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Cluster evolution and critical cluster sizes for the square and triangular lattice Ising models using
lattice animals and Monte Carlo simulations
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Growth and decay of clusters at temperatures below Tc have been studied for a two-dimensional Ising model for
both square and triangular lattices using Monte Carlo (MC) simulations and the enumeration of lattice animals.
For the lattice animals, all unique cluster configurations with their internal bonds were identified up to 25 spins
for the triangular lattice and up to 29 spins for the square lattice. From these configurations, the critical cluster
sizes for nucleation have been determined based on two (thermodynamic) definitions. From the Monte Carlo
simulations, the critical cluster size is also obtained by studying the decay and growth of inserted, most compact
clusters of different sizes. A good agreement is found between the results from the MC simulations and one of the
definitions of critical size used for the lattice animals at temperatures T > ∼0.4 Tc for the square lattice and T >

∼0.2 Tc for the triangular lattice (for the range of external fields H considered). At low temperatures (T ≈ 0.2 Tc

for the square lattice and T ≈ 0.1 Tc for the triangular lattice), magic numbers are found in the size distributions
during the MC simulations. However, these numbers are not present in the critical cluster sizes based on the MC
simulations, as they are present for the lattice animal data. In order to achieve these magic numbers in the critical
cluster sizes based on the MC simulation, the temperature has to be reduced further to T ≈ 0.15 Tc for the square
lattice. The observed evolution of magic numbers as a function of temperature is rationalized in the present
work.
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I. INTRODUCTION

Understanding nucleation processes is of great importance,
because many natural and technological processes critically
depend on nucleation. Most phase transformations proceed via
nucleation and growth, and such transitions occur in a wide
variety of systems from atomic to astronomic length scales.
For instance, stars and solar systems have been developed in
the (early) universe by nucleation and growth.1 Clouds and
rain drops can be associated with nucleation and growth.2

Nucleation plays also a key role in most materials production,
having in general a crucial influence on the final product
performance, for instance, determining crystal grain sizes and
morphologies, second-phase precipitation, recrystallization,
etc.3–5

A crucial ingredient of nucleation is the presence of an
energy barrier that has to be overcome by multiple crossing
attempts by certain jump frequencies with certain energies
(which often is the thermal energy). The energy barrier is
directly associated with (the minimal work required to form)
a critical nucleus. For sizes smaller than this critical one, the
nucleus has a larger probability to decay than grow, and this
is only reversed when a nucleus size becomes larger than
the critical one. The attempts to cross the energy barrier
can in many systems be described as a stepwise release or
attachment of monomers to clusters ranging in size from a
single monomer to a size that exceeds the critical cluster size
having a number of monomers n∗. In the isotropic case, cluster
properties are only a function of the number of monomers
(spins, atoms, etc.) n they contain. Clusters decay or grow
by stepwise release or attachment of a monomer (n − 1 and
n + 1), i.e., the process is a one-dimensional Markov chain.
Although a complete picture of (both steady state and transient)

nucleation is far from trivial in this one-dimensional case,6

the complexity strongly increases when clusters with the same
n can have a large variety in shapes and energies, as is
already the case within the relatively simple 2D square lattice
Ising model for n � 6.7–9 For example, for n = 19, 20, and
21, the total number of distinct cluster configurations on the
2D square lattice is over 5.9 × 109, 22 × 109, and 88 × 109,
respectively.9 In principle, all possible transitions with their
energies and probabilities between all configurations for such
n − 1 ↔ n ↔ n + 1 have to be considered from n = 0 to n

clearly larger than the critical nucleus size n∗ in order to
arrive at a complete picture of nucleation. Fortunately, the
situation simplifies at low temperatures, because cluster energy
will prevail over entropy, and thus, for each n, only clusters
with the lowest possible energies have to be considered.
Then, most configurations can be discarded and the one-
dimensional case is again approached. For instance, for n =
19, 20, and 21, the number of clusters with the lowest energy
(two lowest energies) is 8 (922), 2 (428), and 187 (7835),
respectively.9

Interesting work has been published recently on the validity
of the classical nucleation theory for Ising models.10 However,
still the nucleation process is considered a 1D Markov. The
present work shows that in principle this one-dimensionality
is valid when (i) growth proceeds only along the lowest
possible energy path at very low temperatures and (ii) at
sufficiently high temperatures, the anisotropy in surface energy
vanishes.

These examples shows that dynamic Ising models can be
relevant and have been popular systems for studying and un-
derstanding nucleation (see a nonexhaustive list in Refs. 8–14).
Also, the present work is dedicated to this field of research by
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studying for the 2D square and triangular lattice Ising models
the critical cluster for nucleation. Two thermodynamic and
one kinetic definition have been used to determine the critical
cluster size as a function of the external magnetic field H

and temperature T below Tc. The thermodynamic definitions
are based on lattice animal enumeration up to n = 29 for
the square lattice and up to n = 25 for the triangular lattice.
Critical cluster sizes obtained in this way are compared with
the ones obtained by the MC simulations based on a technique
that we recently developed.14 Since the MC simulations and
the critical cluster size determination (based on the kinetic
definition) are computer resource intensive, they were limited
to 0.23 Tc � T � 0.5 Tc and a certain interval of H values.
A striking result of the comparison is that critical cluster sizes
with magic numbers are present at low temperatures (T ≈
0.2 Tc for the square lattice and T ≈ 0.1 Tc for the triangular
lattice) according to both thermodynamic definitions, whereas
they are still absent according to the kinetic definition. Yet,
the same type of magic numbers are present in the actual size
distributions as obtained using the MC simulations at these low
temperatures, but they do not show up in the critical cluster size
according to the kinetic definition. In order to observe these
magic numbers also in the critical nucleus sizes based on the
kinetic definition, the temperature has to be reduced further
(T ≈ 0.15 Tc for the square lattice). This work shows that the
actual critical nucleus involves averaging over neighboring
cluster sizes and therefore can be also rationalized in the light
of the so-called transition path theory.15

The paper is organized as follows. In Sec. II, the model and
numerical methods are explained in detail. Then the results are
presented in Sec. III based on the lattice animal enumerations
(A), based on the Monte Carlo (MC) simulations (B). The
results of Secs. III A and III B are compared in Sec. III C.
Subsequently, the temperature evolutions of magic numbers
according to the Monte Carlo simulations are compared for
the square and triangular lattice, and finally, the correlation of
these evolutions with the temperature evolution of the interface
tensions for the respective Ising models is shown.

II. MODEL AND NUMERICAL METHODS

A. Ising model

We consider the standard 2D Ising model with the Hamil-
tonian given by

H = −J
∑
nn

σiσj − H
∑

i

σi (1)

with a ferromagnetic coupling constant J > 0 between the
spins σ having ±1 value and with an external magnetic field
H ; nn indicates the summation over all nearest-neighbor pairs.

The energy of a cluster with spins up on a 2D lattice with
surrounding spins down in a field H pointing up is defined by
the cluster size n and the number of internal nearest-neighbor
bonds b:

Eb
n = 2JP b

n − 2nH (2)

with P b
n the perimeter of the cluster given by

P b
n = 4n − 2b for a square lattice and (3a)

P b
n = 6n − 2b for a triangular lattice. (3b)

At low temperatures, growth of clusters is completely
dominated by the path along minimum cluster energies and
thus occurs via the most compact shapes. This means a
minimum in Eb

n for each n, corresponding to a maximum in the
number of bonds b for each n (being the minimal perimeter).
The curve of Eb

n versus n in this case is not smooth, because it
has an overall classical (Gibbs) outlook plus sharp saw-tooth
modulation, see for example Fig. 6(a).

On the square lattice the square mxm and rectangular
mx(m + 1) shapes, i.e., with {10} facets are the most compact
shapes. For a given external magnetic field H , the critical
length m∗ is defined by m∗ = “floor”(2J/H ) with J (>0)
the ferromagnetic coupling constant in the standard Ising
Hamiltonian [cf. Eq. (1)], where the operation “floor” means
rounding to the lower nearest-integer number. The critical
nucleus, as derived by Neves and Schonmann for T →0,16

is then the n∗ = m∗x(m∗ + 1) rectangle with an extra spin on
the longer side. Directly above T = 0, also the intermediate
n = m2 + 1 clusters can become critical nuclei.8 The higher
the temperature, the more these discrete magic values of n

due to the specific low-energy configurations become replaced
by the continuous spectrum of all integer n values due to
configurational entropy.

For the triangular lattice, this analysis of most compact
shapes and the magic critical cluster sizes has not been
presented before and is somewhat more complicated (than
for the square lattice), but still can be derived readily based
on Eqs. (2) and (3b). The curve of Eb

n versus n along the
lowest-energy path shows primary minima in energy for the
most compact hexagonal shapes [m(integer) � 1]:

n−
p = 3m2 − 3m + 1, (4a)

b−
p = 9m2 − 15m + 6, (4b)

Eb
n = 4J

[
−9H

6J
m2 +

(
6 + 9H

6J

)
m −

(
6 + 3H

6J

)]
.

(4c)

Similar to the square lattice, m can be interpreted physically
as the facet length in this case of the hexagon. “Primary”
critical fields H ∗

p occur at the maximum in the primary energy
minimum:

H ∗
p = 4J

2m − 1
. (5)

In between two sequential primary critical fields, starting
from H ∗

p = 4J
2m−1 in the direction of decreasing H values (i.e.,

going from m to m + 1), first, a primary maximum occurs
for

n+1
p = 3m2 − 2m + 1, (6a)

b+1
p = 9m2 − 12m + 4. (6b)

Secondary maxima are absent at zero Kelvin, but three
secondary maxima do arise for T > 0, originating from the
secondary critical field at T = 0:

H ∗
s = 6J

3m
. (7)
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These three secondary maxima in order of decreasing H

values are

n+2
s = 3m2 − m + 1, (8a)

b+2
s = 9m2 − 9m + 3, (8b)

n+3
s = 3m2 + 1, (8c)

b+3
s = 9m2 − 6m + 2, (8d)

n+4
s = 3m2 + m + 1, (8e)

b+4
s = 9m2 − 3m + 1. (8f)

Then the second primary maximum with

n+5
p = 3m2 + 2m + 1, (9a)

b+5
p = 9m2 (9b)

occurs down to the next H ∗
p = 4J

2(m+1)−1 .
Summarizing, in between two sequential H ∗

p , in the direc-
tion of decreasing H values, there are, at low temperatures,
always five domains of constant critical nucleus sizes, where
the first n+1

p = 3m2 − 2m + 1 and fifth n+5
p = 3m2 + 2m + 1

correspond to primary domains that at T = 0 span the
regions defined by 4J

2m−1 < H < 6J
3m

and 6J
3m

< H < 4J
2(m+1)−1 ,

respectively. The three secondary domains only emerge for
T > 0 and they originate from H = 6J

3m
at T = 0. One can

wonder why there are only five domains and not six, because
that would correspond to adding one extra spin to each of the
six facets of a perfect hexagon. The reason is that the perfect
hexagon has that low (cusp in) energy that adding the first extra
spin to one of the six facets of the hexagon will not provide a
maximum in energy and will thus not be a critical cluster size
at low temperatures.

Based on the energies Eb
n , the semiequilibrium distribu-

tion (number density) Db
n of noninteracting clusters can be

derived:8

Db
n = wb

nexp

(
− Eb

n

kBT

)
, (10)

where kB is the Boltzmann constant and wb
n is the distinct

number of configurations possible for given cluster size n and
internal bond count b. For the square lattice, the values wb

n

can be found in literature up to n = 21,9 for the triangular
lattice, no relevant literature providing wb

n values exists. Note
that existing literature only provides data on the total number
of configurations, polyominoes (polyiamonds, polyhexes), or
lattice animals for a given n or provides data on the so-called
perimeter polynomials. In the latter case, not only the total
number of clusters with a certain size n is given, but also
how this total number is subdivided over the various possible
perimeters. The perimeter is defined as the number of adjacent
unoccupied lattice sites that is not equal to the number of
bonds to unoccupied nearest-neighbor sites needed to calculate
the number of internal bonds. Therefore these known values
cannot be used to specify wb

n and to calculate the number
distribution Db

n, which is essential for the study of nucleation
(see, e.g., Refs. 7 and 8.).

B. Lattice animal enumeration

The semiequilibrium distribution of noninteracting clusters
as described by Eq. (10) is central to the present work and
also can be considered fundamental for understanding the
nucleation problem of clusters on a lattice (see, e.g., Refs. 7
and 8.). The energies Eb

n in Eq. (10) can be determined readily,
but calculation of the wb

n values, apart from small cluster sizes
n, is very demanding. Based on algorithms by Redner17 and
Mertens,18 a parallel algorithm was developed to enumerate
all these fixed wb

n configurations or lattice animals up to a
given size nmax including the internal bond counts for each
configuration. The enumeration was done recursively, i.e.,
using a cluster of size n all possible clusters of size n + 1
are generated using the cluster of size n as base. The (n + 1)
clusters are then used to generate the (n + 2) clusters in a
similar way. To prevent generating the same cluster multiple
times, information is passed on to the (n + 1) clusters on which
lattice sites already have been used by previous n clusters
and are thus forbidden. This is explained in more detail in
Ref. 18.

As information on which lattice sites are available for n + 1
clusters is only provided by clusters smaller than size n + 1,
it is possible to split the calculations into multiple branches at
size n allowing for perfect paralellization.18 First, all unique
configurations up to size n are generated and stored, together
with the information on available and forbidden lattice sites.
Then a number of calculations is started, equal to the number
of unique configurations at size n, generating all configurations
of size n + 1 up to nmax with the clusters of size n as starting
points.

Using this algorithm, the number of configurations wb
n for

the square lattice was calculated up to nmax = 29 and for the
triangular lattice, up to nmax = 25. It is noted that the limit
nmax is imposed by the available computing power, because
increasing nmax with one would require four to five times
more computing power or time as the total amount of lattice
animals increases four to five times. The current enumerations
used 40000 hours of CPU time on the Millipede computing
cluster at the University of Groningen, which consists of 2832
Opteron 2.6 GHz cores.

C. Critical cluster sizes

Based on the semiequilibrium distribution of noninteracting
clusters [see Eq. (10)], two definitions are possible for the
determination of the critical cluster size for nucleation at
a given temperature and external field.8 The “microscopic”
saddle-point definition identifies a maximum Db

n among all
possible b for a given n. Then a minimum among all n

is selected. The second definition is a thermodynamically
averaged distribution, i.e., for each n, first, averaging over
all b takes place and then the optimum is selected.

Using the microscopic saddle point,8 the critical cluster
size n∗ for nucleation is identified. Dn(H,T ) is defined as the
maximum of Db

n(H,T ) for a given n for all possible b:

Dn(H,T ) = max
[
Db

n(H,T ); bmin � b � bmax
]
. (11a)

From this definition, we find the most favorable amount of
bonds for a given n at a certain temperature and field. The
critical cluster size n∗(H,T ) is then given by n for which
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Dn (H,T ) is minimal:

Dn∗ (H,T ) = min[Dn(H,T ); 1 � n � nmax]. (11b)

The critical cluster size according to the thermodynamically
averaged definition is derived by summing the contributions
of all possible internal bond counts such that an averaged
〈W 〉n(H,T ) is obtained,

〈W 〉n(H,T ) = 12nJ (1 − H/6) − kBT ln

×
b=bmax(n)∑
b=bmin(n)

wb
ne

4Jb/kbT for a triangular lattice and (12a)

〈W 〉n(H,T ) = 8nJ (1 − H/4) − kBT ln

×
b=bmax(n)∑
b=bmin(n)

wb
ne

4Jb/kbT for a square lattice, (12b)

and then determining the critical size by selecting the maxi-
mum:

〈W 〉n∗ (H,T ) = max[〈W 〉n (H,T ) ; 1 � n � nmax]. (12c)

It is convenient to scale J and the Boltzmann constant kB

to unity and define the temperature with respect to the critical
temperature Tc. Calculations were done up to 1.3 Tc, where
Tc = 2/ln(

√
2 + 1) for the square lattice given by Onsager’s

exact solution19 and Tc = 4/ln(3) for the triangular lattice.20

Note that beyond Tc results can be readily calculated, but they
do not have physical meaning and should be treated as formal.

Both definitions for the critical cluster size result in figures
with domains of constant critical number n∗ (with associated
b∗) as function of temperature and external field. For the square
lattice, this analysis and the construction of figures was already
done by Ref. 8 up to nmax = 17. For the triangular lattice, no
domain map has been published before as existing literature
only provides data on the total number of configurations,
polyominoes (polyiamonds, polyhexes), or lattice animals
for a given n or provides data on the so-called perimeter
polynomials, which are not the same as our wb

n as already
explained above.

Note that both definitions of the critical cluster size can
never fully agree with the exact results derived for the square
lattice by Neves and Schonmann for the critical nuclei when
(for fixed H ) T →0. The reason is that in the lattice animal
enumeration there is no distinction between the true Neves-
Schonmann critical nucleus configurations and configurations
that have the same size and energy. To give the most simple
example, the n = 3 straight cluster and the n = 3 L-shaped
cluster have the same size and energy in the lattice animal
enumeration and are not distinguished, whereas only the latter
is a true critical nucleus according to the exact results for 1J <

H < 2J when T →0. Nevertheless, as will be demonstrated
below, the critical nucleus sizes as a function of H for T →0
based on the two definitions given above still completely agree
with the sizes predicted by the exact results of Neves and
Schonmann.

D. Monte Carlo simulations

In order to compare critical cluster sizes derived on the
basis of the definitions presented in the previous section,

which employ lattice animal enumeration and have in fact a
thermodynamic basis, an alternative method employing Monte
Carlo simulations is introduced here, which has a kinetic basis.
Cluster growth on triangular and square lattices was studied
using Monte Carlo simulations using the method outlined in
Ref. 14. To study the dynamic cluster evolution processes,
the stochastic Glauber dynamics was used, where the spin-flip
probabilities are defined by21

P [si → −si] = exp (−β�E)

1 + exp (−β�E)
(13)

with β = 1/kBT , with kB the Boltzmann constant, T the
temperature, and �E the energy change due to the spin flip
defined according to the Ising model of Eq. (1) by

�E = 2si

(
J

∑
nn

sj + H

)
(14)

with nn the nearest-neighbor sites of site i.
Simulations were performed on small square or triangular

lattices with appropriate boundary conditions. Initially, all
spins are pointing downward. For each Monte Carlo step, a
site is chosen at random and flipped with the probability given
in Eq. (13). Time is given in units of Monte Carlo steps per
site (MCSS), i.e., in one unit, a number of Monte Carlo steps
are performed that is equal to the total amount of lattice sites.

To be able to perform relevant MC simulations at low
temperatures (T < 0.5 Tc) and low fields (H < 0.5), a cluster
with n spins pointing upward is inserted near the center of
a relatively small lattice at t = 0 in order to speed up the
simulation process. It was shown that inserted clusters of
course show stochastic behavior.14 However, deterministic
overall behavior (e.g., the overall fractions of growing and
decaying clusters and the whole size distribution after a
certain number of MCSS as will be shown below) can be
obtained approximately by repeating the simulations several
thousand times.14,22 The inserted clusters correspond to the
most compact shapes, i.e., with the highest number of internal
bonds. All the clusters of various size n considered are on
the growth path associated with the most compact shapes and
thus remain closest to a perfect square shape on the square
lattice and a perfect hexagonal shape on the triangular lattice.
However, our experiments also show that the results on the
critical nuclei are not sensitive to the type of inserted cluster,
because results for inserted clusters with two internal bonds
less, i.e., two corner sides of the most compact clusters were
removed and added to the longer sides of the remaining cluster,
showed very similar results.

During the simulation, the evolution of the size of the single
cluster and its number of internal bonds as a function of time
is followed. After a certain number of MCSS, the amount of
clusters and the cluster sizes are determined using the efficient
Hoshen-Kopelman algorithm.23 The cluster size n is defined as
the total number of connected spins with a positive orientation.
If multiple clusters are present, the size of the largest cluster
is taken.

It was shown in Ref. 14 that early on in the simulation the
distribution curves after various MCSS are pivoting around a
central point that coincides with the final fraction of clusters
that will decay and grow. With distribution curve we mean here
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FIG. 1. (Color online) Number of configurations wb
n as a function

of the amount of bonds for clusters of given size n for the square lattice
(a) and the triangular lattice (b). Solid lines connect points belonging
to the same size n but having a different number of bonds b.

that all observed cluster sizes after a certain amount of MCSS
(when starting at MCSS = 0 from the same initial input cluster)
are plotted in ascending (or descending) order. In this way,
for each input cluster of size n, the decay fraction f n

d (H,T )
and growth fraction f n

g (H,T ) = 1 − f n
d were determined for

a given temperature T and external field H . The critical cluster
size n∗ was then defined as the size of the input cluster that
shows a decay fraction closest to 0.5:

n∗(H,T ) = min
[∣∣f n

d (H,T ) − f n
g (H,T )

∣∣; nmin � n � nmax
]
.

(15)

Compared to the thermodynamic definitions provided in the
previous Sec. II B the present definition of the critical cluster
size based on MC simulations can thus be considered a kinetic
definition.

III. RESULTS

A. Results of lattice animal enumeration

The results of the enumerations using the algorithm
described in Sec. II B above are shown in Fig. 1 and are listed

FIG. 2. (Color online) Plot of normalized temperature vs external
field H showing domains with constant critical bond count b∗ where
domains of critical cluster size n∗ are separated by black lines for (a)
the square lattice and (b) the triangular lattice. The colors depict the
most favorable bond counts b∗, where in larger sized domains also
values for n∗ are given. Note that for the square lattice all domains of
constant n∗ that do not extend down to T = 0 are split in a b∗ lower
and a b∗ − 1 upper temperature region; for the triangular lattice, most
domains of constant n∗, certainly those that do not extend down to
T = 0, are split in two or three temperature regions. This indicates that
for those n∗ less compact shapes become more favorable in the higher
temperature region compared to the lower temperature region. The
boundaries of the shaded domains are not definite due to limited nmax.

in Supplemental Material in Ref. 24 for both the square and
triangular lattices. Cumulative data

∑
b wb

n, available for both
square25 and triangular26 lattices, were used for verification of
the calculated data. Moreover, the present data for the square
lattice are identical to the data presented by Ref. 8 going up
to n = 17 (apart from a mistake in this list at n = 12 and
k − n + 1 = 0; it gives 268 852, but must be 268 352), and
Ref. 9 going up to n = 21.

Using the results given in Table I in Ref. 24, a “phase
diagram” of relative temperature T/Tc versus external mag-
netic field H , showing domains of constant critical cluster
size n∗ was constructed for the square lattice; see Fig. 2(a).
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Effectively, this phase diagram was already given in Ref. 8,
but we extended it from n = 17 up to n = 29. In addition, we
are now showing in one figure both the domains of constant
critical bond count b∗ using the color coding (see scale at the
right-hand axis) and the domains of critical cluster size n∗ as
indicated by the numbers in the figure. For the triangular lattice,
the analogous phase diagrams were calculated up to n = 25,
using the results in Table II in Ref. 24, and are presented
with domains of constant n∗ and b∗ in Fig. 2(b). Boundaries
of domains that are not definite due to limited nmax are
shaded.

For T = 0, the critical sizes n∗ as a function of H in
Fig. 2(b) are identical to the sizes calculated using the
primary maxima of the energy function, e.g., as described
by Eqs. (5) and (6) in Sec. II A for the triangular lattice.
For the square lattice, the primary maxima correspond to
the n∗ = m(m + 1) rectangles with an extra spin on the
longer side. Also just above T = 0, the secondary maxima
in Fig. 2(b) for the triangular lattice appear in full agreement
with the calculations based on the energy function for the most
compact sizes, i.e., Eqs. (7) and (8) for the triangular lattice.
For the square lattice, the secondary maxima correspond
to n∗ = m2 + 1, i.e., square clusters with an extra spin on
one side. For higher temperatures (say T > 0.2 Tc), a more
complex pattern appears, showing small domains for which the
critical cluster size decreases with increasing temperature (at a
certain field H ). For the triangular lattice, this complex pattern
develops already at lower temperatures than for the square
lattice.

When comparing the domains of constant n∗ with b∗ inter-
esting behavior is observed. Let’s first consider the situation
for the square lattice, because this is more straightforward than
for the triangular lattice. For the nonprimary and nonsecondary
domains of constant n∗, i.e., those n∗ domains that do not
extend down to T = 0, two b∗ regions are present within each
domain of constant n∗: b∗ becomes b∗ − 1 above a certain
temperature in the domain. This transition only depends on
the temperature since there is no coupling between the external
H field and the number of bonds [cf. Eq. (2)]. This is a clear
entropic effect, because certain n∗ clusters, which have a higher
energy (because they contain one bond less and thus have a
larger perimeter) but have a larger number of configurations
wb

n, become more favorable when the temperature is increased.
For the triangular lattice, some domains of constant n∗ are split
(instead of two) in three temperature regions, with b∗, b∗ − 1,

and b∗ − 2 when going to higher temperature. For instance,
the domains with n∗ = 4,5,9.

The phase diagram of T/Tc versus H , showing domains of
constant critical n∗, calculated using the thermodynamically
averaged distribution, are shown in Figs. 3(a) and 3(b) for the
square and triangular lattices, respectively. At low tempera-
tures (say T < 0.2 Tc), the figures show identical behavior
as for the microscopic definition. At higher temperatures,
the domain boundaries bifurcate, creating new domains with
values for the critical size n∗ that are in between the ones of
the neighboring domains. This creates a fine pattern with a
gradually increasing n∗ when going (at a certain temperature)
to lower H . This also means that the magic numbers that hold
for n∗ at low temperatures (T < 0.2 Tc) become gradually
replaced by the whole spectrum of all possible integer n∗ at

FIG. 3. (Color online) Plot of normalized temperature vs external
field H showing domains of constant critical size n∗ as defined by
the averaged distribution [cf. Eq. (12)] for (a) the square lattice and
(b) the triangular lattice. (a) Between T = 0 and T = 0.3 Tc the
domains are similar to those in Fig. 2(a), above 0.3 Tc a fine pattern
appears with increasing n∗ when going (at a certain temperature)
to lower H . (b) Between T = 0 and T = 0.2 Tc the domains are
similar to those in Fig. 2(b), above 0.2 Tc a fine pattern appears with
increasing n∗ when going (at a certain temperature) to lower H . The
boundaries of the shaded domains are not definite due to limited nmax.

higher temperatures. This replacement occurs for the triangular
lattice at clearly lower relative temperatures (T/Tc) than for
the square lattice.

For all phase diagrams, it is clear that n∗ decreases with
increasing H . This is an obvious result because the maximum
in (every possible) curve of Eb

n versus n [cf. Eqs. (2) and (3)]
shifts to lower n for higher H . For all phase diagrams, it is also
clear that n∗ decreases with increasing T . The reason for this
is that for lower n the total number of possible configurations
is also lower. At higher temperatures, the configurational
entropy term becomes increasingly determining compared
to the energy term [cf. Eq. (8)]. Therefore clusters become
increasingly critical when they have fewer configurations, i.e.,
when they are smaller. In Figs. 2 and 3, the results of the
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calculations are shown for T � T c, however, the assumption
of J = 1 is not justified in this regime and the results should
be treated as formal.

B. Results of Monte Carlo simulations

To determine the critical cluster sizes, using the approach
employing MC simulations as delineated in Sec. II B, MC
simulations were repeated with different input clusters ranging
from a cluster size n = 5 to 32 in their most compact
configuration. The simulation was run up to 40 MCSS after
which the pivot point in the size distribution could clearly
be determined at the intersection of the size distribution
curves pertaining to 20 and 40 MCSS. The decay fraction
f n

d was taken equal to the relative position of the pivot
point.

Since the MC simulations and the critical cluster size
determination are computer resource intensive, they were
limited to regions that showed interesting features in the
figures based on the thermodynamic calculations (cf. Figs. 2
and 3), e.g., where domain boundaries bifurcate when going
from lower to higher temperatures. For the triangular lattice,
the external field H was in between 0.65J and 0.85J ,
for the square lattice, H was chosen between 0.33J and
0.49J . For both lattices, the temperature T ranges between
0.23 Tc and 0.5 Tc. The MC simulations were repeated
5000 times for each input cluster to obtain enough sta-
tistical data to accurately determine the growth and decay
fractions.

The resulting n∗(H,T ) figures are plotted in Fig. 4(a) for
the square lattice and in Fig. 5(a) for the triangular lattice.
For both lattices, a gradual decrease in critical cluster size
is found with increasing temperature and external field; both
effects were already explained in Sec. III A directly above.
The negative slope of the boundaries and bands of the critical
sizes becomes slightly more negative when going to lower
H fields.

In the phase diagram of the triangular lattice, all domains
with value n∗ border domains with value n∗ + 1 or n∗ − 1.
All changes in critical size are gradual in this window. The
domains get slightly narrower when going to lower H . Clearly,
no sign of magic numbers can be observed.

On the square lattice, the transitions between domains
are less gradual because they involve larger variations in
domain width (along the H axis). Also domain bands are
shared by multiple critical n∗, for example, n∗ = 19 and 20
(or 14/15 or 24/25) are both detected critical in the same
region. Apart from this, some weak signs of magic numbers
are present, because the domains with n∗ = 17,21, or 26 are
wider.

These results on the critical nuclei turn out to be not
sensitive to the type of inserted cluster, because results for
inserted clusters on the square lattice with two internal bonds
less, i.e., two corner sides of the most compact clusters were
removed and added to the longer sides of the remaining cluster,
showed very similar results. With respect to Fig. 4(a) only a
shift in H of − 0.03J is found for the critical cluster size
in case of the inserted less compact clusters. No significant
other changes are present in the results for the two types of
input clusters and therefore the main conclusions of the present
work are not dependent on the type of inserted cluster as long

FIG. 4. (Color online) Domains for critical size n∗ on a square
lattice. The color indicates the critical size n∗. (a) and (b) Temperature
T between 0.23 Tc and 0.50 Tc and external field H between 0.33J

and 0.49J . (c) and (d) Temperature T between 0.46 Tcand 0.71 Tc

and external field H between 0.26J and 0.46J . (a) and (c) For each
point, 5000 clusters in their most compact configurations were used
for the MC simulations for each n. For each simulation, the decay
fraction was determined after 40 MCSS and was used to determine
the critical cluster size n∗ [cf. Eq. (15)]. (b) and (d) Critical cluster
size as determined by the thermodynamically averaged definition [cf.
Eq. (12b)]. The boundaries of the shaded domains are not definite
due to limited nmax.

as they are near the appropriate growth (and decay) paths for
this temperature and fields.
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FIG. 5. (Color online) Domains for critical size n∗ on a triangular
lattice for T between 0.23 Tc and 0.5 Tc and H between 0.65J

and 0.85J . The color indicates the critical size n∗. (a) Results from
the Monte Carlo simulations. For each point, 5000 clusters in their
most compact configurations were used for the MC simulations for
each n. For each simulation, the decay fraction was determined after
40 MCSS and was used to determine the critical cluster size n∗ [cf.
Eq. (15)]. (b) Results from the averaged definition as calculated using
Eq. (12a).

C. Comparing results of lattice animal enumeration and Monte
Carlo simulations

When comparing the domain maps based on the ther-
modynamic definitions with the ones derived using the MC
simulations, it is seen that the best agreement is found with the
thermodynamically averaged distribution, see Figs. 4 and 5.
No large discrete regions are observed in the MC simulations,
similar as seen for the saddle-point definition. Instead, there
are bands of constant critical size with an increasing negative
slope for higher H , like in the case of the thermodynamically
averaged results. This holds for both the triangular and square
lattices. This is an interesting observation because the starting
clusters for the MC simulations are the most compact shapes
(closest to perfect square or hexagonal shapes) and therefore
these clusters start directly on the lowest energy path associated
with the saddle-point definition. Apparently, during the MC
simulations, an averaging over configurations is taking place

that appears to go away from the lowest energy path and, as
we will show below, the averaging is even going beyond the
one of the thermodynamically averaged result.

For the square lattice, not all critical sizes are present in
the MC simulations in similar quantities. For example, input
clusters of size 20 and 25 are less present than clusters of
size 21 and 26. This is supported by the thermodynamically
determined critical sizes where below 0.36 Tc no critical size
of 25 is found. A big difference is, however, that even at a low
temperature of 0.25Tc all possible critical sizes (in the interval
12–32) are still found in the MC simulations, whereas in the
thermodynamic definition only the magic numbers 13, 17, 21,
and 26 are present.

By increasing the temperature T to the range of 0.46 Tc

to 0.71 Tc and decreasing the external field H to the range of
0.26 to 0.46 the thermodynamically averaged definition shows
a gradual change from large clusters to small ones with all
possible n∗ present, see Figs. 4(c) and 4(d). MC simulations
on a square lattice performed in this range show excellent
agreement for clusters larger than n∗ = 15 for the entire range,
while for smaller cluster sizes the best agreement is found for
T < 0.6 Tc (and T > 0.45 Tc).

For the triangular lattice, we see an excellent agreement
between the MC simulations and the results from the averaged
definition for temperatures above 0.4 Tc, see Fig. 5. Below this
temperature, the domains according to the thermodynamically
averaged definition gradually reduce to only the ones of the
magic numbers described by Eqs. (6)–(9), whereas the MC
simulations still shows the presence of all possible n∗.

Apparently, for both the square and triangular lattices at
low temperatures (<∼ 0.30 Tc for the range of H values
presented), the MC simulations still provide the complete
spectrum of all possible n∗ and are not following the results
for the thermodynamically averaged definition of the critical
cluster size. The reason for this is that with the MC definition
of the critical cluster size, i.e., the most compact n-size
cluster that has a probability to grow (or decay) most closely
to 50%, not only averaging over b for a certain n takes
place, but that also a certain weighted averaging over directly
associated neighboring n takes place. In this respect, it is quite
obvious that the occurrence of magic numbers for the critical
cluster size is strongly suppressed according to the kinetic
MC definition. In this respect, the MC simulations provide
results that show some interesting features also predicted by
the transition path theory.15

D. Temperature evolution of magic numbers according to
Monte Carlo simulations

The MC simulations indicate that magic numbers are not
present at low temperatures such as T/Tc = 0.25, at least not
in the sequence of critical nuclei as a function of magnetic
field H . Moreover, the phase diagrams shown above in Figs. 2
and 3 indicate that the disappearance of magic numbers
with temperature increase occurs at lower temperatures for
the triangular lattice than for the square one. To shed more
light on these issues, Fig. 6 presents cluster-size distributions
obtained by MC simulations at relatively low temperatures
for the square and triangular lattices, where on both lattices
the starting cluster was a n = 30 cluster in (one of) its
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FIG. 6. (Color online) (a) Cluster energy Eb
n normalized by Tc as

a function of cluster size n for both square (diamonds) and triangular
(crosses) lattice for the most compact clusters. The external field H

was chosen such that the energy curves for the triangular and square
lattices obtain the same overall shape. (b) Cluster size distribution
at T = 0.454 K after 200 MCSS (square lattice) and 300 MCSS
(triangular lattice) after insertion of a most compact n = 30 cluster.
For both lattices, the occurrence of magic numbers is clearly visible,
but the modulation is clearly stronger for the square lattice. (c) Cluster
size distribution for the triangular lattice at T = 0.377 K after 400
MCSS. For the square lattice the distribution is identical as in (b),
i.e., holds for T = 0.454 K after 200 MCSS. This difference in
temperature for both lattices ensures that the height in the saw tooth
modulation of the energy curve shown in (a) is the same for both
cases. Now the magic numbers are more prominent for the triangular
than for the square lattice.

most compact shape. The statistic distribution of cluster sizes
obtained for 10000 initially identical clusters is shown after
a sufficiently large number of MCSS, which allows some
local equilibration of cluster sizes. Actually, the cluster size
distribution can be considered the product of a Gaussian
distribution with the semiequilibrium distribution described
by Eq. (10).14 For fixed H and T , Eq. (10) is fixed, but the
Gaussian distribution evolves with MCSS from nearly a δ

function to a broad distribution.
Figure 6(a) shows, for both the triangular and square

lattices, the cluster energy Eb
n normalized by the critical

temperature Tc as a function of cluster size n for the most
compact clusters (i.e., largest number of bonds b) and thus
depicts the lowest energy path for growing (and decaying)
clusters. The energy curves in Fig. 6(a) clearly exhibit an
overall classical (Gibbs) outlook plus a sharp saw-tooth
modulation. The values for H were chosen such that the overall
classical outlook of the energy curves for the triangular and
square lattice obtains the same shape, with a maximum near
n = 30, i.e., H = 0.37 for the square lattice and H = 0.642
for the triangular lattice. Normalization by Tc allows the energy
curves to also obtain comparable absolute values. In this way,
we create comparable energy landscapes for cluster evolution
on the triangular and square lattice.

Figure 6(b) shows results for T = 0.454, i.e., the same
absolute temperature for the square and triangular lattices
(which is T = 0.2 Tc for the square and T = 0.1247 Tc for
the triangular lattice). The results for the square lattice hold
after 200 MCSS and for the triangular lattice after 300 MCSS,
but the conclusions we will draw below are not sensitive to
the value of the MCSS. In both cluster size distributions, clear
signs of the expected magic numbers for maxima and minima
are present. These magic numbers vanish at approximately
0.2 Tc for the triangular lattice and 0.4 Tc for the square lattice.
Despite that T/Tc is clearly lower for the triangular lattice, the
(amplitude of the) modulation in the size distribution, i.e.,
the ratio between neighboring maxima and minima, is clearly
smaller in case of the triangular lattice than for the square
lattice. The main reason for this is that, for the same absolute
temperature, the value for the saw-tooth modulation (barrier
heights) in the energy curve Eb

n versus n is lower for the
triangular than for the one of square lattice case [cf. Fig. 6(a)].

Therefore it is interesting to lower the temperature for the
triangular lattice such that the same value for the saw-tooth
modulation holds for the (lowest-energy path in the) Eb

n versus
n curves of the square and triangular lattices. To do so, the
temperature is reduced from T = 0.1247 Tc [the case shown
in Fig. 6(b)] to T = 0.1038 Tc and the result (after 400 MCSS)
is shown in Fig. 6(c). The size distribution holding for the
square lattice is the same in Figs. 6(b) and 6(c). Lowering
the temperature of the triangular lattice has the clear effect
that the modulation and magic numbers (which were weaker)
are now much stronger present in the size distribution for
the triangular lattice than for the square one. Apparently,
for the same value of the saw-tooth modulation (barrier
heights) in the energy path, the lower absolute temperature
for the triangular lattice determines that the modulation in
the size distribution and thus the magic numbers become
more prominent. This can be understood because the lower the
temperatures, the more growth proceeds via the lowest-energy
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path. At higher temperatures, growth also occurs via less fa-
vorable (higher energy) cluster configurations, which obscure
the magic numbers (and thus dampens the modulation) in the
size distribution.

Despite that magic numbers are not present according to
the kinetic MC definition of critical cluster sizes (see previous
section), the present results show that they are actually present
in the size distribution itself for the square lattice below about
0.4 Tc (for ∼ 0.3J < H <∼ 0.5J ) and for the triangular
lattice below ∼0.2 Tc (for ∼ 0.5J < H <∼ 0.9J ).

The question now remains when magic numbers will
become present according to the kinetic MC definition of
critical cluster sizes. To test this, additional MC simulations
were performed for the square lattice for T = 0.15 Tc for H

between 0.1J and 0.5J with 1000 MCSS and showed that
the critical clusters as found from theory [m∗(m∗ + 1) + 1
and m2 + 1] are clearly present. Cluster sizes in between
these critical cluster sizes were also present but only in thin
lines between the critical domains. Therefore we expect that
the critical cluster sizes according to our kinetic definition
will also converge to, i.e., reproduce the sizes with magic
numbers of the exact results of Neves Schonmann for
T →0.

The present results show some interesting agreement with
predictions of the transition path theory (TPT).15 TPT shows,
for example, that at elevated temperatures a critical cluster size
for nucleation is not present, but there is a transition path region
(which includes many different clusters also with different
sizes). Therefore, from TPT, at higher T a “critical cluster
size for nucleation” in the Ising model can be absent, but when
T →0 the transition path region converge exactly to the critical
nuclei according to Neves Schonmann.16 These predictions
agree very well with the results of our MC simulations
described and shown above. It is particularly relevant to note
that at higher temperatures the averaging over neighboring
cluster sizes indicates that, in principle, there is no critical
cluster size, but only a transition path region. The results
also show that the thermodynamic definitions have limited
meaning. The saddle-point definition is only relevant for T →0.

E. Reduced interface tension according to lattice animals

An interesting correlation can be made between the disap-
pearance of magic numbers with temperature increase in the
size distributions and the disappearance of the difference in
interface tension for the lowest and highest interface energy
direction of the Ising system considered. For the square lattice,
the lowest interface tension holds for the direction parallel to
one of the two principal lattice vectors (i.e., parallel to a {10}
boundary):27

σ// = 2 + T ln

[
tanh

(
1

T

)]
. (16a)

The highest interface tension holds for the two directions
making 45

◦
with the principal lattice vectors (i.e., parallel to a

{11} boundary):27

σdiag = T
√

2 sinh

(
2

T

)
. (16b)

These two interface tensions are shown as a function
of reduced temperature [i.e., with Tc = 2/ln(

√
2 + 1)] in

FIG. 7. (Color online) Lowest and highest interface tension as
a function of normalized temperature compared with the effective
interface tension derived from the results of the lattice-animals
enumeration for the most compact square and hexagonal clusters. (a)
For the square lattice, the lowest interface and the highest interface
tension hold for the directions parallel and making a 45

◦
angle with

the principal lattice vectors: σ// and σdiag. Above 0.6 Tc about the
same interface energy is found for σ// and σdiag, below 0.6 Tc a
modest difference is seen, which is rapidly increasing below 0.3 Tc.
(b) For the triangular lattice, the lowest interface tension and the
highest interface tension hold for the parallel direction that makes a
30

◦
angle with the principal lattice vectors: σ{101̄} and σ{112̄}. Above

0.3 Tc, about the same interface energy is found for σ{101̄} and σ{112̄},
below 0.3 Tc, a modest difference is seen, which is rapidly increasing
below 0.15 Tc.

Fig. 7(a). For temperatures above 0.6 Tc, about the same
interface energies hold for σ// and σdiag. In the range
from 0.6 Tc down to 0.3 Tc, the difference between the
highest and lowest interface energy is still modest, but this
difference rapidly increases when going from 0.3 Tc down
to 0 Tc.

For the triangular lattice, the lowest interfacial tension holds
for the direction parallel to one of the three principal lattice
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vectors (i.e., parallel to the {101̄} boundary):28

σ{101̄} = 2T arccosh

(√
2X + 3

4
− 1

2

)
. (17a)

The highest interfacial tension holds for the three directions
making 30

◦
with the principle lattice vectors (i.e. parallel to

the {112̄} boundary):28

σ{112̄} = 2T√
3

arccosh

(
X − 1

2

)
, (17b)

with X specified as

X = 2y

(1 − y)2
+ (1 − y)2

2y
+ 1, (17c)

and with y specified as

y = tanh (J/T ) . (17d)

These two interface tensions are shown as a function of
reduced temperature [i.e., with Tc = 4/ln(3)] in Fig. 7(b). For
temperatures above 0.3 Tc, about the same interface energies
hold for σ{101̄} and σ{112̄}. In the range from 0.3 Tc down to
0.15 Tc, the difference between the highest and lowest interface
energy is still modest, but this difference rapidly increases
when going from 0.15 Tc down to 0 Tc.

Interestingly, the difference in highest and lowest interface
tension lattice reduces to a value of about 0.12 at 0.4 Tc for the
square lattice and at 0.2 Tc for the triangular lattice. Apparently,
at these temperatures the experienced anisotropy in interface
tension is so low that also in the MC simulations the magic
numbers disappear. The evolution and the disappearance of
the difference in interface tension occur at two times higher
T/Tc values for the square than for the triangular lattice.
The same holds for the evolution and disappearance of magic
cluster sizes with the MC simulations. Therefore an interesting
correlation exists between the disappearance of anisotropy in
interface tension with temperature increase holding for the
Ising systems considered and the disappearance of magic
numbers with temperature rise based on MC simulations of
these Ising systems.

Partly, the comparison between the interfacial tension and
the MC simulations is not appropriate, because with the MC
simulations we consider (too) small cluster sizes. This can
be readily deduced from the following analysis. Using the
results of the lattice animal enumeration, we are able to derive
an effective interface tension associated with a certain cluster
size, which is defined for the square lattice as27

σ s,eff
n = −T ln

(∑bmax
bmin

Db
n

)
2
√

πn
(18)

and for the triangular lattice as

σ t,eff
n = −T ln

(∑bmax
bmin

Db
n

)
√√

3π (4n − 1)/2
, (19)

where Db
n is given by Eq. (10) for H = 0. This effectively

means that the cluster area (independent of shape) is mapped
onto a circle and the circumference of this circle is taken as
the interface length. The size-dependent effective interface

tensions are shown for most compact shapes in Figs. 7(a)
and 7(b) for the square and triangular lattices, respectively.
Clearly, it can be observed that the effective interface tensions
of these small clusters largely deviate from the ones of
long interfaces according to the Ising models considered.
Since hexagons have shapes better approaching the circular
circumference than squares, it might be expected that in the
high-temperature regime, where there is no anisotropy in
interface tension for long interfaces, the effective interface
tension with increasing cluster size more rapidly converges to
the one of long interfaces. The present results do not show
this more rapid convergence as a function of cluster size n,
but when normalized to the facet length of the hexagon and
square (so that hexagons with n = 7 and 19 are compared to
squares with n = 4 and 9, respectively) indeed this more rapid
convergence occurs.

IV. SUMMARY AND CONCLUSIONS

In the present work, we have studied the growth and decay
of clusters at temperatures below Tc for a two-dimensional
Ising model on square and triangular lattices. This was done
by enumerating all unique lattice configurations up to n = 25
for the triangular lattice and up to n = 29 for the square lattice.
From these enumerations, the critical cluster sizes as a function
of temperature and external field have been calculated for
both lattices using two different thermodynamic definitions. In
addition, Monte Carlo simulations were performed to calculate
the critical cluster size using a kinetic definition. By inserting
a (most) compact cluster at the start of the simulation on a
relatively small lattice, the simulation was speeded up at low
temperatures.

The obtained MC results are in good agreement with the
results obtained from the lattice animal enumeration based
on the thermodynamic “averaged” definition. In contrast, the
thermodynamic saddle-point definition provides results that
strongly deviate from the other two definitions at higher
temperatures (T >∼ 0.4 Tc for ∼ 0.3J < H <∼ 0.5J for the
square lattice and T >∼ 0.2 Tc for ∼0.5J < H <∼ 0.9J for
the triangular lattice). Even when we start with the inserted
most compact cluster exactly in the saddle point of the energy
landscape, still the MC simulations will create a critical
cluster size based on averaging not only over the various
highest bond numbers for this size, but also influenced by
growth and decay of neighboring cluster sizes. These results
show interesting correspondence with predictions of TPT. The
dominance of a transition path region is also the principle
reason that magic numbers found at low temperatures in
the critical cluster size mapping determined from the lattice
animal enumeration did not appear in the results from the
MC simulations. However, the magic numbers are still present
at these low temperatures when looking at the cluster size
distributions themselves during the MC simulation. Magic
numbers in the size distribution are absent for T >∼ 0.4 Tc for
the square lattice and T >∼ 0.2 Tc for the triangular lattice.
This disappearance of the magic numbers with temperature
increase according to the MC simulations appears to correlate
well with the disappearance of anisotropy in interface tension
for both the triangular and square lattice Ising models.
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