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Several recent studies have reported that the elastic strain in metallic glasses, as measured from peak shifts in
the pair-correlation functions of samples under load, increases with distance from an average atom, approaching
the macroscopic strain at large distances. We have verified this behavior using high-energy x-ray scattering on
metallic glasses loaded under uniaxial compression, uniaxial tension, and pure shear, and show that the apparent
length-scale dependence of elastic strain is not an artifact of the assumption of structural isotropy in the data
analysis. Molecular dynamics simulations of a binary Lennard-Jones glass loaded in uniaxial tension reproduce,
qualitatively, the behavior observed in the experiments when the elastic strain is calculated from the shifts in
the peaks of the pair-correlation function. Under hydrostatic loading, however, the length-scale dependence of
elastic strain observed in the simulations is greatly reduced. This suggests that nonaffine atomic displacements,
which are smaller under hydrostatic loading than under uniaxial loading, may play a key role in the length-scale
dependence of elastic strain. Furthermore, no length-scale dependence is observed in simulations, for either
uniaxial or hydrostatic loading, when the elastic strain is calculated from the average local deformation gradient
tensor. We explain this apparent contradiction and show that the atomic displacements resulting from elastic
loading are largest in the low-density regions between atomic shells around an average atom. Finally, we present
an analysis of length-scale dependence of elastic strain calculated from the pair-correlation function for the case
of homogeneous deformation, which is in good agreement with the simulations conducted under hydrostatic
loading. For uniaxial loading, however, the analysis diverges from both the experimental and simulated results in
the first two near-neighbor atomic shells. This suggests, in agreement with our observations from the molecular
dynamics simulations, that the observed length-scale dependence of elastic strain from scattering measurements
reflects the nature of the nonaffine atomic displacements in the glass.
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I. INTRODUCTION

Several groups have recently reported measurements of
elastic strain in metallic glasses under load using either x-ray
or neutron scattering.1–10 Calculating the elastic strain from
shifts in the positions of peaks in the pair-correlation function
g(r), these groups observed that the elastic strain measured
in this way increases with distance from an average atom
(r), asymptotically approaching the macroscopically imposed
strain. Given that elastic strain in either a crystal or an
elastic continuum is expected to be independent of length
scale, the question arises as to whether the observation of a
length-scale-dependent elastic strain in metallic glasses might
be an artifact of either the experiment or the data analysis. If it
is not, it is natural to then inquire as to the nature of the physical
mechanism responsible for this length-scale dependence.

In this paper, we describe a series of experimental and
computational investigations into these issues. In Sec. II
we present results from in situ x-ray scattering experiments
on amorphous Zr57Ti5Ni8Al10Cu20 under uniaxial tension,
uniaxial compression, and pure shear loading. We show that
the length-scale dependence of elastic strain from shifts in
g(r) peak positions is apparent in all three of these loading
conditions. We also show that the length-scale dependence
of elastic strain under uniaxial loading is not an artifact
of assuming, in the analysis of the scattering data, that the
structure is isotropic.

In Sec. III we present results from molecular dynamics
simulations of a model binary Lennard-Jones glass that

reproduce, on a qualitative basis, the nature of the length-scale
dependence of elastic strain for uniaxial loading from shifts in
the peak positions in g(r). Models of hydrostatic loading, on
the other hand, show essentially no length-scale dependence.
A comparison of different algorithms for calculating the strains
suggests that the observed length-scale dependence of strain is
a consequence of the nature of nonaffine atomic displacements
in the first few nearest-neighbor atomic shells around an
average atom.

Finally, in Sec. IV we analyze the effect of a uniform
elastic strain on the pair-correlation function g(r) for the case
of uniaxial and hydrostatic loading, which we then compare
to our experimental and simulation results. For the case of
hydrostatic loading, the agreement is good at all length scales,
while there is significant disagreement in the first few atomic
shells for the case of uniaxial loading. In agreement with
our other results, this observation suggests that nonaffine
displacements in uniaxial loading contribute to the observed
length-scale dependence of elastic strain in the scattering
experiments.

II. LENGTH-SCALE DEPENDENCE OF STRAIN FROM
X-RAY SCATTERING EXPERIMENTS

A. Experimental techniques and data analysis

We prepared metallic glass plates of nominal composition
Zr57Ti5Ni8Al10Cu20 by an arc-melting and suction-casting
procedure described in detail elsewhere.11 For the uniaxial

214201-11098-0121/2012/85(21)/214201(12) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.214201


VEMPATI, VALAVALA, FALK, ALMER, AND HUFNAGEL PHYSICAL REVIEW B 85, 214201 (2012)

Incident 
Beam

Specimen

Image Plate
Load

qq

FIG. 1. (Color online) Experimental setup for the in situ
x-ray scattering experiments, using the case of uniaxial tension as
an example. q‖ and q⊥ are the scattering vectors approximately
parallel and perpendicular to the loading direction, respectively. The
azimuthal angle ψ is also shown; note that q‖ corresponds to ψ = 0◦

and q⊥ to ψ = 90◦ on the image plate.

tension experiments, we fabricated dog-bone tensile speci-
mens (gage section 11.2 × 2.8 × 2.4 mm) by electrodischarge
machining from suction-cast plates, removing the damaged
surface layer by mechanical polishing to a final grit size
of 25 μm. For the pure shear experiments, we employed
an asymmetric four-point bend geometry using samples of
overall dimensions 25 × 8 × 2.4 mm. In this geometry,
loading via asymmetrically opposing pairs of pins produces a
region of nominally pure shear strain in a region between two
central notches in the plate. Reference 12 provides a complete
discussion of the asymmetric four-point bend geometry.

We performed in situ high-energy x-ray scattering ex-
periments on amorphous Zr57Ti5Ni8Al10Cu20 under several
loading conditions at beam line 1-ID of Advanced Photon
Source. The data for samples under uniaxial compression are
from our earlier work.2 The scattering techniques and analysis
for tension and pure shear experiments are largely the same
as before, except as noted below. The tension and pure shear
measurements were performed using 87 keV x-rays, with the
x-ray scattering recorded in transmission through the specimen
on a MAR 345 image plate positioned ∼390 mm downstream
from the sample (Fig. 1).

The samples were loaded in increments using a screw-
driven MTS load frame, with pauses to record the scattering
patterns. We converted the two-dimensional data from the
image plate into 72 one-dimensional (intensity I vs scat-
tering vector magnitude q) scattering patterns by dividing
the image area into 5◦ wedges using the software package
FIT2D.13,14 Each of these patterns corresponds to a specific
direction characterized by the azimuthal angle ψ around the
incident beam direction, measured relative to the loading
(vertical) direction (Fig. 1). We corrected the raw data for
various effects, including absorption, multiple scattering,
fluorescence, and polarization to obtain the scattered intensity
I (q,ψ) on an absolute scale. These intensity data were then
normalized to obtain the direction-dependent total structure
factor,

S(q,ψ) = I (q,ψ) − 〈f (q)f ∗(q)〉
〈f (q)〉〈f ∗(q)〉 , (1)

where f (q) is the atomic scattering factor and the angle
brackets indicate averaging over the composition of the
material.

B. Elastic strain from g(r,ψ): Isotropic assumption

In analyzing scattering data from amorphous materials, it
is usual to assume that the structure is isotropic. Although it
is clear that uniaxial loading must introduce some anisotropy
into the structure, in our prior work2 we assumed that, for the
small strains associated with elastic deformation, the induced
anisotropy was negligible. Other workers have made the same
assumption,1,6,10 but it has been called into question on the
basis of scattering experiments on specimens subjected to
much larger homogeneous plastic strains, where the anisotropy
is clearly not negligible.15 In this section, we discuss data anal-
ysis under the isotropic assumption before moving on to the
more rigorous spherical harmonic analysis in Sec. II C below.

Beginning with the assumption that the structure of the
specimen is isotropic, we can calculate the pair-distribution
function ρ(r,ψ) by sine Fourier transformation of S(q,ψ),

ρ(r,ψ) = ρ◦ + 1

2π2

∫ ∞

0
S(q,ψ)

sin(qr)

qr
q2 dq, (2)

where ρ◦ is the average atomic density of the glass. For
consistency with our earlier work,2 the results below are
presented in terms of the pair-correlation function,

g(r,ψ) = ρ(r,ψ)

ρ◦
.

Since the positions of the peaks in g(r,ψ) give the distances
of neighboring atomic shells relative to an average atom in
the material, elastic strain can be measured from the shift
in the peak position from the reference (undeformed) material
to the deformed material under load. In practice we find it
easiest and most reliable to measure this peak shift by a
comparison of the positions at which g(r,ψ) = 1, as described
in Ref. 2. Calling these positions d(σ,r,ψ), we calculate the
elastic strain ε(r,ψ) from

ε(r,ψ) = d(σ,r,ψ)

d(σ = 0,r,ψ)
− 1. (3)

From the direction-dependent elastic strains ε(r,ψ), we can
determine the principal strains using the usual expression for
transformation of strains,

ε(r,ψ) = ε1(r) cos2 θ + ε2(r) sin2 θ, (4)

where θ is the angle between the laboratory coordinate system
(Fig. 1) and the principal axes of strain, and ε1(r) and ε2(r) are
the principal strains in the directions approximately parallel
to and perpendicular to the loading axis. Fitting Eq. (4) to the
measured ε(r,ψ) yields ε1(r) and ε2(r) as well as the rotation
angle θ . For uniaxial tension and compression, θ 
 0, and the
elastic strains we report below are the principal strains ε1(r)
and ε2(r). For pure shear, θ 
 45◦, and we report below the
shear strain γ = |ε1(r) − ε2(r)|.

Figure 2 shows elastic strain as a function of r , measured at
several loads for each of the three loading geometries. In each
case, we observe that the strain is smallest at small r (in the
first nearest-neighbor shell) and increases with increasing r .
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FIG. 2. (Color online) Elastic strain from g(r,ψ) as a function of load and distance from average atom (r) for Zr57Ti5Ni8Al10Cu20 specimens
loaded in (a) uniaxial compression, (b) uniaxial tension, and (c) pure shear. Solid lines represent strain at a given stress during loading, while
dashed lines are strain during unloading. (d) Tensile strain at a single load [870 MPa, from part (b)], along with the macroscopic strain recorded
by an extensometer attached to the sample (dashed line). With increasing r , the elastic strain measured in the x-ray experiment asymptotically
approaches the macroscopic strain.

In Fig. 2(d), we compare the elastic strain from the scattering
experiment with that obtained simultaneously from an exten-
someter placed on the specimen. It is apparent that the x-ray
strain is smallest in the first nearest-neighbor atomic shell,
increasing with r to approach the macroscopic strain measured
with the extensometer. These observations are consistent with
earlier observations (by our group and others) on samples
loaded in uniaxial compression1,2 and tension.5,7,10 Note that
the data in Fig. 2(c) are reported for loading in pure shear.

C. Elastic strain from g(�r): Effect of anisotropy

Equation (2) assumes that the structure of the material
is isotropic. In reality, mechanical deformation can make
a metallic glass anisotropic, either irreversibly by plastic
deformation16 or, in the present case, reversibly by elastic de-
formation. This raises the possibility that the reported length-
scale dependence of elastic strain is an artifact of the isotropic
assumption. In particular, Dmowski and Egami showed, for a
plastically deformed metallic glass, that the error introduced
into g(r,ψ) by making the isotropic assumption (compared to
a fully anisotropic analysis) is largest at small r , just where
we find the x-ray elastic strain to be most different from the
macroscopic strain [Fig. 2(d) ].15 In this section we consider
this possibility, and show that the length-scale dependence of
elastic strain persists even under a fully anisotropic analysis.

To account for anisotropy, we expand the pair-distribution
function into spherical harmonics,

ρ(�r) =
∑
n,m

ρm
n (r)Ym

n (φ,θ ), (5)

where Ym
n (φ,θ ) are the spherical harmonics; φ and θ are

the polar and azimuthal angles, respectively (Fig. 3); and
n = 0,1,2, . . . and m = −l, . . . ,l are, respectively, polar and
azimuthal indices on Ym

n (φ,θ ).17 The spherical harmonics
Ym

n (φ,θ ) are given by

Ym
n (φ,θ ) = (−1)m

√
(2n + 1)

4π

(n − m)!

(n + m)!
P m

n (cos φ)eimθ , (6)

where P m
n are the associated Legendre functions.17 For

uniaxial loading, we assume that the structure is transversely
isotropic (i.e., isotropic in the x-y plane), which allows us to
drop the dependence on the azimuthal angle θ and consider
only harmonics with m = 0. The spherical harmonics then
reduce to

Yn(φ) =
√

(2n + 1)

4π
Pn(cos φ) (7)

r

Loading direction 
is along z-axis

y

z

x

FIG. 3. Spherical coordinate convention used in this paper. The
loading direction is along the z axis.
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and the anisotropic pair-distribution function becomes

ρ(�r) = ρ(r,φ) =
∑

n

ρn(r)Yn(φ). (8)

To extract the anisotropic pair-distribution function from
the scattering data, we also expand the structure factor into
spherical harmonic terms,

S(�q) = S(q,φ) =
∑

n

Sn(q)Yn(φ), (9)

where φ is the polar angle (Fig. 3). Because we have scattering
information over a range of ψ (directly related to φ), we can
determine the individual harmonic terms Sn(q) from S(q,φ)
using the orthogonality relationship18–20

Sn(q) = Cn

∫ π/2

0
S(q,φ)Pn(cos φ) sin(φ) dφ, (10)

where n = 0,2,4, . . . and Cn = √
4π (2n + 1).

The first two terms in the structure factor, S0(q) and S2(q),
are shown in Fig. 4 for a sample under zero load, and under
a large compressive load (−1080 MPa, approximately 60%
of the yield stress). As expected for a nominally isotropic
specimen, S2(q) is found to be near zero for the unloaded
specimen. Even for the specimen under load, S2(q) is much
smaller in magnitude than S0(q). We note, however, that the
relative magnitudes of S0(q) and S2(q) for elastic loading
are comparable to those for plastically deformed glasses,15

indicating that elastic loading does in fact induce significant
structural anisotropy.
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FIG. 4. (Color online) First two harmonics of the structure factor,
S0(q) and S2(q), when the sample is (a) unloaded and (b) under
1080 MPa compressive load.
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FIG. 5. (Color online) (a) Pair-distribution function harmonics
ρn(r) obtained from Sn(q) using Eq. (11). (b) The second harmonic,
ρ2(r), obtained by transformation of S2(q) using the spherical Bessel
transform, given by Eq. (11), and the sine Fourier transform, given
by Eq. (2).

To investigate the degree of anisotropy induced by elastic
deformation in real space, and its effect on strain measure-
ments, we calculate the harmonics of the pair-distribution
function from the structure factor harmonics using the Bessel
transformation,

ρn(r) = (
√−1)n

2π2

∫ ∞

0
Sn(q)Jn(qr)q2 dq, (11)

where Jn(qr) is the nth-order spherical Bessel function.21

The first term [ρ0(r)] is isotropic, with information about
any structural anisotropy residing in the higher-order (n =
2,4, . . .) terms. Figure 5(a) shows the first few terms in ρn(r),
of which the n = 2 term is the largest. To identify the effect of
this anisotropy on the analysis, we obtain two versions of ρ2(r)
by transformation of S2(q), one using the isotropic assumption
[Eq. (2)] and one using the anisotropic form [Eq. (11)].15

The results are presented in Fig. 5(b). The magnitude of the
discrepancy is largest at low r , just where the length-scale
dependence of elastic strain is most significant [Fig. 2(d)].

To examine the possibility that the length-scale dependence
of elastic strain in Fig. 2 is due to this discrepancy, we
determined the elastic strain using a full anisotropic analysis.
We calculated ρn(r) for n = 0, 2 from Sn(q) using Eq. (11) and
ρ(r,φ) and g(r,φ) using Eq. (8). From peak shifts in g(r,φ),
we determined the principal strains, using the same methods
described in the previous section. The results are shown in
Fig. 6 for three conditions (no load, −440 MPa, and −1080
MPa), along with the elastic-strain values obtained using the
isotropic assumption. The agreement in elastic strain between
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FIG. 6. (Color online) Elastic strain in the loading direction
measured from the pair-correlation functions obtained using the
isotropic transformation, given by Eq. (2), and the anisotropic
transformation, given by Eq. (11). Data are for Zr57Ti5Ni8Al10Cu20

loaded in uniaxial compression.

the isotropic assumption and the full anisotropic analysis is
good at all values of r . (Some deviations in the elastic-strain
data are observed, particularly at large compressive loads;
however, these do not appear systematically different from
the elastic strain calculated by isotropic analysis.) Most
significantly, the trend for decreasing strain at small r is
apparent in both cases. Mattern and coworkers, also using
an anisotropic analysis, reached a similar conclusion in their
experiments on Cu-Zr glasses.5 We conclude that although
uniaxial elastic loading does introduce a measurable structural
anisotropy, the observed length-scale dependence of elastic
strain persists whether the data are analyzed using the isotropic
assumption or with a full anisotropic treatment.

III. MOLECULAR DYNAMICS SIMULATIONS

The results above show that the length-scale dependence
of elastic strain in metallic glasses is not a result of the
isotropic assumption in calculating g(r,ψ). To confirm this
observation and gain additional insight into the underlying
physical mechanisms, we carried out molecular dynamics
simulations on a model binary Lennard-Jones glass. Although
too simple to capture all of the behavior of real metallic glasses,
Lennard-Jones glasses provide a starting point for exploration.
For this reason, they are commonly used in computational
studies of amorphous alloys.22–26

A. System details

The general form of the Lennard-Jones potential is

Uαβ(r) = 4εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6]
, (12)

where α and β are indices specifying the atom kinds, εαβ is the
interaction energy, and σαβ is the distance at which attractive
and repulsive terms cancel. Our specific model system is a
Wahnstrom glass,27 with equal numbers of two kinds of atoms
(denoted A and B) and parameters εAA = εBB = εAB = 1.0,
σAA = 1.0, σBB = 5/6, and σAB = σBA = 11/12. The mass
of the species A (mA) is twice that of species B (mB). (Our
choice of this parametrization was motivated by the fact that
it has been employed extensively in the research community
for simulating metallic glasses.)26 The potential was shifted

TABLE I. Three-stage quench schedule for the binary Lennard-
Jones glass.

Tinitial Tfinal Pinitial Pfinal Duration
Stage (ε/k) (ε/k) (ε/σ 3) (ε/σ 3) (τ )

1 1.2 0.73 13.3 7.98 250
2 0.73 0.45 7.98 4.73 10 000
3 0.45 0.036 4.73 0.0 250

such that any interactions above a cutoff distance rc = 2.5σAA

may be neglected. Additional details of the system studied
can be found elsewhere.28 To describe physical quantities in
the simulation, we use reduced Lennard-Jones (LJ) units and
choose εAA, σAA, and mB as the normalizing terms for energy,
length, and mass, respectively. The temperature is given in
units of ε/kB (where kB is Boltzmann’s constant), pressure is
given in ε/σ 3, and distance is given in σ .29 A characteristic
relaxation time τ = σAA

√
m/εAA is used to describe the time

scale of the simulations.
We conducted our simulations using LAMMPS30,31 code on

an initially cubic box with dimensions 45σ × 45σ × 45σ .
Initially, 116 640 atoms were placed in the box randomly, fol-
lowed by relaxation to minimize potential energy to eliminate
atomic overlaps. After equilibration in the liquid state (Tinitial =
1.2, Pinitial = 13.3) for 750τ , the glass was quenched to a final
temperature Tfinal = 0.036 and pressure Pfinal = 0.0 following
the three-stage quench schedule shown in Table I. The second
stage of the quench is longest, during which the system goes
through the mode coupling temperature (T = 0.57) (Ref. 28)
over a time period of 10 000τ . A Nose-Hoover32 thermostat
and a Parrinello-Rahman barostat33,34 were used to control the
system temperature and pressure, respectively.

As described in detail below, we subjected our model glass
to several loading conditions and used several techniques
to study the length-scale dependence of the resulting elastic
strain. To calculate the elastic strains, we averaged the atomic
positions over a time of 500τ to minimize the effect of thermal
displacements. We determined the imposed normal elastic
strain εi from the change in size of the simulation box:

εi = Ldef
i − Lref

i

Lref
i

, (13)

where Lref
i and Ldef

i are the box sizes along direction i =
x,y,z before and after deformation, respectively. This imposed
elastic strain is analogous to the macroscopic elastic strain
measured by extensometer in our experiments, and we use it
as a basis of comparison for the length-scale dependence of the
atomistic-level elastic strains calculated from the simulations.

B. Uniaxial deformation

Our first simulations were intended to provide the most
direct comparison possible to the experimental results (within
the limitations of the simple model system). We therefore
subjected the model glass to uniaxial tensile deformation
by decreasing the pressure along the z axis from Pz = 0 to
Pz = −0.5 using an N-P-T ensemble. This load was chosen
to give a 1% elastic strain along the loading direction. During
the loading, the temperature of the system was maintained at
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T = 0.036, and the pressure on the lateral faces of the box
was maintained at Px = Py = 0. In the transverse direction,
the system was found to contract due to the Poisson effect.

1. Elastic strain from the pair-correlation function, g(�r)

The primary motivation in constructing this model was to
compare elastic strain calculated based on the pair-correlation
function from the model with that determined from the exper-
iments. As in the experiment, we assume transverse isotropy,
reducing g(�r) to g(r,φ) by averaging over the azimuthal angle
θ . (The spherical coordinate convention in Fig. 3 applies here
as well.) The angle-dependent pair-correlation function is then

g(r,φ) = V

N2 × dV

〈∑
i

∑
j =i

δ(r − rij )|(φ)ij =φ

〉
, (14)

where V is the volume of the simulation box, dV is the volume
of a spherical shell of radius r and thickness dr , and i and j

are indices which run over all of the N atoms in the system.35

We calculated elastic strain from g(r,φ) by the same sin2 φ

analysis used for the experimental data.
The elastic strain determined from the uniaxial tension

simulations using the g(r,φ) technique is shown in Fig. 7,
along with the imposed strain determined from the change
in simulation box length using Eq. (13). (The figure also
shows strain calculated in two other ways, which are discussed
below.) We observe a length-scale dependence of the elastic
strain similar to that observed in the experiments, with a
strain that is smallest in the first near-neighbor shell and
which increases with r . The convergence to the imposed
strain is, however, rather slower than that we observe in the
experiment. This may be the result of the small simulation size,
which creates significant uncertainty in g(r,φ) for r > 3σ and
necessitates using a cone of larger half-angle to calculate g(r)
(18◦ here compared to 2.5◦ for the experiments).

Uncertainty at large r aside, the length-scale dependence of
elastic strain from g(r,φ) in the simulation is strikingly similar
to that obtained from the scattering experiments. Because the
simulations involve calculation of the pair-correlation function
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FIG. 7. (Color online) Elastic strain in the model glass subject
to uniaxial tension, at T = 0.036, calculated using three different
techniques: shifts in pair-correlation function g(r,φ) peaks; the defor-
mation gradient tensor, averaging local strains 〈F 〉ε ; and the deform-
ation gradient tensor, averaging atomic positions 〈F 〉x . The imposed
strain calculated using Eq. (13) is also shown.

directly from the atomic positions, they are not subject to the
question of which transform to apply (isotropic Fourier sine
vs anisotropic spherical Bessel). Together with the results of
Sec. II C, this allows us to state unequivocally that the observed
length-scale dependence of elastic strain is not an artifact of
an assumption of isotropy in analyzing the experimental data.

2. Elastic strain from the local deformation gradient

To gain additional insight into the nature of the length-scale
dependence of elastic strain, we also calculated the elastic
strain in our simulated systems with a more sophisticated
methodology that involves calculation of the local strain
tensor around each atom.24,36 For each atom, we identify
the neighboring atoms that are within a distance r of the
central atom in the reference (i.e., undeformed) configuration.
In the deformed configuration, each of these neighbors will
have experienced a displacement relative to the central atom.
We can then determine the local strain tensor corresponding
to the deformation gradient tensor F that produces the best fit
(in a least-squares sense) with the actual atomic displacements
determined from the model. Once the local strain tensor for
each atom is known, the global average strain tensor is readily
calculated. By varying the distance r over which neighbors are
identified, we can use this approach to explore the length-scale
dependence of elastic strain.

The elastic strain determined in this way from our uniaxial
tension simulations is shown in Fig. 7. Because three neighbors
are required to uniquely determine the deformation gradient,36

the elastic strain using this algorithm is indeterminate for r <

σ . But it is apparent that the elastic strain calculated from the
deformation gradient agrees well with the imposed strain for
r > 2σ , and in particular that there is no significant length-
scale dependence in the first several atomic shells around the
average atom.

Why is there such a striking difference between the elastic
strains calculated from g(r,φ) and those calculated using the
deformation gradient approach? One difference is that while
both methods involve averaging over all of the atoms, the order
in which the averaging is done is different. In determining
elastic strain from g(r,φ), we first determine an average atomic
environment, and from changes in that average structure,
we determine an average strain. In the deformation gradient
approach, however, we determine the elastic strain for each
atom first, and then average the strains.

To determine whether the order of averaging influences
the elastic-strain calculation from the model, we adapted the
deformation gradient approach to work on a global average
structure. Starting from a reference atom, we discretized
the model into bins of size dr × dθ × dφ. The separations
between the reference atom and all other atoms in the
undeformed configuration were calculated and stored in the
(r, θ, φ) bin corresponding to that pair. This process was then
repeated, using each atom in turn as the reference atom.
The distances stored in each bin were averaged to produce
a structure that represents the atomic environment around an
average atom in the material. To this point, the procedure
is similar to how g(r,φ) is calculated. But here, in the case
of the deformed configuration, we repeat the pair-separation
calculation for a given bin for the same atomic pairs that
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contributed to that bin in the undeformed configuration. This
is different from the g(r,φ) calculation, where the atomic
pairs contributing to a given bin in reference and deformed
configurations may be different.

Having determined the average structure in this way,
making sure that the same atom pairs were counted in both
configurations, we determined the best-fit strain tensor de-
scribing the deformation necessary to transform the reference
configuration to the deformed configuration. The approach
is basically the same as the deformation gradient approach
described above, except that here we average the environments
first and then calculate the elastic strain, instead of calculating
the local elastic strains first and then averaging them.

The result of this calculation is also shown in Fig. 7. Except
for the first few points (at small r), the agreement with the
original deformation gradient technique is good. This makes
it clear that the order of averaging has a minor influence on
the elastic strain calculated using the deformation gradient
approach, and can be ruled out as a source of the length-scale
dependence of elastic strain obtained from the pair-correlation
function.

3. Elastic strain from atomic shells

Besides the order of averaging, there are other differences
when the strain is extracted from g(r) compared to the defor-
mation gradient technique. For example, in the pair-correlation
approach, the volume of atoms examined is essentially a thin
shell of thickness dr at a distance r from an average atom;
changes in the population of atoms at particular values of r

are interpreted in terms of a strain, according to Eq. (3). In the
deformation gradient approach, all of the atoms in a reference
sphere of radius r are considered.

A possibly more subtle difference is the lack of a precise
reference in the pair-correlation technique. When calculating
elastic strain from peak shifts in g(r,φ) [Eq. (3)], it is
implicitly assumed that the atomic pairs in the undeformed
and deformed states are the same, and that the change in their
separations is reflected in the movement of peaks in g(r,φ)
due to changes in bond lengths. But this is not necessarily true.
Atomic pairs from neighboring volume elements can move in
and out of an element of interest, complicating the calculation
of the elastic strain. We expect that this will be an especially
important effect if the material experiences nonaffine atomic
rearrangements in response to the imposed strain. Indeed,
Table II shows that about 6% of the atoms in the simulations
of uniaxial deformation experience at least one change in their
Voronoi near-neighbor environments, as compared to about

2.6% for simulations of hydrostatic deformation (discussed
in Sec. III C below). The uncertainty as to which atoms are
contributing to the measured strain from g(r,φ) is in contrast to
the deformation gradient approach, where the displacements
of specific atoms (those initially in the reference volume) are
considered, and only these displacements are used in the strain
calculation.

To examine the influence of these effects, we developed
an approach that combines the volume discretization and
averaging behavior of the g(r,φ) method with the use of a
precise reference as in the deformation gradient method. In
this hybrid approach, we tabulate the separations between a
reference atom and all of its neighbors within a shell of radius
r and thickness dr . By repeating this process using every
atom in the system in turn as the reference, we obtain a table
of pair separations in this shell for an average atom in the
material. For the undeformed configuration, these shells are
nominally spherical, with radii Rx,Ry , and Rz determined by
a least-squares fit to the neighbor separations. We then repeat
this procedure for the deformed configuration; in general,
the nominally spherical reference volumes are deformed into
ellipsoids (for uniaxial loading) with best-fit radii rx, ry , and
rz. Although similar to a pair-correlation calculation, this
approach differs in that the same atoms chosen from the
reference spherical shell are used to calculate the shape of
the ellipsoidal shell in the deformed state. If x, y, and z are the
principal axes, the principal strains are then given by

εi = ri − Ri

Ri

, (15)

where i = x,y,z. Because of the shape of the shells in
the deformed configuration, we refer to this method as the
“ellipsoid fit.” As with the deformation gradient method, we
can probe the length-scale dependence of the elastic strain
determined in this way by varying Ri .

The results of this approach are shown in Fig. 8, along
with the elastic-strain values obtained from g(r,φ) and the
deformation gradient. Interestingly, the elastic strain calcu-
lated by the ellipsoid-fit method shows different behavior from
either the pair-correlation or deformation gradient approaches.
The elastic strain oscillates about the imposed strain, with the
difference being largest for small values of r . This observation
is discussed in detail in Sec. V.

C. Hydrostatic deformation

The considerations described above suggest that the length-
scale dependence of elastic strain from g(r,φ) is related to

TABLE II. Changes in Voronoi near-neighbor atomic environments for various loading conditions, from molecular dynamics simulations
at T = 0.036. The table entries are the fraction of atoms that have the specified number of neighboring atoms that are different between the
reference (unloaded) atomic configuration and the configuration under load.

Number of different neighbors Uniaxial tension Uniaxial compression Hydrostatic tension
between reference and deformed states (ε = 0.0102) (ε = −0.0093) (ε = 0.0078)

0 0.9311 0.9361 0.9724
1 0.0645 0.0597 0.0264
2 0.0039 0.0038 0.0011
3 or more 0.0005 0.0005 0.0001
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FIG. 8. (Color online) Elastic strain in the model glass subject to
uniaxial tension calculated using the ellipsoid-fit method, along with
the strain calculated from peak shifts in the pair-correlation function
[g(r,φ)], the deformation gradient tensor (〈F 〉ε), and the imposed
strain.

nonaffine atomic displacements that occur in response to
loading. To examine this possibility, we conducted simulations
in which the model was subjected to hydrostatic tension. Under
hydrostatic loading, there is no global shear strain, although
nonaffine displacements can still arise due to local shear strains
in the disordered glass structure. We speculated, therefore, that
the length-scale dependence of elastic strain from g(r,φ) would
be smaller for hydrostatic loading than for uniaxial loading.

To verify this speculation, we simulated hydrostatic tension
on our binary Lennard-Jones glass and calculated the elastic
strain using the techniques described above. The results are
shown in Fig. 9. It is apparent that the length-scale dependence
of elastic strain from the g(r,φ) approach is much weaker, and
the calculated strain at large r matches the macroscopically
imposed strain (compare Fig. 7). This suggests that the
apparent length-scale dependence of elastic strain is in fact
related to nonaffine atomic rearrangements, and hence strongly
influenced by the presence of a shear component of strain. We
believe that the shear strain drives the exchanges of atomic
neighbors that underlie the apparent length-scale dependence
of elastic strain calculated from g(r,φ).

The results of using the ellipsoid-fit technique for calculat-
ing strain under hydrostatic loading are also shown in Fig. 9.
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FIG. 9. (Color online) Elastic strain in the model glass subject to
hydrostatic tension calculated using the ellipsoid-fit method, along
with the strain calculated from peak shifts in the pair-correlation
function [g(r,φ)] and the imposed strain. Note the difference in scale
compared to Fig. 8.

Although there are fluctuations similar to those for uniaxial
loading (Fig. 8), they are much smaller than in the uniaxial
case and they damp out more quickly with increasing r . We
discuss this behavior in more detail in Sec. V below.

D. Characteristics of nonaffine displacements

If the observed length-scale dependence of strain from g(r)
is related to nonaffine atomic displacements, then it becomes of
interest to analyze the nature of the nonaffine displacements
under various loading conditions. One important aspect of
the nonaffine displacements, discussed above, is that they can
result in changes in the identities of the atomic near neighbors
around a given atom (Table II). Here we briefly consider other
aspects of the nonaffine displacements in both uniaxial and
hydrostatic loading.

Given that our simulations employed a simple Lennard-
Jones potential, we believe that there is little to be gained
from a close analysis of specific atomic-scale structures and
rearrangements (e.g., in terms of atomic clusters). However,
the models do show distinctive qualitative features that
depend on the loading condition. Figure 10 shows quiver
plots of the nonaffine displacements from the simulations
of (a) uniaxial tension and (b) hydrostatic tension. It is
immediately apparent that the nonaffine displacements are not
homogeneously distributed, but instead are concentrated in
regions spanning several atomic diameters, indicating that the
elastic deformation is inhomogeneous on this length scale.
As one might expect, the magnitude of the nonaffine dis-
placements is smaller for hydrostatic loading than for uniaxial
loading [Fig. 10(c)], and while the nonaffine displacements are
isotropically distributed for hydrostatic loading, under uniaxial
loading they are preferentially oriented along the loading axis
[Fig. 10(d)].

We note that other researchers have suggested that elastic
deformation in amorphous materials could be nonuniform.
For example, in three-dimensional (3D) Lennard-Jones simu-
lations of elastic deformation of a polydisperse glass, Leon-
forte and coworkers observed nonuniform nonaffine atomic
displacements and measured a correlation length of ∼23σ .37

More recently, Dmowski and coworkers suggested, from x-ray
scattering data, that only about three-quarters of the atoms in
a metallic glass deform elastically, with the remainder being
anelastic “liquidlike” material.38

IV. ANALYSIS OF VARIATIONS IN g(r) DUE TO
NONUNIFORM DEFORMATION

We offer here an additional analysis of our data and
simulations that suggests that deformation in the first few
atomic shells is, in fact, inhomogeneous. To do so, we will
derive conditions on the values of g(r) for the reference
(undeformed) and deformed configurations that should hold
if the deformation were homogeneous, and show that these
conditions are violated for both the experimental data and
the results from the simulations in the case of uniaxial
deformation.

To carry out this analysis, we first write the pair-correlation
function in Cartesian coordinates. If the pair-correlation
function of a glass in the reference configuration is gref(�r),
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FIG. 10. (Color online) Nonaffine displacements in the simulations of elastic deformation. Slices through atomic configurations subjected
to (a) uniaxial compression and (b) hydrostatic tension show the nonaffine displacements projected onto the x-y plane (perpendicular to the
loading axis, z). The lengths of the arrows indicating the nonaffine displacements have been multiplied by a factor of 20. In (c) and (d), we
show the distributions of the magnitudes and orientations, respectively, of the nonaffine displacements. In (d), the histogram is normalized by
a geometrical factor of (sin φ)−1.

then in the Cartesian system,

gref(�r) = gref(x,y,z),

where “ref” stands for reference and x,y,z are the Cartesian
coordinates. If the glass is subjected to deformation described
by the elastic-strain tensor,

ε =
⎛
⎝εx 0 0

0 εy 0
0 0 εz

⎞
⎠ ,

then the pair-correlation function in the deformed state can be
written as39

gdef(x,y,z) = gref

(
x

1 + εx

,
y

1 + εy

,
z

1 + εz

)
. (16)

Expanding the term on the right-hand side of above equation
into Taylor series, we have (neglecting higher-order terms)

gdef(x,y,z) = gref(x,y,z) −
(

xεx

∂

∂x
+ yεy

∂

∂y
+ zεz

∂

∂z

)
× gref(x,y,z). (17)

This equation is valid only when the strains (εx, εy, and εz)
are small and uniform throughout the sample.

Equation (17) can be simplified in certain special cases.
For example, when an isotropic material is subject to uniaxial
deformation, the strain tensor can be written as

ε =

⎛
⎜⎝

−νε 0 0

0 −νε 0

0 0 ε

⎞
⎟⎠ ,

where ν is Poisson’s ratio. Then, Eq. (17) becomes (now
switching to spherical coordinate notation)

gdef(r,φ) − gref(r) = −rε(cos2 φ − ν sin2 φ)
d

dr
[gref(r)].

(18)

[Note that in the above equation, r in gref(r) is a scalar signify-
ing the fact that the pair-correlation function of an amorphous
material in an undeformed configuration is assumed to be
spherically symmetric. Also for this reason, the derivative is
a full derivative and does not depend upon θ or φ.] If our
assumptions of small, uniform deformation of an isotropic
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FIG. 11. (Color online) Left-hand and right-hand sides of Eq. (18)
obtained from (a) experimental and (b) simulation data in uniaxial
tension. Solid curves depict the difference between pair-correlation
functions in deformed [gdef(r,φ)] and reference [gref (r)] states, i.e.,
the left-hand term of Eq. (18), of (a) Zr57Ti5Ni8Al10Cu20 specimen
and (b) model glass. In both cases, deformation is due to a tensile load
applied along the z axis; thus, the polar angle φ = 0◦ corresponds to
the loading direction. Pair-correlation functions were calculated by
averaging over an angular range of ψ , or equivalently, φ = 2.5◦ in the
case of the in situ experiments and φ = 18◦ in the case of the simulated
system. Dashed curves depict the expected gdef(r,φ) − gref (r) given
by the right-hand side of Eq. (18).

material hold, then the two sides of Eq. (18) should be equal
for all values of r . These are plotted in Fig. 11 for experiment
as well as simulation data obtained during uniaxial tensile
deformation. In both cases, we see good agreement between
the two sides of Eq. (18) at large r , but significant disagreement
at small r , particularly in the first two neighbor shells. The fact
that Eq. (18) does not hold in either case (at small r) leads us to
believe that elastic deformation is inhomogeneous in glasses
subject to uniaxial loading.

As a check on this conclusion, we can examine the results
for the simulations conducted under hydrostatic deformation.
We modify Eq. (18) to reflect the conditions of hydrostatic
deformation,

gdef(r) − gref(r) = −rε
d

dr
gref(r), (19)

where ε = �/3 and � is the dilatation due to the applied
hydrostatic tension. Hydrostatic deformation is isotropic and
hence the pair-correlation function of the deformed glass is
only dependent on r . Figure 12 shows the two sides of Eq. (19).
We see that the agreement is rather good over the entire
range of r . We conclude that the assumptions underlying
Eq. (19) are valid for the case of hydrostatic deformation.
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FIG. 12. (Color online) Left-hand and right-hand terms in
Eq. (19) are shown here, as solid and dashed curves, respectively,
for the simulated system subject to hydrostatic tension. Note that
ε here represents �/3, where � is the dilatation induced by the
imposed stress. Also note that the pair-correlation function in the
deformed configuration is isotropic, hence terms involving θ or φ do
not appear, unlike the case of uniaxial deformation (Fig. 11).

This observation corroborates our view that inhomogeneity of
elastic deformation of a metallic glass is most pronounced
in the presence of a resolved shear stress, and that this
inhomogeneity in strain leads to the observed length-scale
dependence of elastic strain from g(r,φ) in the first few atomic
near-neighbor shells.

V. DISCUSSION

Additional insight into the microscopic elastic-strain re-
sponse (and the nonaffine displacements) of the model system
subject to uniaxial tension can be gained by comparing the
elastic strain calculated using the ellipsoid-fit technique with
the pair-correlation function. In Fig. 13, the elastic strain in
the loading direction calculated by the ellipsoid-fit technique
is plotted along with g(r) from the reference system. It can
be seen that the peaks in elastic strain calculated using the
ellipsoid-fit technique occur at positions in r corresponding to
minima in g(r). In other words, the largest strains are at values
of r where the atomic density is lowest; correspondingly, the
smallest strains are within the atomic shells themselves.

Some caution is necessary in interpreting this observation
because most of the atoms occur in the atomic shells [i.e.,
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FIG. 13. (Color online) Elastic strain in the loading direction
in the model glass subject to uniaxial tension calculated using the
ellipsoid-fit method (bottom) along with the pair-correlation function
g(r) (top).
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the peaks in g(r)] with relatively few atoms between shells
(in the valleys). Still, it suggests that the compliance of the
structure is greatest in the region between shells. Recently, Ma
and coworkers reached a similar conclusion on the basis of an
analysis of reciprocal-space [S(q)] experimental data.40 Their
interpretation of their observations invoked strongly bonded
(and therefore stiff) solute-centered clusters, with relatively
weaker and less-stiff bonding between clusters.

One might readily expect a decrease in modulus, and hence
an increase in elastic strain, with increasing separation between
atoms. Elastic modulii can be related to the curvature of the
potential-energy–pair-separation relationship in solids.41 At
the equilibrium pair separation [corresponding to the first peak
in g(r)], the curvature is large and the modulus is high. Atomic
pairs at larger separations, however, interact more weakly
and have a lower modulus. These more compliant regions
would deform more in response to an applied stress, resulting
in the behavior shown in Fig. 13. As discussed above, the
deformation gradient approach to calculating elastic strain is
less sensitive to this effect because it considers entire volumes,
and not atomic shells.

The precise manner in which this kind of heterogeneous
deformation manifests itself as a length-scale dependence of
elastic strain calculated from the pair-correlation function is
not entirely clear. As noted in our prior work,2 the different
stiffness of different kinds of bonds probably plays a role in the
first near-neighbor shell. Also, as pointed out above, the choice
of atoms differs between the ellipsoid fit and g(r) calculations;
it may be that this lack of a precise reference is responsible for
the length-scale dependence.

On a different note, the agreement among different al-
gorithms at large values of r (Fig. 8) corroborates our view
of the origin of length-scale dependence of strain. Based on
the behavior of elastic strain calculated using the ellipsoid-fit
method, it appears that the effect of heterogeneous deformation
or nonaffine displacements is significant within about three or
four atomic distances from an average atom. This is apparent
both from the simulations (Fig. 8) and the experiments
(Fig. 2). That such a length-scale exists has been pointed
out by many researchers in various classes of disordered
materials.42–45 This characteristic length may very well have
important implications for both elastic and plastic deformation
of metallic glasses. In particular, it may be related to the size

of shear transformation zones (the fundamental units of plastic
deformation in metallic glasses), which are thought to contain
about 20 to 100 atoms corresponding to a diameter of about 4
to 6 Å.46 Further investigations are necessary to establish the
validity and physical significance of these length scales.

VI. CONCLUSIONS

We tested amorphous Zr57Ti5Ni8Al10Cu20 specimens in
situ under uniaxial tension, uniaxial compression, and pure
shear loading and found that elastic strain determined from
position shifts in pair-correlation function g(r,φ) in all three
cases is dependent on r . The elastic strain calculated from
the angle-dependent g(r,φ) of a model binary Lennard-Jones
glass subject to uniaxial tension reproduces, qualitatively, the
length-scale dependence observed in the experiments. In con-
trast, virtually no length-scale dependence was observed for
a model glass subjected to hydrostatic loading. A comparison
of three different methods of calculating strain on the atomic
scale suggests that the source of the length-scale dependence
of elastic strain (measured from the pair-correlation functions)
is related to the presence of heterogeneous nonaffine atomic
displacements. A simple analysis shows that the assumption
of homogeneous deformation is valid at large r (for both
simulations and experiments), but that this assumption breaks
down in the first few atomic shells. In particular, the strain is
inhomogeneous due to high compliance in the regions between
atomic shells, where the atomic density is low.
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