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Detection of the quantum fluctuations by conventional methods meets certain obstacles, since it requires
high-frequency measurements. Moreover, quantum fluctuations are normally dominated by classical noise and
are usually further obstructed by various accompanying effects such as a detector backaction. In the present work,
we demonstrate that these difficulties can be bypassed by performing the cross-correlation measurements. We
propose to use a pair of two-level detectors, weakly coupled to a collective mode of an electric circuit. Fluctuations
of the current source accumulated in the collective mode induce stochastic transitions in the detectors. These
transitions are then read off by quantum-point contact (QPC) electrometers and translated into two telegraph
processes in the QPC currents. Since both detectors interact with the same collective mode, this leads to a certain
fraction of the correlated transitions. These correlated transitions are fingerprinted in the cross correlations of
the telegraph processes, which can be detected at zero frequency, i.e., with long-time measurements. Concerning
the dependance of the cross correlator on the detectors’ energy splittings ε1 and ε2, the most interesting region
is at the degeneracy points ε1 = ±ε2, where it exhibits a sharp nonlocal resonance, that stems from higher-order
processes. We find that at certain conditions, the main contribution to this resonance comes from the quantum
noise. Namely, while the resonance line shape is weakly broadened by the classical noise, the height of the peak
is directly proportional to the square of the quantum component of the noise spectral function.
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I. INTRODUCTION

It has been recently understood that the noise phenomena
are not necessarily something detrimental in physical experi-
ments, but instead, they may carry a useful new information
about the underlaying processes.1,2 This information may
be difficult to extract from the measurements of average
quantities, therefore properties of the fluctuations become
themselves a valuable subject of research. Particularly, one
may study higher irreducible moments (or cumulants) of
physical quantities.3 It is especially interesting to detect es-
sentially quantum properties of noise, such as nonsymmetrized
correlators, reflecting the quantum noncommutativity.4

To motivate this interest, it is useful to introduce an example
of a quantum-mechanical operator j (t), representing a fluctuat-
ing electric current. Suppose this current is measured by a clas-
sical ammeter of certain bandwidth, and the raw measurement
data are stored as a sequence of numbers 〈j (tk)〉. The classical
properties related to the symmetrized correlators, such as the
noise power Ssym(ω) = ∫

dτ exp(iωτ )〈{δj (t),δj (t + τ )}〉, or
higher-order symmetrized correlators, can be extracted from
the raw data in postprocessing. By contrast, the quantum
(antisymmetrized) parts of the correlators can not be found,
in principle, from postprocessing of such raw data, since this
information is lost in the measurement of the average values
〈j (tk)〉. Instead, these quantum properties may be inferred from
the measurement of more complex quantities and systems,
occurring naturally, or engineered on purpose. However, in
this kind of measurements, it may not always be immediately
clear which particular quantity is measured. Specifically, there
is certain ambiguity concerning the questions of the operator
ordering in the complex quantities and of the process of their
reduction to the classical values. Thus a careful approach
requires the knowledge of the detailed model of the detector
and of the process of measurement.

Hence one arrives at the notion of a mesoscopic on-chip
detector.5–9 It is a part of the measurement apparatus, which
interacts directly with the system and is responsible for
transforming the quantum information into a classical signal.
As an example, the two-level detectors have been studied
theoretically and implemented in experiments,10–15 and their
operation is now quite well understood. Such a detector
consists of a double quantum dot, or a similar structure,
which has two energetically relevant quantum states (see
Fig. 1), that have different spatial charge distributions. Then
a noninvasive QPC electrometer16–24 may be used to read out
the state of the two-level detector, and the resulting signal
can then be amplified by conventional means. In a properly
adjusted operating regime, the two-level detector is weakly
coupled to the mesoscopic system, and at short times, they
evolve together quantum mechanically. Due to the weakness
of coupling, fluctuations in the system induce rare stochastic
(nonadiabatic) transitions in the detector. Because of the noisy
nature of these fluctuations, the state of the detector becomes
decohered to a statistical mixture.17,25–27 In this case, the QPC
electrometer effectively senses already classical state of the
two-level detector, and thus it actually satisfies our definition
of an on-chip detector.

While the on-chip detector approach should at least clarify
as what exactly is measured, the extraction of the information
about the quantum fluctuations may still be challenging for
some general reasons. The quantum effects often appear as
small corrections to classical contributions, thus a high relative
accuracy may be needed. Another source of complication
is the fact that the system of interest is subjected to the
perturbations induced by the measuring device itself,28 and
other extrinsic sources of noise. Therefore some advanced
techniques have to be employed to carefully extract the
useful information. One such technique that demonstrated
certain success at isolating the properties of the measured
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FIG. 1. (Color online) A schematic representation of the two-
level detector as a double well structure with the level splitting ε.
Stochastic transitions in the detector are induced by the tunneling
coupling � and assisted by photons coming from the collective
mode. The state of the detector is monitored by the QPC electrometer,
located nearby one of the wells.

system is a so-called cross-correlation technique.29,30 The
main idea is that two (or probably more) detectors are used
to measure certain fluctuating signal from the same system.
Then, since the detectors are meant to be independent, any
local processes at one of the detectors should not lead to
cross correlations in the fluctuations measured by different
detectors. Therefore the measurement of the cross correlations
of the detectors’ outputs gives certain level of protection from
the local unwanted sources of noise, and from the detectors’
backaction to the system, and thus may enhance the accuracy
of the experiments.31–36

In the present work, we consider using the cross-correlation
technique to gain access to quantum fluctuations of current.
We propose the following measurement setup: a mesoscopic
system, source of current noise, is incorporated into an electric
circuit, so the fluctuations of its current are accumulated on
a capacitor (see Fig. 2). An electric charge on the capacitor
plays the role of a so-called collective mode to which a
pair of two-level detectors are coupled. We assume the
weak-coupling regime, when the evolution of the detectors’
state can be described by the master equation for the average
state occupations. Then fluctuations of the collective mode
induce rare stochastic transitions in the detectors. These
transitions generate two telegraph processes in the outputs of
corresponding QPC electrometers, (see Fig. 4) and the cross
correlator of these outputs has to be measured in the Markovian
(long-time) limit.

Throughout the paper we rely on the concept of the time
scale separation. In our model, there are several independent
small parameters (such as the coupling constant α, and the
tunneling amplitude �) that produce the following grid of time
scales (see Fig. 3). The smallest scale is the noise correlation
time τc at which the coherent quantum-mechanical evolution
of the joint system of the noise source, the circuit, and the
detector takes place. However, starting from the decoherence
time τd � τc, the noise source plays role of the heat bath for
the detector. Then the evolution of the average occupations of

FIG. 2. The equivalent scheme of the measurement electric circuit
coupling the noise source j (t) to detectors via the collective mode Q.

FIG. 3. (Color online) A diagram of the hierarchy of the time
scales in the measurement process: the noise correlation time τc,
the decoherence time τd , switching time of the detectors τs , and the
proposed measurement time τm.

the detector states is described by the master equation. These
occupations vary on the characteristic time τs � τd of the order
of the inverse transition rates. Finally, the longest time scale
τm � τs is the Markovian limit of the telegraph processes,
where the cross correlator should be measured.

To describe the quantum mechanical evolution of the joint
system of the collective mode φ and the two-level detectors on
short-time scales t < τd , it is rather more adequate to think of
the two detectors in the space of four states |11〉,|12〉,|21〉,|22〉.
A calculation of the reduced density matrix for the detectors
involves averaging over the fluctuations of the collective
mode φ. To the nth order of the perturbation expansion with
respect to tunneling �, this requires finding averages of the
Keldysh ordered products of the corresponding number of
exponential phase operators eiαφ (so-called vertex operators).
In the weak-coupling regime α � 1, we use the cumulant
expansion, since every next cumulant enters with one extra
power of the small coupling constant, and we limit ourselves
to the third cumulant. The main contribution comes from the
times as long as the decoherence time τd where the cumulants
can be expressed in terms of the zero-frequency expansion
of the noise spectral functions. Quantum corrections to the
classical long-time asymptotic of the cumulants are small,
and thus they can be taken into account perturbatively in the
coupling constant α.

On the time scales t > τd , we find the transition rates
perturbatively in �. We show that the most interesting effects
do not appear on the level of the standard P (E) theory,37,38

which accounts tunneling to the lowest (second) order, only.
Notice that some of the transitions between these states, such
as |11〉 � |22〉 or |12〉 � |21〉, that arise in the fourth order in
�, directly correspond to simultaneous, correlated switching
of the detectors and lead to cross correlations at long times
(see Fig. 4). However, computation of the transition rates in
the energy representation encounters well-known divergences
in higher orders of the perturbation theory. We avoid those
divergences by considering directly the time evolution of the
detector states. Namely, at times longer than the decoherence
time t > τd , but much shorter than the switching time t � τs ,
the master equation description suggests linear in time drift
of the occupations probabilities from the initial distribution.
On the other hand, in the fourth order, we find quadratic in
time terms. We identify them with the reducible contribution
generated in the perturbation expansion and, accordingly, find
the transition rates by extracting the irreducible part from
the long-time asymptotic of the occupation probabilities. As
typical for the perturbation theory in higher orders, immense
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FIG. 4. (Color online) An example of the two telegraph processes
generated by (partially) correlated switching of the two detectors.
One of the mechanisms of cross correlation is illustrated by correlated
transitions |11〉 � |22〉 (dashed lines) and anticorrelated |12〉 � |21〉
(dotted lines), both governed by the antidiagonal elements of the
transition matrix. The net cross correlator may be estimated simply
by counting the number of dashed lines minus the number of dotted
lines.

numbers of terms are generated. Nevertheless, we managed to
find all our results analytically.40

Note that the transition rates may be measured from the
time-resolved observation of the telegraph processes.18–24

Then, by fitting their dependence on the controllable param-
eters of the system, such as energy splittings and coupling
constants, one may try to infer some of the noise properties.
The drawback of this approach is that large amounts of real-
time data need to be recorded and analyzed. This also limits
the possible measurement pace since the real-time switching
resolution is required to extract the transition rates. Instead,
we expect that by measuring directly the cross correlator of
the two telegraph processes on the time scale τm much longer
than the switching time τs , one can considerably simplify the
implementation of experiments. To evaluate the resulting cross
correlator of the telegraph processes, we generalize for the
case of two detectors the approach that has been proposed in
Refs. 24 and 41 to study the statistics of bistable systems. We
present an exact general result, which is convenient to use if
the transition matrix is symmetric, i.e., for the classical noise.
For the case of quantum noise, we also develop a perturbative
in tunneling calculation that is better suitable for analytical
computations.

Finally, we analyze the physically different contributions
to the cross correlator from classical and quantum noise. Note
that although the two detectors do not interact directly, an
effective nonlocal interaction emerges between the detectors
due to their coupling to the collective mode [see Eq. (8)]. The
effective interaction does not depend on the properties of the
noise, but it leads to the trivial second-order contribution to
the cross correlator. This contribution is not of much interest,
since it can be activated by subjecting both, or even any one
of the detectors to local classical noise. However, since it
is proportional to the strength of the effective interaction, it
can be minimized by tuning the parameters of the circuit. By
contrast, the more interesting kind of contributions arise as
a consequence of the correlated response of the detectors to
the fluctuations of the collective mode in the higher (fourth)
order processes. The distinctive feature of these contributions
is a sharp peak of the nonlocal resonance at the degeneracy
point, where the detectors’ level splittings satisfy ε1 ± ε2 = 0.

We note that the nonlocal resonance contains both classical
and quantum parts of noise. Remarkably though, the classical
part in the fourth order is also proportional to the effective
interaction strength and thus may be rendered small, while the
purely quantum contribution to the cross correlator survives if
the effective interaction is “switched off.” The corresponding
conditions (see Sec. VI C) can be achieved, basically, if
the noise temperature is sufficiently high and the coupling
constants are made small enough.

The paper is organized as follows. We present the model
of two-level detectors in Sec. II. Then, in Sec. III, we give an
overview of the counting statistics approach, generalize it for
the cross correlations, and present two methods of evaluating
the cross correlator, usable for classical and quantum noise,
respectively. In Secs. IV and V, we show how the cumulant
expansion is applied to calculate the averages needed to find
the transition rates. Finally, in Sec. VI, we present the results
for the classical and quantum noise cases and analyze the
conditions needed to access the required measurement regime.

II. TWO-LEVEL DETECTORS

An electric circuit may be modeled37 by a set of bosonic
fields, φk , and their conjugated “charges” qk . We wish to single
out one of these fields, a so-called collective mode Q and its
phase φ, which are linearly coupled to the rest of the fields
and enter quadratically to the corresponding Hamiltonian of
the circuit. One can show that any such Hamiltonian may be
transformed to the form, where all the couplings are carried
by the phase φ only:

Hc = Q2

2C
+ Hn(φ,qk,φk). (1)

This model is sufficiently general to describe any circuit with
the usual linear elements, such as resistors, capacitors, and
inductances, and can also include such mesoscopic elements
as tunnel junctions by adding nonquadratic potentials to the
Hamiltonian.

Let us assume that the collective mode Q is linearly
coupled, with a dimensionless coupling strength α, to a
two-level detector represented by the Hamiltonian

H0 = ε

2
σz + �σx + α

2C
σzQ, (2)

where ε is the energy level splitting, � � ε is a weak
level mixing and we use the units e = h̄ = 1 throughout
the paper. The constant � can also be understood as the
tunneling amplitude between the levels, or as the quantum
level broadening. This type of quantum detectors have been
considered in a number of works and have been implemented
experimentally.10–15

In what follows, we treat the term �σx as a smallest
perturbation. We therefore render the total Hamiltonian H =
H0 + Hc in a more convenient form by performing the
following transformation:

H′ = ei α
2 σzφHe−i α

2 σzφ. (3)

This transformation affects only those terms that do not
commute with σz or φ. Since [φ,Q] = i, it shifts the charge Q

by −ασz/2, canceling the linear coupling term ασzQ/2C and
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bringing interactions in the form of operators e±iαφ ,

H′ = ε

2
σz + �

(
0 eiαφ

e−iαφ 0

)
− α2

8C
+ Hc, (4)

where the energy is also shifted by a constant −α2/8C.
We switch to the interaction picture with the time-dependent
tunneling Hamiltonian

HI (t) = �

(
0 ei[φ(t)+εt]

e−i[φ(t)+εt] 0

)
. (5)

This suggests a perturbative expansion in powers of �. To
justify this expansion, we assume that the � has to be the
smallest energy scale in the system. Particularly, it must be
smaller than the level broadening introduced by noise.

A. Pair of two-level detectors

Now, let us consider two such detectors, both coupled to
the same circuit via the charge Q,

H0 =
∑
j=1,2

H(j )
0 =

∑
j=1,2

[
εj

2
σ (j )

z + �jσ
(j )
x + αj

2C
σ (j )

z Q

]
,

(6)

where we denote quantities belonging to the different detectors
with an additional index j = 1,2. In this case, the transforma-
tion analogous to Eq. (3),

H′ = e
i
2

∑
j αj σ

(j )
z φ He− i

2

∑
j αj σ

(j )
z φ (7)

leads to

H′ =
∑
j=1,2

[
εj

2
σ (j )

z + �j

(
0 eiαj φ

e−iαj φ 0

)
− α2

j

8C

]

+Hc + Ec

2
σ (1)

z σ (2)
z . (8)

Thus, besides changing the energy by a constant, it also
generates the cross term with

Ec = α1α2/2C. (9)

The cross term represents the effective nonlocal interaction
between the detectors mediated by the circuit collective
mode. At the degeneracy points ε1 = ±ε2, this interaction
leads to the quantum avoided-crossing level splitting of the
value

�ε = 4�1�2Ec/ε
2
1. (10)

Finally, after switching to the interaction picture, the
tunneling Hamiltonian for two detectors takes the form

HI =

⎛
⎜⎜⎜⎜⎝

0 �2e
iα2φ+i(ε2−Ec)t �1e

iα1φ+i(ε1−Ec)t 0

�2e
−iα2φ−i(ε2−Ec)t 0 0 �1e

iα1φ+i(ε1+Ec)t

�1e
−iα1φ−i(ε1−Ec)t 0 0 �2e

iα2φ+i(ε2+Ec)t

0 �1e
−iα1φ−i(ε1+Ec)t �2e

−iα2φ−i(ε2+Ec)t 0

⎞
⎟⎟⎟⎟⎠ . (11)

Note that if Ec = 0 the tunneling Hamiltonian (11) reduces to
a tensor sum HI = H(1)

I ⊗ E + E ⊗ H(2)
I . We will see that

the presence of Ec leads to a trivial mechanism of cross
correlations even in the presence of only local noise. However,
these cross correlations vanish with small Ec, and thus may
become dominated by some more interesting phenomena, such
as effects of quantum fluctuations in higher-order processes.

B. Time evolution

To study cross correlations in the detectors’ output, we
wish to consider the long-time limit, where evolution of the
detectors’ states can be described by the master equation

Ṗ = M̂P (12)

for the occupation probabilities P = (p1, . . . ,p4). Such de-
scription is valid if the decoherence time τd = (α2R2S)−1

is much shorter, τd � �−1, than the quantum time scale
associated with the quantum level repulsion of a single
detector, or τd � (�ε)−1 in the degeneracy point. These
conditions are equivalent to a requirement that the classical
level broadening due to the noise is always stronger then the
quantum avoided-crossing level repulsion. Or, in other words,

one may say that the stochastic switching time τs = 1/(�2τd )
is longer than the dephasing time, τs � τd .

The time dependence of the reduced density matrix of the
detectors is

ρ(t) = Trc[Uρ̃(0)U †], (13)

where

U = T̂ exp

[
−i

∫ t

0
dt ′HI (t ′)

]
(14)

is the interaction picture evolution operator, the initial condi-
tion is represented by the full density matrix of the system of
detectors together with the circuit ρ̃(0) = ρ(0) × ρc(0), and
Trc means averaging over the circuit degrees of freedom.

As soon as ρ(t) is found, one observes that the off-diagonal
elements of ρ decay exponentially over the time τd . Therefore
we can concentrate our attention on the probabilities

pk(t) = ρkk(t) = Tr[ρ(0) × ρc(0) U †|k〉〈k|U ], (15)

where the trace is over all the degrees of freedom of the system.
Equation (15) may be recast in the form

P(t) = [E + M̂(t)]P(0), (16)
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where the elements of the time-dependent transition probabil-
ity matrix M̂(t) read

{M̂(t)}kl = Trc[ρc(0) 〈k|U †|l〉〈l|U |k〉] − δkl . (17)

They may be found from Eq. (15) as the perturbative expansion
M̂(t) = ∑

n M̂n(t) with respect to the tunneling Hamilto-
nian (11). Comparing the expression (16) with a solution of
Eq. (12), P(t) = exp{M̂t}P(0), one finds that the transition
matrix M̂ can be obtained from the long-time asymptotics of
the irreducible part of M̂(t) as

M̂ = lim
t→∞

1

t
ln[E + M̂(t)]. (18)

Note, that due to the specific structure of (11), only even
powers of �j are present in the diagonal elements of the
perturbation series for the density matrix (13). Therefore, to
the fourth order in �j , one can writeM̂(t) = M̂2(t) + M̂4(t).
The time dependence of an arbitrary element of the M̂2(t)
appears to be quite simple:

{M̂2(t)}kl = C0(t) + C1t, (19)

where C1 is a constant and the first term C0(t) is a decaying os-
cillating function of time. This decaying term only represents
the artefact of the chosen decomposition of the initial condition
ρ̃ = ρ × ρc, which, due to the detector-circuit interaction, does
not describe a stationary state. However, the stationary, linear
in time behavior is restored after the decoherence time τd , as
illustrated by the decaying oscillations in the Fig. 5.

The elements of the next term, M̂4(t), may have a more
complex structure:

{M̂4(t)}kl = C ′
0(t) + [C ′

1 + D′
1(t)]t + C ′

2t
2, (20)

where the functions C ′
0(t) and D′

1(t) are analogous to C0(t), the
constant C ′

1 is analogous to C1, and there is a quadratic in time
term C ′

2t
2. This last term is a reducible part of theM̂4(t), which

is exactly eliminated in the logarithm in Eq. (18). Particularly,
to the fourth order, one has

M̂ = lim
t→∞

1

t

[
M̂2(t) + M̂4(t) − 1

2
M̂2

2(t)

]
. (21)

This expression provides a conclusive point in the calculation
of the transition matrix M̂ from the explicit time dependence
of the occupations P(t).

FIG. 5. (Color online) Typical quadratic in time dependence
(dashed line) of the elements of the bare matrix M̂4(t), and linear
in time (solid line) for the corrected matrix M̂4(t) − M̂2

2(t)/2. Time
scale in the units of the decoherence time τd .

III. FULL COUNTING STATISTICS
OF THE QPC CURRENTS

In this section, we present the method for calculating the
statistics of a QPC current using the generating functions ap-
proach. We first recall the simpler case of a single detector24,41

and later generalize it to the case of two detectors. Consider
a QPC as a charge detector tuned to detect the state of the
two-level system (see Fig. 1). The statistics of the current
passing through the corresponding conductance levels k = 1,2
of the QPC is described at long times by the moment generating
function

gk(λ,t) =
∑

n

exp(λn)fk(n) = eHk (λ)t , (22)

where fk(n) is the probability that n electrons are transferred,
while the level k is occupied, t is the total time of the
measurement, and Hk(λ) is the function generating current
cumulants:

〈〈
Im
k

〉〉 = ∂mHk

∂λm

∣∣∣∣
λ→0

. (23)

One can see that gk(λ,t) satisfy the equations

ġk(λ,t) = Hk(λ)gk(λ,t). (24)

These equations may be modified in order to take into account
the mixing of the current channels induced by switching of the
detector. Introducing G(λ,t) ≡ (g1,g2), the extended master
equation reads

Ġ(λ,t) = ŴG(λ,t), (25)

where the matrix Ŵ = Ĥ + M̂ is a sum of the cumulant
generating functions matrix

Ĥ =
(

H1(λ) 0

0 H2(λ)

)
, (26)

and the transition matrix

M̂ =
(

−+ −
+ −−

)
, (27)

where the transition rates are denoted as ±. In the long-time
limit, the statistics of the QPC current is given by the generating
function

H (λ) = lim
t→∞

1

t
ln

∑
k

gk(λ,t), (28)

which is the largest eigenvalue of the matrix Ŵ ,

H (λ) = Hs − s +
√

(Hd + d )2 + −+, (29)

where Hs,d = 1
2 (H1 ± H2), and s,d = 1

2 (+ ± −). Current
cumulants are then found as derivatives of this generating
function:

〈〈Im〉〉 = ∂mH (λ)

∂λm

∣∣∣∣
λ→0

. (30)
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Taking into account that

∂H (λ)

∂λ

∣∣∣∣
λ→0

=
∑

k

∂H

∂Hk

∂Hk

∂λ

∣∣∣∣
λ→0

=
∑

k

〈Ik〉 ∂H

∂Hk

∣∣∣∣
Hk→0

, (31)

we obtain the expected result for the average current:

〈I 〉 = −〈I1〉
2s

+ +〈I2〉
2s

= p̄1〈I1〉 + p̄2〈I2〉, (32)

and similarly, for the noise,

〈〈I 2〉〉 = p̄1p̄2

s

(〈I2〉 − 〈I1〉)2 + p̄1
〈〈
I 2

1

〉〉 + p̄2
〈〈
I 2

2

〉〉
. (33)

Here, 〈Ik〉 is the average current at the conduction level k

of the QPC, p̄2,1 = ±/(+ + −) are the stationary level
occupations, and 〈〈I 2

k 〉〉 is the corresponding zero-frequency
noise power of the QPC.

A. Cross correlator

The above scheme can be easily generalized to a pair of
two such detectors. Without level mixing, the joint probability
distribution for the numbers of electrons passed through
each QPC factorizes: fkl(n1,n2) = fk(n1)fl(n2), therefore the
corresponding generating functions acquire the form

gkl(λ,η,t) = g
(1)
k (λ,t)g(2)

l (η,t), (34)

with different counting variables λ and η for the two QPCs,
respectively, and satisfies the equation

ġkl(λ,η,t) = [
H

(1)
k (λ) + H

(2)
l (η)

]
gkl(λ,η,t), (35)

where the upper index (j ) indicates the properties of the
detector j .

Switching of the detectors is accounted for in the extended
master equation, Ġ = ŴG, with the matrix that has the same
structure as before: Ŵ = M̂ + Ĥ , where M̂ is the transition
matrix. In the basis of states (|11〉,|12〉,|21〉,|22〉), the diagonal
matrix Ĥ of the cumulant generating functions is

Ĥ = Ĥ1 ⊗ E + E ⊗ Ĥ2, (36)

where Ĥj are the single detector matrices (26),

Ĥj =
(

H
(j )
1 0

0 H
(j )
2

)
, (37)

as functions of corresponding counting variables λ or η.
As before, current cumulants may be found as derivatives

of the largest eigenvalue H (λ,η) of the matrix Ŵ . Particularly,
the current cross correlator reads

〈〈I1I2〉〉 = ∂λ∂ηH (λ,η)|λ,η=0. (38)

Since there is only one derivative with respect to each counting
variable, the cumulant generators H

(j )
k can be replaced by

their corresponding average currents H
(1)
k (λ) ≈ λ〈I (1)

k 〉 and
H

(2)
k (η) ≈ η〈I (2)

k 〉. Thus the problem of finding the cross
correlator of QPC currents can be reformulated as finding a
second-order correction to the largest eigenvalue of the matrix
M̂ from the perturbation Ĥ .

Note that due to the conservation of the total probability∑
j M̂jk = 0, the transition matrix is degenerate, i.e., one of its

eigenvalues m0 = 0, and all the others are negative, mi �=0 < 0.
Therefore we can use the general result of the perturbation
theory that H (λ,η) can be found as a second-order correction
to the largest eigenvalue m0:

H (λ,η) =
∑
i �=0

〈m0|Ĥ |mi〉〈mi |Ĥ |m0〉
m0 − mi

= −〈m0|Ĥ M̂∗Ĥ |m0〉, (39)

where M̂∗ = ∑
i �=0(1/mi)|mi〉〈mi | is also known as a Moore-

Penrose pseudoinverse of the matrix M̂; |mi〉 are the
eigenvectors42 of M̂ .

To find the cross correlator, we need to calculate the
derivative in Eq. (38). Since the counting variables only enter
the matrix Ĥ , it is convenient to introduce the following
operator:

D̂ = ∂2

∂λ∂η
(Ĥ |m0〉〈m0|Ĥ )|λ,η→0, (40)

so that the cross correlator may be expressed as

〈〈I1I2〉〉 = −Tr(D̂ · M̂∗). (41)

It appears also, that the cross correlator is always proportional
to the differences of the current levels �I1 = 〈I (1)

2 〉 − 〈I (1)
1 〉

and �I2 = 〈I (2)
2 〉 − 〈I (2)

1 〉, therefore it is natural to define a
normalized cross correlator that has the dimensionality of time:

X = 〈〈I1I2〉〉
�I1�I2

= −Tr(D̂ · M̂∗)

�I1�I2
. (42)

Finally, we note that in practice, for systems with suffi-
ciently general transition matrix M̂ , the approach described
above typically leads to cumbersome expressions, in particular,
for the eigenvalues and the eigenvectors of M̂ . Therefore we
present a different way to evaluate the cross correlator for a
particular class of transition matrices.

B. Perturbative approach

We wish to consider a particular case, when the effective
interaction Ec in the Hamiltonian (11) can be neglected,
Ec → 0. In this case, one can easily find the cross correlator
perturbatively in tunneling amplitude �. The transition matrix
can be represented as

M̂ = M̂0 + δM̂, (43)

where M̂0 is evaluated to the second order in tunneling and
represents completely uncorrelated detectors, while δM̂ is a
small correction of the fourth order. The matrix M̂0 = M̂1 ⊗
E + E ⊗ M̂2 is a tensor sum of the single-detector transition
matrices M̂1 and M̂2, defined according to Eq. (27) as

M̂j =
(

−
(j )
+ 

(j )
−


(j )
+ −

(j )
−

)
. (44)

The extended master equation matrix then reads

Ŵ = M̂ + Ĥ = Ŵ0 + δM̂, (45)
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where, the matrix Ŵ0 = M̂0 + Ĥ retains the same tensor
structure: Ŵ0 = Ŵ1 ⊗ E + E ⊗ Ŵ2, and Ŵ1 and Ŵ2 are the
single detector matrices as in Eq. (25). The matrix Ŵ0 can be
diagonalized explicitly, and its largest eigenvalue is, obviously,
the sum of the corresponding eigenvalues (29) for each detector
separately, H0(λ,η) = H (1)(λ) + H (2)(η). Thus, as expected
for the uncorrelated detectors,

〈〈I1I2〉〉0 = ∂λ∂ηH0(λ,η) = 0, (46)

where the index 0 stands for the lowest-order contribution. We
see that any cross correlations may only be generated by the
correction matrix δM̂ , which brakes the tensor sum structure
of Ŵ .44

As before, we need to find the largest eigenvalue H (λ,η) =
H0(λ,η) + δH (λ,η) of Ŵ , where δH (λ,η) is a correction due
to the perturbation δM̂ . Note that in contrast to the general case,
the counting variables are not contained in the perturbation
δM̂ , but are absorbed into the matrix Ŵ0 (which makes Ŵ0

nondegenerate). Therefore it is sufficient to use the first-order
perturbation theory:

δH (λ,η) = 〈m0|δM̂|m0〉, (47)

where |m0〉 is the eigenvector of Ŵ0 corresponding to the
eigenvalue H0(λ,η).

Finally, the cross correlator is given by

〈〈I1I2〉〉 = ∂λ∂ηδH (λ,η)|λ,η=0, (48)

and analogously to Eq. (31), we find that

〈〈I1I2〉〉 =
∑
k,l

∂2δH

∂H
(1)
k ∂H

(2)
l

∣∣∣∣
H

(j )
k =0

〈
I

(1)
k

〉〈
I

(2)
l

〉
. (49)

Although the full expression for δH is somewhat cumber-
some, it has an important property that the derivatives with
respect to H

(1)
k and H

(2)
l are all proportional to the same

quantity Xp,

∂2δH

∂H
(1)
k ∂H

(2)
l

∣∣∣∣
λ,η=0

= (−1)k+lXp. (50)

Therefore the cross correlator (49) acquires the same form
as in Eq. (42) and can be found using one of the
relations (50):

Xp = 2
(1)
− 

(1)
+ 

(2)
− 

(2)
+

((1)
− + 

(1)
+ )3((2)

− + 
(2)
+ )3

×
∑
ij

δM̂ij K̂ij , (51)

where to present a compact expression for Xp, we have
introduced the matrix of the coefficients K̂ij :

K̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 
(2)
+


(2)
−


(1)
+


(1)
−

�(1)�(2)

2
(1)
− 

(2)
−

− 1

−
(2)
−


(2)
+

−1 �(1)�(2)

2
(1)
− 

(2)
+

+ 1 −
(1)
+


(1)
−

−
(1)
−


(1)
+

�(1)�(2)

2
(1)
+ 

(2)
−

+ 1 −1 −
(2)
+


(2)
−

�(1)�(2)

2
(1)
+ 

(2)
+

− 1 
(1)
−


(1)
+


(2)
−


(2)
+

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (52)

and the notation �(j ) = 
(j )
+ − 

(j )
− is used, with 

(j )
± being

the transition rates to the second-order of the perturbation
theory.

IV. CUMULANT EXPANSION

To find the transition rates (43), we expand the transition
probabilities (17) in the perturbation series with respect
to the tunneling Hamiltonian (11). We will henceforth use
simple angled brackets to denote the weighted average 〈. . .〉 ≡
Trc[ρc . . .], which is used in Eq. (17). By substituting the evo-
lution operator (14), expanded perturbatively with respect to
the tunneling Hamiltonian (11), into the expression (17) for the
transition probability matrix, one can show that the elements
of M̂(t) may be expressed in terms of time integrals of the
Keldysh ordered correlation functions of the following type:

〈eiγ1φ1 . . . eiγnφn〉 = eFn[η(t)]|η(t)=∑n
j=1 iγj δ(t−tj ), (53)

where φj ≡ φ(tj ) for simplicity, the γj take values of ±α1 or
±α2, and the generating function

Fn[η(t)] =
∑

k

1

k!

∫
dkt

k∏
j=1

η(tj ) TK〈〈φ1 . . . φk〉〉 (54)

is an expansion in terms of the Keldysh ordered cumulants
TK〈〈φ1 . . . φk〉〉 of the order k.

We do not need to know all the correlators that appear in the
expansion of the density matrix, but only those that contribute
to the master equation through the matrices M̂2(t) and M̂4(t)
from Eq. (21). In the second-order term M̂2(t), due to the
structure of the tunneling Hamiltonian (11), we find only the
terms proportional to �2

1 or �2
2, thus “originating” separately

from each detector. In this case, we need the correlator of the
form

〈eiγ φ1e−iγ φ2〉 = e−J
(2)
2 −iJ

(2)
3 , (55)

where the second and third cumulants, J
(2)
2 (t1,t2) and

J
(2)
3 (t1,t2), are found by expanding both sides of the

equation (53) in φj :

J
(2)
2 (t1,t2) = γ 2

2

〈
φ2

1 − 2φ1φ2 + φ2
2

〉
, (56)

J
(2)
3 (t1,t2) = γ 3

6

〈
φ3

1 − 3φ2
1φ2 + 3φ1φ

2
2 − φ3

2

〉
. (57)

By contrast, in the fourth-order term M4(t), there is more
diversity. First of all, there are terms proportional to �2

1�
2
2.
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Such terms are of our main interest, since they represent the
nonlocal processes, involving both detectors. Thus we are
interested in correlators

〈eiγ1φ1 . . . eiγ4φ4〉 = e−J
(4)
2 (t1,...,t4)−iJ

(4)
3 (t1,...,t4), (58)

where the four parameters γj take four different values of ±α1

and ±α2. Again, expanding both sides of Eq. (58), one finds

J
(4)
2 = 1

2

〈∑
k

γ 2
k φ2

k + 2
∑
k<l

γkγlφkφl

〉
, (59)

and, in contrast with the result (57), the third-order cumulant

J
(4)
3 = 1

6

〈∑
i

γ 3
i φ3

i + 3
∑
i<j

γiγjφi(γiφi + γjφj )φj

+ 6
∑

i<j<k

γiγjγkφiφjφk

〉
(60)

contains the three-point correlators 〈φiφjφk〉 taken at three
different times.

V. CURRENT AND PHASE CORRELATION FUNCTIONS

From the equation of motion φ̇ = Q/C generated by the
Hamiltonian (1), it follows that the phase φ is an integral of
the voltage on the capacitor. Since the constant component of
voltage can be absorbed into the level splitting energy ε, we
include only the fluctuations δV ,

φ(t) =
∫ t

−T

dt ′δV (t ′), (61)

where instead of integrating over time from minus infinity, we
have introduced the regularization with some finite time −T ,
which is larger than any other time scale in the system.

The voltage fluctuations are related to the current fluctua-
tions by the circuit impedance Z(ω),

δV (ω) = Z(ω)j (ω). (62)

Combining the last two equations together, one obtains

φ(t) =
∫

dω

2π
Z(ω)j (ω)

e−iωt − eiωT

(−iω)
, (63)

where, due to the regularization, a pole at ω = 0 is canceled
by a zero in the numerator. We further assume the limit of fast
circuit,45 i.e., the main contribution to the phase correlators
comes from times much longer than the circuit response time
τRC = RC, and the impedance may be considered a constant
Z(ω) = R.

We define the current spectral functions S2(ω) and
S3(ω1,ω2) through nonsymmetrized two- and three-point

current correlation functions:

〈j (ω1)j (ω2)〉 = 2πδ(ω1 + ω2)S2(ω1), (64)

〈j (ω1)j (ω2)j (ω3)〉 = 2πδ(ω1 + ω2 + ω3)S3(ω1,ω2), (65)

where the δ-function are the manifestation of the time
translation invariance, since we consider a stationary process.
Using these definitions, the phase correlators are expressed as
following:

〈φ(t1)φ(t2)〉 = R2
∫

d2ω

(2π )2
δ(ω1 + ω2)S2(ω1)

×
∏

j=1,2

(
e−iωj tj − eiωj T

−iωj

)
, (66)

and analogously,

〈φ(t1)φ(t2)φ(t3)〉 = R3
∫

d3ω

(2π )3
δ(ω1 + ω2 + ω3)S3(ω1,ω2)

×
∏

j=1..3

(
e−iωj tj − eiωj T

−iωj

)
. (67)

Taking the integrals over ω, we find the long-time asymp-
totic behavior of the correlator (66) as

〈φ(ti)φ(tj )〉 = R2{S[T + min(ti ,tj )] − iS ′ sign(ti − tj )}.
(68)

Here, only the zero-frequency components of the spectral
function contribute to the correlator:

S2(ω) � S + ωS ′, (69)

where S ≡ S2(0) is the classical noise power and S ′ ≡
dS2(ω)/dω|ω=0 is the quantum part, representing noncom-
mutativity of the current operator.

The correlator (68) has a divergent term proportional to
T , which, however, does not contribute to any physically
meaningful quantity. For instance, the cumulants (56) and (59)
read

J2(t1,t2) = α2
jR

2

2
[S|t1 − t2| − iS ′ sign(t1 − t2)], (70)

while the cumulant from the fourth order can be rewritten in
the similar form:

J
(4)
2 (t1 . . . t4) = R2

2

∑
i<j

αiαj [S|ti − tj | − iS ′ sign(ti − tj )].

(71)

A weak-coupling regime, considered throughout the paper,
implies that either the detector to circuit coupling is weak
(small αj � 1) or the impedance R is small. Then the entire J2

is small by the factor αiαjR
2, and the contribution to the time

integrals of correlators (55) and (58) that enter the perturbation
expansion forM̂(t), see Eq. (17), comes from large differences
of times of order |ti − tj | ∼ (αiαjR

2S)−1. This justifies the use
of asymptotic expressions of the type (70) and (71) and clarifies
the assumption of the fast circuit τRC � τd = (α2R2S)−1.

Analogously, for the three-point correlator (67), we expand
the spectral function around zero frequencies,

S3(ω1,ω2) = S3 + S
(1)
3 ω1 + S

(2)
3 ω2, (72)
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and obtain

〈φ(t1)φ(t2)φ(t3)〉 = −R3S3[T + min(tj )]

− iR3
∑
j=1,2

S
(j )
3

{
θ
[

min
k �=j

(tk) − tj
] − 1

2

}
.

(73)

However, the parameters S
(1)
3 and S

(2)
3 are not independent.

From the definition (65), one can find that (S(1)
3 )∗ = S

(1)
3 =

2ReS(2)
3 , therefore they are parameterized by two real numbers:

the real and imaginary parts of S
(2)
3 . Again, although these

correlators diverge with T , the third cumulant, such as Eq. (57),
is regular:

J
(2)
3 (t1,t2) = −γ 3R3

6

{
S3(t1 − t2)

+ 3i

2

[
ReS(2)

3 + i ImS
(2)
3 sign(t1 − t2)

]}
. (74)

Note, that in contrast to the second cumulant (70), which
depends on the absolute value |t1 − t2|, the classical part of
the third cumulant depends on the difference (t1 − t2) and
because of this, it enters the transition rates the same way as
the energies εj . This leads to a specific shift of the energies,
discussed later. A similar expression is obtained for the third
cumulant (60) to the fourth order, but it is not displayed here,
because it is somewhat cumbersome.

VI. THE CROSS CORRELATOR: RESULTS

Using the cumulant expansions such as Eqs. (70), (71),
and (74), we can find the correlators (55) and (58), which we
need to calculate the transition probability matrix (17). From
the latter, we extract the master equation matrix (21) and,
finally, find the cross correlator using one of the results (42)
or (51). We assume that the cross correlator is a sufficiently
smooth function of the parameters of the system, and thus con-
sider separately different contributions, each being suppressed
by some small parameter. This allows us to estimate ratios
of these contributions and determine regions of the parameters
where one or another contribution is dominating. We start with
the case when the effective interaction Ec in the Hamiltonian is
neglected, and the noise is classical. Then the detector outputs
become completely uncorrelated. We consecutively “turn on”
the effective interaction and the quantum parts of the noise
cumulants to investigate separately each contribution.

A. Classical noise

For the classical noise, the current operator j (t) may be
replaced by a classical variable, which commutes with itself
at different moments of time. Therefore the spectral function
S2(ω) becomes a symmetric function, and its derivative at
zero frequency is S ′ = 0. In the same way, the three-point
spectral function (65) has zero slope S

(1)
3 = S

(1)
3 = 0, and we

set S3(ω1,ω2) = S3.
The transition matrix M̂ for the classical noise is symmetric.

Taking into account that the sum over columns of the elements
of M̂ is zero, one can show that the stationary solution of
the master equation, corresponding to the largest eigenvalue,

is |m0〉 = 1
4 (1,1,1,1) with equal occupations of pj = 1/4

for all the four states, which can be regarded as a limit
of high temperature. The matrix (40) in this case is a
constant independent on the parameters of the system, and the
pseudoinverse M̂∗ can be found explicitly. Note that since the
matrix M̂ is symmetric, it is parametrized by six elements of
its upper-right triangle. Then, finally, the classical contribution
to the cross correlator is expressed in terms of those elements:

Xcl = 1

32
∑

2

[
(m12 − m34)(m13 − m24) − (m14 −m23)

∑
1

]
,

(75)

where
∑

1 = m12 + m13 + m24 + m34 and the sum in the
denominator

∑
2 = ∑

mijmklmnm is over products of all com-
binations of three different elements from the six independent
elements of M̂ .

The expression (75) gives certain interpretation of how
different combinations of the transition rates contribute to
the cross correlator, particularly, if the transition rates in one
detector depend on the current state of the other detector. For
example, if m12 > m34, m13 > m24, then the positive cross cor-
relations are induced. One important observation is that if the
effective interaction term in the Hamiltonian is neglected, then
the transition matrix acquires additional symmetry mij = mkl

for i + l = j + k = 5 (symmetry relative to the antidiagonal),
and m14 = m23. Then the cross correlator is identically equal
to zero. In other words, the cross correlator for classical noise
vanishes together with the effective interaction strength Ec.

If the transition rates are calculated only to the second
order in �j , the antidiagonal elements of M̂ are zero, and the
result (75) simplifies further. Substituting the corresponding
transition rates, we obtain the classical contribution, shown in
the Fig. 6:

X
(2)
cl = 1

4R2S

ε1ε2E
2
c

�2
2α

2
2

(
ε2

1 + E2
c + �2

1

)+�2
1α

2
1

(
ε2

2 + E2
c + �2

2

) ,
(76)

where we introduce the classical level broadening,

�j = α2
jR

2S/2, (77)

FIG. 6. The classical contribution Xcl = X
(2)
cl + X

(4)
cl to the cross

correlator in units of the dephasing time 1/� = (α1α2RTeff )−1 as
a function of the detector level splittings ε1 and ε2 in units of
the effective temperature Teff at �j = 0.07�,αj = 0.55 ± 0.05,R =
0.12, and C = 0.8/�. Note that the second-order part X

(2)
cl does not

exhibit any singularities at the nonlocal resonances ε1 ± ε2 → 0, and
the sharp peaks come from the fourth-order part X

(4)
cl .
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and recall that Ec is the effective nonlocal interaction en-
ergy (9). The typical maximum magnitude of this quantity,
that is acquired at ε1/ε2 ∼ ±α1�1

/
α2�2, can be estimated as

X
(2)
cl ≈ ± E2

c

8α1α2�1�2R2S
= ± E2

c

16�1�2
√

�1�2
. (78)

It contains competing small parameters: �j that are considered
the smallest energy scales in the system, and effective
interaction strength Ec. It is especially remarkable that Ec

is a property of the circuit itself and does not depend on
the source of noise. In fact, the quantity X

(2)
cl reflects rather

the influence of the effective nonlocal coupling, than of the
common noise source. If we replace the common noise source
with two independent local sources, or even only one local
source of noise, the cross correlations will persist. For the
same reason, the classical contribution (76) is a well bounded
function of the energies ε1 and ε2, and it does not exhibit
singularities at the degeneracy points ε1 = ±ε2.

By contrast, if the transition rates are calculated up to
the fourth order in �j , then one obtains a correction X

(4)
cl ,

which shows resonance peaks at ε2 = ±ε1 that become more
pronounced as the coupling constants approach each other.
Naturally, this is the most interesting region of parame-
ters. Using notations α1,2 = α ± δα/2, ε = (ε1 + ε2)/2, and
�1,2 ∼ � = α2R2S/2, we present the asymptotic form of the
fourth-order classical contribution to the cross correlator:

X
(4)
cl ≈ �12E

2
c

16�2
[
(ε2 − ε1)2 + �2

12

] , (79)

where

�12 = 1
2 (α1 − α2)2R2S (80)

is the classical broadening of the nonlocal resonance. Here, we
assumed that �12 is larger than the avoided-crossing energy
splitting �ε and the classical level broadenings due to the local
sources of noise. The height of the peak is equal to

max X
(4)
cl ≈ E2

c

16�12�2
, at ε1 = ε2. (81)

B. Quantum noise

In this section, we concentrate on the effects of quantum
noise, i.e., we now take into account the antisymmetric parts of
the spectral functions S2(ω) and S3(ω1,ω2). At the same time,
we set Ec = 0, so the tunneling Hamiltonian (11) becomes a
tensor sum as well does the second-order part of the transition
matrix, M̂2, but not the fourth-order correction M̂4. This allows
us to obtain analytic results using the approach described in
the Sec. III B where we associate M̂2 with M̂0 in Eq. (43) and
the fourth-order part M̂4 with the perturbation δM̂ .

In the limit of weak coupling, the main contribution from the
correlator (66) to the transition rates comes from long times.
This means that the first term in the cumulant, S|t1 − t2|, is
much larger then the second term iS ′sign(t1 − t2). This allows
to include the quantum corrections perturbatively. Since the
third cumulant contains one more coupling constant than
the second cumulant, we expect the main contribution to
come from Gaussian fluctuations. Surprisingly, however, the
first-order contribution of S ′ vanishes, and we have to keep

FIG. 7. Cross correlations due to the quantum Gaussian compo-
nent of noise over the classical background displayed in Fig. 6, in
the same units, as a function of the energies ε1 and ε1 at α1,α2 > 0,
develop a sharp resonance peak on the diagonal, the height of which
is proportional to the energy squared.

the expansion at least up to S ′2. The fact that the Gaussian
fluctuations do not contribute to the cross correlator in the
lowest possible order with respect to coupling constant means
that we have to check if the contribution of third-order
correlations may enter with a lower power of the coupling
constant. Unfortunately, this is not the case, and non-Gaussian
correlations only make a small correction to the Gaussian
contribution, as both of them enter quadratically into the cross
correlator (82). As a function of energy splittings, Xq exhibits
the nonlocal resonances at ε1 = ±ε2. The exact expression is
somewhat cumbersome, thus we do not display it, but concen-
trate on one of the resonances and find the asymptotic form:

Xq ≈ ε2�12

64S2

16(S ′)2 + [4α2 + 15(δα)2]R2
(
ReS(2)

3

)2

(ε1 − ε2)2 + �2
12

. (82)

Note that in contrast to Eq. (81), the height of the resonance
in the present case,

max Xq ≈ ε2(S ′)2

4�12S2
, (83)

is proportional to the square of the energy ε, as can be seen in
Fig. 7.

To complete this section, let us emphasize that the resonant
quantum contribution to the cross correlator is an, essentially-
nonlocal effect. In the limit when the effective interaction
Ec is rendered vanishingly small, the quantum contribution
becomes the only one present that carries the manifestation of
the nonlocal quantum correlation.

C. Analysis of physical conditions
for the quantum noise detection

One may notice that in the results presented in this section
above, we have not included the classical non-Gaussian noise
S3. This is because the effect of this component of noise has
been discussed earlier43 and it is easy to describe: it consists
in a uniform shift of the energies εj → ε̃j = εj + α3

jR
3S3/6

and, in addition to that, a small shift of 3α1α2δαR3S3 applies
to the energy position of the nonlocal resonance ε̃2 − ε̃1.
Since the coupling constants αj � 1, the displacements of the
resonances are much smaller than their widths �j . Moreover,
we are interested in the regions of larger energies εj � �j

where these shifts clearly become irrelevant.
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FIG. 8. The cross section of the resonant peak of the quantum
contribution to the cross correlator as a function of δα = α2 − α1 and
the energy difference ε2 − ε1 illustrates how the peak becomes thinner
and, finally, disappears as δα → 0. The gap width is determined by
the local source noise, that also limits the height of the resonance.
Same units as in previous figures are used.

Another effect that we have studied, but that was for the
sake of simplicity omitted until now, is the influence of the
local noise sources. These local sources may be modeled by
additional fluctuating phases βjφj added to the collective
mode phase αjφ, including respective coupling constants
βj . Introducing corresponding noise powers β2

j S
(j )
loc , one

can find that at the local resonances, these will simply add
up to the classical level broadening �j → �j + β2

j S
(j )
loc .

More important, however, is their contribution to the
classical level broadening of the nonlocal resonance:
�12 → �12 + ∑

j β2
j S

(j )
loc . Thus, if we wish that this does

not significantly wash out the resonance, then, besides of the
requirement of weakness of the local noise β2

j S
(j )
loc � �j , also

the difference δα = α2 − α1 must be kept large enough. The
effect of local noise is best seen in the Fig. 8 as a finite width
gap between the two peaks at δα > 0 and at δα < 0. Certain
optimal value of the coupling constants may be chosen that
maximizes the magnitude of the nonlocal resonance.

We have to determine if there is a range of physical parame-
ters where the quantum contribution (83) to the cross correlator
is greater then the classical resonance contribution (81) and the
classical background (78). In order to do this, we concentrate
again on the nonlocal resonance εj = ε where the quantum
effects are maximal. We recall the expression for the effective
nonlocal interaction strength (9) and our assumptions made
throughout the paper: (i) the level mixing constant is smaller
than the the classical level broadening � � �j , (ii) the circuit
is fast τRC � (�j )−1, and (iii) the zero-frequency expansion
for the spectral functions is valid for energies smaller than
the noise temperature ε < Teff . Demanding that the quantum
contribution is larger then the classical background, Xq >

X
(2)
cl , and using (iii), we obtain the inequalities

Teff > ε >
δα

α

Ec

�
Teff, (84)

where we have substituted S/S ′ = 2Teff . These inequalities are
consistent when Ec/� < 1 or

α2R < �τRC � 1, (85)

i.e., if the coupling is made sufficiently weak. However,
since the background is smooth, one can demand that the
quantum contribution is larger than only the resonant part of
the classical contribution, Xq > X

(2)
cl . This requirement leads

to the condition

Teff > ε >
Ec

�
Teff, (86)

which is weaker than Eq. (85), since � � �. This condition
may also be reformulated as

TeffτRC > 1. (87)

Hence one can see that, although τRC � �−1
j = 1/(α2RTeff),

the above inequality can be easily satisfied, in the weak-
coupling limit 1/α2R � 1.

Finally, we can also compare the cross correlator with one
of the autocorrelators Aj = 〈〈I 2

j 〉〉/(�Ij )2, which can be found
from Eq. (33) and estimated as inverse of the typical transition
rate far from the local resonance Aj ≈ ε2

j /(�2
j�j ). Thus, even

in the resonance, the cross correlator to autocorrelator ratio,
Xq/Aj ∼ α6R2/(δα)2 � 1, is still much smaller than one. In
other words, correlated transitions make only a small fraction
of all transitions.

VII. SUMMARY AND CONCLUSIONS

Motivated by the challenges on the way of measuring
the properties of quantum fluctuations, we have presented
in detail one possible approach to the problem, based on
the cross-correlation technique. We use a concept of the
collective mode, through which fluctuations of the current of
the noise source are transferred to the on-chip detector. The
latter consists of a pair of the two-level systems, monitored
by QPC charge detectors. Thus noise-induced transitions
generate two telegraph processes in the QPC currents, the
cross correlator of which is supposed to be measured. The
cross-correlation technique allows one to reduce the effects
of local noise sources and can provide direct access to the
quantum component of the collective mode noise.

In the weak tunneling regime, the switching of the detectors
can be described in terms of the master equation. The cross
correlator, on the other hand, is found using the extended
master equation formalism, which describes the evolution of
the probability distribution in the mixed space: for the charge,
transmitted through the QPCs and the occupations of the
two detectors’ states. The corresponding generalized transition
matrix includes both the rates of the transitions of the detectors
and the cumulant generators of the currents in the QPCs. The
cross correlator is then obtained from the largest eigenvalue of
the generalized transition matrix. We propose two methods of
the evaluation of this eigenvalue, each method having its own
advantages for different symmetries of the transition matrix in
the cases of the classical and quantum noise.

To find the transition rates, we calculate directly the time
evolution of the detectors state to the fourth order of the pertur-
bation theory. While, typically, this leads to well-known diver-
gences originating from the continuum of the environmental
states, we avoid those divergences in a well controlled way by
using the idea of the separation of time scales. We consider
a time interval much shorter than a characteristic time of the
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evolution of the detectors, and much longer than the correlation
time of the noise that induces transitions. During this time
interval, the solution of the master equation suggests a linear
in time variation of the occupation probabilities, while the
formal perturbation expansion of the transition probabilities,
with respect to the tunneling Hamiltonian, gives rise to the
quadratic in time terms. We observe that the quadratic in time
terms are reducible, and thus cancel by taking the logarithm
of the time-dependent transition matrix. This leads to the final
results for the elements of the transition matrix.

By turn, perturbative calculation of the time evolution of
the transition probabilities requires averaging the products of
two and four vertex operators over the fluctuations of the
collective mode. In the limit of weak coupling of the detectors
to the collective mode, the cumulant expansion has been used,
and the cumulants are expressed through the components of
the zero-frequency expansion of the current noise spectral
functions. Such an expansion is justified in the limit of weak
coupling, because the main contribution to time integrals for
the elements of the transition matrix comes from long times.
Note that the weak coupling resummed in this way, leads to
the classical broadening of the quantum resonances at εj = 0
in the transition rates of each detector separately. But due to
the local nature of these resonances, they do not contribute to
the cross correlator.

However, interaction of the detectors with the collective
mode leads to the effective nonlocal coupling between the

detectors. Already to the second order in tunneling, this
effective coupling contributes to the cross correlator a smooth
background, which is induced by the classical noise, and thus
does not represent interest.

Finally, a more interesting effect appears in the fourth
order of the perturbation theory with respect to tunneling
Hamiltonian. Namely, at the degeneracy points ε1 = ±ε2

of the two detectors, a narrow nonlocal resonance arises.
We show that when the effective coupling between two
detectors is reduced, the main contribution to this nonlocal
resonance arises from the quantum component of the noise
source current. We estimate this effect, compare it to classical
contribution to the cross correlator and propose a range of
parameters where the quantum contribution dominates. We
show that the observation of quantum noise is feasible in
the regime of weak coupling. Moreover, we argue that a
sharp nonlocal resonance from the quantum noise may be
well visible over the smooth background of the classical
contribution, and has a characteristic energy dependence that
can be used to distinguish it from the classical resonance.
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