system if and
only if one can use them to satisfy Eq. (2) locally at every vertex
of the lattice, even when the lattice grows infinitely large.
This task can be accomplished by trying to draw a nontrivial
distribution of amplitudes for an energy obtained from Eq. (5)
on the undecimated vertices of an n-step renormalized lattice
and then trying to figure out the amplitude distribution on the
original lattice at the bare length scale. Let us discuss two
specific cases.

Case I. We begin with the unrenormalized lattice. Now
n = 0, and with εA = εB = 0 and λ = 0 the solution of Eq. (5)
is E = 0. One can construct an eigenfunction for E = 0 with
amplitudes equal to ±1 distributed alternately at the B sites
along the major X and Y axes. The difference equation [Eq. (2)]
can then easily be satisfied for all other intermediate vertices
using the values 0 or ±1.

Case II. The above idea can indeed be extended to higher
values of n, as we demonstrate in Fig. 3(a) for n = 1 and
discuss below. Let us extract the roots of Eq. (5) for n = 1.
The roots are E = 0 and ±√

6 for εA = εB = 0, t = 1, and
λ = 0 initially. We explain the construction of amplitudes
for E = √

6. The trick in this case is to place the values ±1
periodically along the major X and Y axes and to assign an
amplitude equal to zero at every edge (A-type site) on a one-
step renormalized lattice. The amplitudes at the intermediate
sites of the original lattice are then systematically evaluated
using Eq. (2). We show distribution of amplitudes in Fig. 3(a)
on a small portion of an infinite lattice. The larger square
boxes with thick highlighted edges represent the one-step
renormalized lattice. The construction depicted on a smaller
scale can be extended to see that the distribution holds on a
lattice of larger spatial extent [Fig. 3(b)]. In fact it holds even
on a lattice of an arbitrarily large size, where the end sites
are not actually visible. As, according to our earlier argument,
we are able to satisfy Eq. (2) locally at every vertex while
drawing this distribution, E = √

6 is definitely an eigenvalue
of the infinite system, a fact that has been cross-checked by
evaluating the LDOS at the A and B sites at this special energy.
We get a stable, finite value of the LDOS which supports our
argument above.

Looking back at Fig. 3, the solid circles represent nonzero
values of the amplitude, while open circles represent an
amplitude equal to zero. Nonzero amplitudes, represented by
the solid circles, have values equal to ±1, ±√

6/4 (depicted by
the letter a), and ±1/2 (depicted by b), distributed suitably so as
satisfy Eq. (2) consistently at every intermediate vertex on the
original lattice. The gray shaded clusters in Fig. 3(a) embrace
the nonzero amplitudes only, while every yellow shaded zone
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is surrounded by vertices where amplitudes are zero. The
significant observation is that clusters of nonzero amplitude
span over a finite distance but ultimately get decoupled from
each other on a larger scale of length. This can be appreciated if
we look at Fig. 3(b), which is a larger version of Fig. 3(a). The
gray shaded clusters are distributed along the principal X and Y

axes but are decoupled from each other beyond a certain extent
by the unfilled white boxes. The yellow clusters representing
amplitude voids are now seen to span larger spatial distances.
A similar construction is possible for E = −√

6, which is
another solution of Eq. (5) for n = 1.

C. Staggered localization

It is apparent from the above discussion that the eigen-
function corresponding to E = ±√

6 will be localized in
the fractal space, as the spanning clusters of different sizes
and embracing nonzero amplitudes ultimately get decoupled
from one another. This is easily reconfirmed by studying the
evolution of the hopping integrals under successive RSRG
steps. The hopping integrals t and λ (zero initially but grows
later) remain nonzero at the first stage of RSRG (that is,
n = 1), indicating that the nearest-neighbor sites on a one-
step renormalized lattice will have a nonzero overlap of the
eigenfunctions. They start decaying for n � 2 with the decay in
λ(n) taking place at a much slower rate compared to t(n). This
indicates that over a larger scale of length the corresponding
states are ultimately localized, but the effect is a weak one.

This observation immediately leads to an innovative way
of exactly determining a localized eigenstate on such a
deterministic geometry. It should be appreciated that although
it is not unnatural that most of the single-particle states will be
Anderson localized in the absence of any translational order,
an exact prescription of the determination of any localized
eigenvalue is not easy to obtain and has not been reported so
far in the literature to the best of our knowledge. We do it using
the following method.

We can solve Eq. (5), in principle, for any n. For example,
we have done it explicitly for n = 1, n = 2, n = 3, and
n = 4. With the same set of parameters as discussed above,
the roots of Eq. (5) for n = 2 are E = 0, ±√

6, ±2.11619,
±0.77508, ±2.98681. As we observe, the roots for the
n = 1 stage, viz., E = 0 and ±√

6, are included in this set
for n = 2. E = 0 corresponds to the extended state, and
E = ±√

6 provide two localized states we already know. For
each of the additional roots, viz., E = ±2.11619, ±0.77508,
±2.98681, the hopping integrals t and λ remain nonzero
(with considerable magnitude) up to the second stage of
iteration (n = 2) and start to lose their “strengths” as the
renormalization progresses. Finally, for large n the hopping
integrals become zero.

The above observation implies that, using a subset of
energy values extracted at the stage n = 2 (E = ±2.11619,
±0.77508, and ±2.98681), we can work out eigenfunctions
which will span bigger clusters of lattice points on the original
lattice compared to those obtained from n = 1. The states will
appear to be “extended” when viewed on a finite diamond-
Vicsek fractal at the second generation but will eventually be
localized on a lattice in the thermodynamic limit. In Fig. 4
we show the distribution of amplitudes for E = 0.77508, a
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FIG. 4. (Color online) Distribution of amplitudes of the wave
functions at E = 0.77508 [obtained by solving Eq. (5) for n = 2]
on a third-generation lattice. The other parameters and symbols are
the same as in Fig. 3. The thick highlighted blue lines represent a
two-step renormalized lattice.

value that is obtained from Eq. (5) for n = 2. The enlargement
in the cluster size having nonzero values of the amplitude
in comparison to the n = 1 case [Fig. 3(b)] is obvious. The
spanning clusters finally get decoupled from each other, just
as occurred for the n = 1 case. But now this decoupling occurs
at a larger length scale.

It is now easy to foresee what is going to happen for n = 3, 4
and beyond. For any n = � we will be getting roots of Eq. (5),
subsets of which are solutions of Eq. (5) for n = 1, 2, . . .,
� − 1. For these subsets, the decay in the hopping integrals
will begin at n > 1, n > 2, . . ., n > � − 1. For the roots in
addition to these, the hopping integrals lose their strengths
and finally decay, from n > �. Thus, the latter eigenvalues
will correspond to localized eigenstates, the localization being
delayed (staggered) in space with localization lengths much
larger than the previous ones. When mapped back on to the
original lattice, the amplitudes for these additional roots will
be found to span clusters of increasing size. The exact size of
the spanning clusters will be determined by the value of n.

The roots of Eq. (5) are found to cluster symmetrically
around the value E = 0 and tend to densely fill the neigh-
borhood of E = 0, at which the single extended eigenstate
determined so far resides. The clustering of the eigenvalues is
shown in Fig. 5. This dense filling of the eigenvalue spectrum
around the center is also reflected in the apparent continuum
observed in the density of states [Fig. 2(b)].

Before we end this section, we would like to point out that
by the method of exact construction we have been able to
identify a class of localized (staggered) eigenfunctions. This,
of course, does not imply that all localized eigenstates have
been exhausted in the present method. For example, looking
back to Fig. 2(a) one can observe clusters of eigenstates
even far away from the band center. If any energy picked
up from such a cluster becomes a solution of Eq. (5) for some
value of n, then such an energy will definitely correspond
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FIG. 5. (Color online) Distribution of energy eigenvalues E

obtained from Eq. (5) for different RSRG stages n. The central red
dot at E = 0 represents the eigenvalue for the extended eigenstate.

to a staggered localized eigenstate in the spirit of the above
discussion. On examining the nesting property of the roots of
Eq. (5) for several values of n, we should say that this indeed
is a possibility.

IV. SPECTRAL PROPERTIES WITH NONZERO
MAGNETIC FIELD

A. The energy eigenvalue spectrum

We have obtained the energy eigenvalue distribution (Fig. 6)
as a function of the magnetic flux � enclosed in each basic
plaquette for an infinite-size diamond-Vicsek fractal. We have
examined the formation of the bands and the gaps with the
variation of magnetic flux �. To obtain the energy spectrum,
we have calculated the LDOS at both A and B sites by fixing
the value of the energy E and varying the magnetic flux �

from −1 to 1, repeated the above process for different values of
energy E, and recorded those values of energy E and magnetic
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FIG. 6. (Color online) Energy eigenvalue spectrum of an infinite
diamond-Vicsek fractal as a function of the magnetic flux �. We have
chosen εA = εB = 0, t = 1, and λ = 0. At � = �0/2, the bands
touch each other only at E = ±2 and at E = ±√

2. The precise
detection of these four energy values may be restricted here due to
the limit of resolution.
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FIG. 7. (Color online) LDOS versus E plot at the bulk sites (B
type) of an infinite diamond-Vicsek network (a) with � = �0/4 and
(b) with � = �0/2. The red lines correspond to the LDOS at B sites,
and the green lines correspond to the LDOS at A sites. We have
chosen εA = εB = 0, t = 1, and λ = 0.

flux � for which we get a nonzero LDOS either at an A site
or a B site. Thus Fig. 6 is representative of an infinite lattice.

In Fig. 6, we can clearly observe the formation of multiple
bands and gaps and how a variation of magnetic flux � leads to
band overlapping. The band crossing is maximum at the center
(around � = 0), and the density of allowed energy eigenvalues
is large in this area. As we shift from � = 0 on either side,
there is thinning of the allowed energy eigenvalues. Finally,
at � = �0/2, only four energy eigenvalues are allowed,
indicating an extreme localization of the electronic states,
which is discussed in detail in the next section. Figure 6
confirms this last observation. At � = �0/2, there are exactly
four points at which the bands touch each other, although due
to limit of resolution of the diagram, it may appear to be more.
This is clearly resolved in Fig. 7(b).

B. Extreme localization of the electronic states

In the absence of magnetic field, there was clearly a
nonzero value of the LDOS at the center of the spectrum
(around E = 0) [Fig. 2(a)]. As soon as the magnetic field is
switched on, a wide gap opens up in the LDOS spectrum
around E = 0 [Fig. 7(a)]. The gap becomes wider as we
increase the value of the magnetic flux �, finally leading
to an extreme localization of electronic states [Fig. 7(b)] at
the half flux quantum (i.e., � = �0/2). The four separate
lines in Fig. 7(b) (at E = ±√

2 and at E = ±2) correspond
to four highly degenerate localized states pinned at the A and
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B sites, respectively. This observation is in accordance with
Vidal et al.’s result,41 where the Aharonov-Bohm caging of
the localized orbitals under the action of an external magnetic
field was discussed.

The origin of the four localized-state eigenvalues above
can be easily explained if one appreciates that at � = �0/2,
the effective coupling between the sites at the vertices of an
elementary rhombus, viz., teff = [2t2/(E − εA)] cos(π�/�0),
becomes equal to zero. In that case one is left with only two
types of atomic sites, decoupled from each other and having
effective on-site potential energies

εeff
A = εA + 2t2

E − εB

,

(6)

εeff
B = εB + 4t2

E − εA

for the edge and the bulk sites, respectively. With εA = εB =
0 and t = 1, the localized states are obtained by setting

E = εeff
A and E = εeff

B , which yield the values E = ±√
2 and

±2, respectively. These are the energy eigenvalues at which
extreme localization is observed, as shown in Fig. 7(b).

V. TWO-TERMINAL CONDUCTANCE FOR
A FINITE LATTICE

To get the two-terminal conductance for a finite-size
diamond-Vicsek fractal, we attach the system between two
semi-infinite one-dimensional ordered metallic leads, namely,
the source and the drain. The leads, in the tight-binding
model, are described by a constant on-site potential εl and
a nearest-neighbor hopping integral tl . We then successively
renormalize the system to reduce it to an effective diatomic
system,44 consisting of two “renormalized” atoms, each having
an effective on-site potential equal to U and with an effective
hopping integral V between them. The transmission coefficient
across the effective dimer is given by the following well-known
formula:46

T = 4 sin2 ka

[(M12 − M21) + (M11 − M22) cos ka]2 + [(M11 + M22) sin ka]2
, (7)

where M11 = (E−U )2

V tl
− V

tl
, M12 = − (E−U )

V
, M21 = −M12,

and M22 = − tl
V

are the matrix elements of the transfer matrix

T
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(b)

FIG. 8. (Color online) Transmission characteristics for a third-
generation system for (a) � = 0 and (b) � = �0/4. The other
parameters are εA = εB = 0, t = 1, and λ = 0. The lead parameters
are εl = 0 and tl = 1.

for the effective diatomic system and cos ka = (E − εl)/2tl ,
with a being the lattice constant, which is taken to be equal to
unity throughout the calculation.

In Fig. 8, we show the two-terminal transmission char-
acteristics for a third-generation system for different values
of magnetic flux �. For � = 0, the system exhibits a
continuous high-transmission window over a region at the
center [Fig. 8(a)].

This is due to the fact that, on either side of E = 0, the
energy eigenvalues become quite densely packed. The corre-
sponding eigenfunctions have localization lengths extending
much beyond the third-generation fractal.

As we tune the magnetic flux to a nonzero value, e.g., � =
�0/4, the transmission coefficient of the system drastically
decreases [Fig. 8(b)], and with an increase in �, the value
of the transmission coefficient T decreases more and more,
and finally, at � = �0/2, the system becomes completely
opaque to an incoming electron. So by fixing the Fermi
level of the electron to a particular energy, say at E = 0,
one can easily transform the system from a conducting one
to an insulating one by tuning the external magnetic flux �

suitably.

VI. CONCLUDING REMARKS

In conclusion, we have examined the energy spectrum of
a Vicsek geometry consisting of diamond-shaped loops. The
major result is that we have been able to identify a countable
infinity of localized eigenstates displaying a multitude of
localization lengths. A prescription is given for an exact
determination of the eigenvalues corresponding to all such
states, a problem that is far from trivial in the case of an
aperiodically ordered system. The localized states span across
the fractal space in clusters of increasing sizes, with the size

214203-7



BIPLAB PAL AND ARUNAVA CHAKRABARTI PHYSICAL REVIEW B 85, 214203 (2012)

being precisely controlled by the length scale at which the
energy eigenvalue is extracted. The onset of localization can
be exactly predicted from the stage of RSRG. In addition,
the application of a uniform magnetic field perpendicular
to the plane of the fractal is found to produce gaps in the
energy spectrum. A special value of the magnetic flux, viz.,
� = �0/2, is shown to lead to an extreme localization of the
electron states as well. The results are corroborated by the

density of states calculations and the valuation two-terminal
magnetotransport.
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