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Relative strength of phase stabilizers in titanium alloys
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Titanium alloys exhibit three distinct crystal structures: α, β, and ω. For various applications alloying elements
can be used to stabilize the desired phase. Extensive data exist to determine the thermodynamic equilibrium
phase, typically phase coexistence. However, the normal state of commercial alloys is a quenched solid solution.
While alloy designers have well-established rules of thumb, rigorous theory for nonequilibrium single-phase
crystal stability is less well established. We develop a theory to predict which phase a particular alloy will adopt,
as a function of minor element concentration. We use two different methods based on density functional theory
with pseudopotentials and plane waves, with either explicit atoms or the virtual crystal approximation (VCA).
The former is highly reliable, while the latter makes a number of drastic assumptions that typically lead to
poor results. Surprisingly, the agreement between the methods is good, showing that the approximations in the
VCA are not important in determining the phase stability and elastic properties. This allows us to generalize,
showing that the single-phase stability can be related linearly to the number of d electrons, independent of the
actual alloying elements or details of their atomistic-level arrangement. This leads to a quantitative measure of β

stabilization for each alloying transition metal.
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I. INTRODUCTION

Titanium alloys are important for many applications,
especially in the aerospace industry, where low density,
high strength, and corrosion resistance are paramount. Most
commercial alloys contain secondary alloying elements such
as V, Cr, Mo, Fe, Nb, Zr, La, Sn, or Al.

After some years of controversy, it is now generally
accepted that at zero temperature the ω phase of Ti has the
lowest free energy.1,2 At finite temperature, vibrations and
entropy play an important role. Under ambient conditions the
α (hcp) phase becomes stable, and at high temperatures (above
1150 K) the β phase (bcc) is stabilized by a combination
of electronic and phonon entropy. This complicated behavior
is possible because the free energy of all three phases is
very similar. Relatively small amounts of alloying elements
alter these free energies, and can have a significant effect
on the transformation temperature, perhaps eliminating it
altogether.3–5 There are also significant alloying effects on
high-pressure structures.6 The most common additives in
Ti alloys are Al, which stabilizes α, and V and Cr, which
favor β. Additives also play additional roles in machinability,
corrosion, and hardening; however the unanticipated side
effects on phase stability can be problematic: For example, La
was expected to improve machinability by lowering melting
points of β alloys, but in fact forms brittle LaSn precipitates
which actually hinder machining.7

Density functional theory (DFT) calculations provide a
reliable technique for calculating the Gibbs free energy,
which determines the stability of crystal phases at ambient
pressure. This is normally done by separately evaluating
two contributions: H0, the electronic ground-state enthalpy,
and Fvib, a phonon contribution involving zero point energy,
vibrational energy, and entropy.

A general rule appears to be that sp elements are α

stabilizers while transition metals, even Zn and Cd which adopt

the hcp structure, are β stabilizers. However, the strength of
the stabilization effect is unquantified. Here we apply DFT to
show that the effects of alloying with different elements may
be treated quantitatively as a function of d-band filling only.
This provides a modern confirmation and specific application
of ideas that date back to Hume-Rothery.8–12

II. COMPUTATIONAL METHOD

The calculations are performed using CASTEP,13 a plane-
wave code with ultrasoft pseudopotentials14 that we have
thoroughly tested.15 The generalized gradient approximation
of Perdew and Wang with the Perdew-Burke-Ernzerhof
parametrization16 is used for the exchange-correlation energy.
For chromium, scandium, titanium, and vanadium, we treat
the semicore 3s and 3p states as valence states, in addition to
the usual 3d and 4s states. Supercell sizes of up to 24 atoms
are used to get impurity levels down to 4 at. %. A plane-wave
cutoff of 500 eV is used to ensure energy convergence. The
k-point mesh density used for each configuration is 0.05/Å.
For supercells containing more than one impurity atom, a
number of different chemical decorations were tried, using the
special quasirandom structure (SQS) approach.17 These lead to
representative error bars in Fig. 1 and multiple points in Fig. 2.
The small scatter of these points shows that local ordering
typically contributes only a few meV per atom, although we
note in passing that the local ordering does have a significant
effect on the lattice parameter.

Elastic modulus calculations were carried out using fi-
nite stresses, with the internal positions allowed to rerelax.
Changes in energies and analytic stresses then give two
semi-independent (and consistent) measures of bulk and shear
moduli. We found that the bulk modulus is insensitive to either
local order or composition, but the shear moduli, particularly
in β alloys, vary greatly between compositions.
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FIG. 1. (Color online) Phase stability of Ti-based alloys against
number of valence electrons, calculated with the supercell method
(dark symbols) and with VCA (light symbols). Open symbols denote
the hcp phase and filled symbols denote the ω phase. Bcc is the
reference. Alloying elements are coded on a color scale, with blue
circles, Al; red squares, Sc; violet diamonds, V; orange up triangles,
Cr; green left triangles, Cr + 2V; magenta down triangles, Nb; brown
right triangles, Mo. Pluses are charged hcp and crosses are charged ω.

III. RESULTS AND DISCUSSION

The relative stability of Ti-X (X = Al, Cr, Mo, Nb, Sc, V)
alloys for a range of concentrations is shown in Fig. 1. The inset
shows results when the atoms are constrained to their crystal
lattice sites, while the main figure allows all atoms to be relaxed
within the broken symmetry due to the added impurities. In
cases where the bcc structure is not mechanically stable, this
full relaxation gives an unrepresentatively low energy for bcc,
leading to the large apparent scatter on the left-hand part
of the graph. The results show that the stabilization effect
is insensitive to the short-range atomistic order in the cell,
and ternary data show that the stabilizing effect is additive.
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FIG. 2. (Color online) Phase diagram showing temperature
against composition plotted as the number of valence electrons. Points
show transition temperatures calculated with the supercell method
(dark symbols) and with VCA (light symbols). Alloying elements
are coded on a color scale as in Fig. 1. Approximate phase boundary
lines are guides for the eye. The vertical dashed line is pure Ti,
the reference. Binary diagrams can be deduced from this figure by
considering only the data concerning a single alloying element and
rescaling the x axis according to its valence.

Adding Sc, an α stabilizer,18,19 counters the effects of V and
Cr in exact proportion to its effect in reducing the number
of valence electrons. By contrast the nontransition metal Al,
although correctly found to be an α stabilizer, does not follow
the linear relation. This observation leads us to propose that
the effect of Sc, Nb, V, Cr, and Mo comes from the same
mechanism, the filling of the d band. Furhermore, these results
agree well with previous theoretical results on low-modulus
Ti alloys20–22 and with recent experimental results.23

To test this hypothesis, we repeat the calculations using
the virtual crystal approximation (VCA)24 as implemented
in CASTEP.13 The disordered alloy is modeled as a unit cell
composed of mixture atoms defined by a pseudopotential that
is generated as the weighted average of those for each atomic
species. The same exchange correlation functional and other
settings as in the supercell calculations above were used. The
energy and stress tolerance for the cell relaxation is set to
5 × 10−5 eV and 2 × 10−2 eV/Å, respectively. The VCA has
long been discarded as a method for reliable alloy calculations
due to the inadequacy of relying on an “effective atom.” For a
metal, VCA produces the correct number of electrons per atom,
but also an “averaged” density of states, which introduces an
error if the local density of states is very different on the two
atom types. Our d-filling hypothesis requires that the density
of states is similar on all atoms, just as the VCA presupposes.
Thus, we regard the VCA calculations not as a reliable
description of the material, but as a test of the d-band filling
hypothesis. As can be seen in Fig. 1, despite the lack of atomic
detail, the VCA tracks the changes in phase stability well.

The d-band hypothesis implies that the VCA will fail
completely to describe the p-band additive Al. Sure enough,
we find this to be the case relaxing to unphysical volumes even
with the same 1s2s2p core: This may be understood as due to
the p band being full for the hybrid pseudoion, while it should
not be for the Al ions.

A still-poorer approximation is to ignore alloying elements
altogether and simply add electrons with a compensating back-
ground of positive charge. We use identical parameters as in
the VCA calculations to investigate such “charged Ti” systems.
Once again, Fig. 1 shows that the d-electron density alone sta-
bilizes the β phase, in a way exactly equivalent to that obtained
with electrons associated with supercells and explicit atoms.

The notion that d-electron density is the crucial quantity
is only reasonable if the electronic density of states (DOS) is
roughly composition independent. DOS calculated with both
VCA and supercell calculations are shown in Fig. 3. It can
be seen that they are indeed very similar in shape; the main
effect of alloying is to move the Fermi level within the band.
By contrast, the shape of the DOS for the Al-doped alloys
is completely changed, once again showing that it is the d

electrons, not the ionic charge, which is critical. Thus, we
have shown that the enthalpy differences between the phases
varies in proportion to the d-electron concentration.

To make contact with real materials for quantitative com-
parison, it is necessary to calculate free energy. Zero-point and
finite temperature contributions to the free energy (Fvib) can
be obtained in several ways.25,26 A full quasiharmonic phonon
calculation fails for bcc-Ti, because this has imaginary phonon
frequencies and is in any case computationally impractical
for the large supercells used here. Although self-consistent

214106-2



RELATIVE STRENGTH OF PHASE STABILIZERS IN . . . PHYSICAL REVIEW B 85, 214106 (2012)

-7.5 -5 -2.5 0 2.5 5 7.5
ε (eV)

0

1

2

3

4

5

g(
ε)

-7.5 -5 -2.5 0 2.5 5 7.5
0

1

2

3 bcc

-7.5 -5 -2.5 0 2.5 5 7.5
ε (eV)

0

1

2

3

4

5

g(
ε)

VCA bcc

-7.5 -5 -2.5 0 2.5 5 7.5
ε (eV)

0

1

2

3

4

5

g(
ε)

-7.5 -5 -2.5 0 2.5 5 7.5
0

0.5

1

1.5

2 hcp

-7.5 -5 -2.5 0 2.5 5 7.5
ε (eV)

0

1

2

3

4

5
g(

ε)

VCA hcp

-7.5 -5 -2.5 0 2.5 5 7.5
ε (eV)

0

1

2

3

4

5

g(
ε)

-7.5 -5 -2.5 0 2.5 5 7.5
0

0.5

1

1.5

2 omega

-7.5 -5 -2.5 0 2.5 5 7.5
ε (eV)

0

1

2

3

4

5

g(
ε)

VCA omega

FIG. 3. (Color online) (Left) Density of electronic states for alloys
in the different phases, calculated with pure Ti (solid black line), Ti +
25% Sc (dashed red line), Ti + 33% V (long-dashed violet line), Ti +
33% Nb (dot-dot-dashed magenta line), Ti + 16% Cr (dot-dashed
orange line), Ti + 16% Mo (dash-dash-dotted brown line) and Ti +
8% Cr + 16% V (dot-long-dashed green line). The inset shows the
DOS for Ti + 16% Al (dotted blue line), compared with pure Ti.
(Right) The corresponding plots for VCA, calculated with −0.2e

charged Ti (dotted blue line), Ti + 20% Sc (dashed red line), pure
Ti (solid black line), +0.4e charged Ti (dot-dashed orange line), and
Ti + 40% V, (long-dashed violet line).

phonon theory27 has been shown to work for bcc-Ti, this
is even more computationally demanding. A proven and
practical method suitable for our purposes is to use the
Debye approximation for the vibrational free energy.28,29 The
vibrational free energy per atom Fvib can then be expressed as

Fvib(�D,T ) = 9
8kB�D − kBT [D(�D/T )

− 3 ln(1 − e−�D/T )], (1)

where D(�D/T ) is the Debye function.
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FIG. 4. (Color online) Elastic stability of bcc Ti-based alloys
against number of valence electrons, calculated using VCA. The
straight line, derived from simply adding electrons to a Ti supercell,
gives C ′ = −11.6 + 42�nd .

We can determine the Debye temperature from

�D = h̄

kB

[6π2v1/2]1/3vD, (2)

where v is the volume per atom and vD is the Debye
sound speed, obtainable from the elastic constants, using the
approach by Chen and Sundman.30

For pure Ti this gives �D = 395 K for the ω phase, �D =
364 K for the α phase,29 and �D = 276 K for the β phase.30

This is in good agreement with previous work and shows the
correct ω-α-β sequence with increasing temperature.

Using these results, we evaluate the phase transition tem-
peratures for each composition. From this, we can construct
phase diagrams for each binary and ternary system, and we
find these to be in good agreement with experiment where
available. However, to illustrate our central concept that
structure depends on the d electrons, we plot a combined phase
diagram with d-electron number involving all Cr (+2), V (+1),
and Sc (−1) alloys (Fig. 2). Remarkably, the phase boundaries
for the individual systems are coincident when scaled in this
way, a data collapse that provides strong support for our theory.

Furthermore, we investigate the bcc-stabilizing behavior
of the Cr (�nd = +2), V (�nd = +1), and Sc (�nd = −1)
alloys by computing the zero temperature elastic constants Cij

and the shear constant C ′ = (C11 − C12)/2 versus number of
d electrons, using VCA. C ′ is known to be negative for pure Ti,
and tuned close to zero for Ti-based gum metal31 reflecting the
mechanical instability of the structure. The results are shown
in Table I and Fig. 4, showing that the variation in C ′ is also
accounted for by the number of d electrons alone. Once again,
the even simpler charged Ti system is included for comparison,

TABLE I. Elastic constants (GPa) of bcc Ti-X alloys.

Extra d electrons −0.2 −0.1 0 0.1 0.2 0.3 0.4

X Sc Sc Ti V Cr V Cr V-Cr V Cr V Cr

C11 60 79 90 107 101 119 115 117 132 137 154 159
C12 109 108 112 119 120 127 126 128 133 130 134 132
C44 46 45 41 41 33 48 39 45 51 46 51 50
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and even this follows the same pattern. Although C ′ varies
with temperature, this contribution is only weakly dependent
on composition, so the near-linear relation should hold at all T .

Finally, we turn to the underlying cause of the unstable bcc
structure. As can be seen in Fig. 3, the Fermi level in pure
bcc-Ti is coincident with a peak in the DOS for Ti. This is
an unstable situation, wherein a Peierls-type lattice distortion
can split the peak and lower the enthalpy. As more electrons
are added to the d band, through V and Cr alloying, the Fermi
energy moves away from the peak. Although we are here
only calculating properties of Ti alloys, this picture has much
in common with that obtained for canonical d bands.32 The
unstable mode is the T1N phonon which, coupled with a lattice
distortion, is the established pathway for the bcc-hcp transition.

We have shown the alloying effects to be additive in
multicomponent homogeneous material systems; however, we
recall that in many ternary and higher mixtures aging will cause
phase separation with different compositions in the phases.

IV. CONCLUSIONS

In conclusion, we are considering alloys produced by
quenching, and therefore unable to phase-separate to the
thermodynamic equilibrium. We find that chromium and
vanadium stabilize the β phase, while scandium destabilizes
it. The strength of the effect is directly proportional to the

additional d electrons present in the alloying element. The
effect appears to be additive, and the positional effects of the
impurities appear to be small.

In the case of aluminum, our calculations show that it
stabilizes the α phase, but the simple d-electron sum rule does
not apply to this sp element.

While the correct stabilization predictions of pseudopo-
tential calculations are unsurprising, we have also tested our
hypothesis using VCA and extra-electron calculations, which
correctly capture the aspects of the physics we think are
important. The accurate results obtained from these normally
unreliable methods give strong support to the d-electron
picture.

This puts the empirically known effects of α and β stabiliza-
tion on a firm theoretical footing. It also enables alloy designers
to anticipate the phase-stabilizing effects of additions which
may be added for other purposes. Finally, it emphasizes the
need for the d-electron concentration to be considered as a
parameter in any multiscale modeling approach.
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