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Graphene nanoribbons subject to gentle bends
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Since graphene nanoribbons are thin and flimsy, they need support. Support gives firm ground for applications,
and adhesion holds ribbons flat, although not necessarily straight: Ribbons with a high aspect ratio are prone
to bend. The effects of bending on ribbons’ electronic properties, however, are unknown. Therefore, this article
examines the electromechanics of planar and gently bent graphene nanoribbons. Simulations with density-
functional tight-binding and revised periodic boundary conditions show that gentle bends in armchair ribbons
can cause significant widening or narrowing of energy gaps. Moreover, in zigzag ribbons sizable energy gaps can
be opened due to axial symmetry breaking, even without magnetism. These results infer that, in the electronic
measurements of supported ribbons, such bends must be heeded.
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I. INTRODUCTION

Graphene nanoribbons (GNRs) are atomically thin and only
nanometers wide, which makes them the flimsiest materials
in the world. Today such ribbons, acclaimed for promising
applications, are fabricated in many ways,1,2 and investi-
gated for heat conduction,3 edge features,4–6 and electronic
characteristics,7 among many other properties. However, since
the ribbons are flimsy, they need stabilizing support—although
even then ribbons can get folded, torn, rippled, and bent.7–10

Also supports are different, as the interaction with graphene
can be either physical or chemical. In physisorption the
support interaction is weak, graphene’s electronic structure
remains decoupled, and adhesion arises from the dispersive
van der Waals interactions alone.11 In chemisorption the
support interaction is stronger, and the presence of chemi-
cal bonds alters graphene’s electronic structure.12 Therefore
adhesion, responsible for holding ribbons planar, ranges from
ε = 4 meV/atom to 70 meV/atom.12,13 However, fabrication
processes, surface inhomogeneities, pinning, AFM tip manip-
ulation, heat treatment, or mechanical strains can make ribbons
subject to gentle bends, as sketched in Fig. 1(a). Indeed, planar
and gentle bending can be directly seen in scanning tunneling
microscopy experiments.7–10 Distortions like twisting, on
the contrary, are less relevant on supports.14–16 Only gentle
bends are interesting, as sharp bends are structurally unstable
(ribbons would desorb and fold instead).8,10

The purpose of this work, therefore, is to answer the
following simple question: What happens to GNRs’ electronic
structure upon planar bending? It turns out that simple geo-
metrical arguments, together with nearest (and next-nearest)
neighbor tight-binding reasoning, are sufficient for a thorough
understanding of the electromechanics of bent GNRs. These
insights should hence help interpreting imperfect experiments
with these distortion-prone ribbons.

II. SIMULATING PHYSISORBED RIBBONS
WITH PURE BENDING

I modeled GNRs as free standing, without explicit presence
of the support; it was there merely as a planar constraint. The
underlying justification was to model physisorption where

the support and GNR electronic structures are essentially
decoupled. For chemisorption the results are not directly valid.

The focus is on the bent sections of very long ribbons, with
bending viewed as a local property. Apart from bending, planar
ribbons can also stretch and shear; those deformations have
been investigated by conventional methods.17,18 The deforma-
tion mode certainly depends on the experimental conditions,
and especially in short ribbons the strain patterns can become
complicated.19,20 However, ribbons yield easily upon lateral
forcing, and adjust themselves readily to minimum-energy
geometries.21–24 In bent geometries sliding is particularly easy
as the ribbon and the support are mostly out of registry. Long
ribbons pinned at two distant locations, therefore, can remove
high-energy shearing and stretching by sliding, and favor pure
bending.25 I remark that the central results, as discussed below,
will be valid also beyond pure bending.

I modeled the electronic structure by density-functional
tight-binding (DFTB) method,26,27 and the bent geometry itself
by revised periodic boundary conditions.28–30 Atoms in the
simulation cell were from GNR translational cell of length
L, and the associated symmetry operation was a rotation of
an angle α around a given origin, as in Refs. 29 and 31
[see Fig. 1(b)]. This means, therefore, that the simulated
systems were effectively GNR hoops, containing hundreds of
thousands of atoms. Since the bends are gentle and the charge
transfer with physisorption usually small, it’s reasonable to
assume that simulation describes the properties of bends in
GNRs in a local sense.5 At any rate, regarding the bending,
simulations were exact and the sole approximation was the
DFTB method itself.

Throughout this article I will use the dimensionless
parameter

� = W

2R
(1)

to quantify the amount of bending.32 Then, to simulate GNR
of width W with bending close to �′, I chose α = L/R′, with
R′ = W/(2�′) as the initial guess for the radius of curvature,
and optimized the structure. The only fixed parameter was α, so
R and � were outcomes of the optimization, although R ≈ R′
and � ≈ �′. Here I remark that, because α’s are small (down
to 10−3 radians), the optimization was arduous and required
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FIG. 1. (Color online) (a) Supported graphene nanoribbon
sketched for gentle, planar bends. (b) The red (dark gray) atoms
constitute the unit cell, simulated with revised periodic boundary
conditions; the symmetry operation is the rotation of an angle
α around a given origin (not shown). The ribbon’s width W is
defined by the outmost carbon atoms and R is the mean radius of
curvature. The bending parameter of Eq. (1), here � = 0.1, is also
equal (approximately) to the compressive strain at the inner edge
(εin = −�) and to the tensile strain at the outer edge (εout = �).

maximum force criteria as small as fmax < 10−5 eV/Å (look
at Ref. 30 to see why).

I conducted such simulations for hydrogen-passivated arm-
chair ribbons (N -AGNRs) and zigzag ribbons (N -ZGNRs),
with N = 5 . . . 40, with W up to 84 Å, with 74 different
GNRs in total (see Ref. 33 for GNR notations). Each GNR
was optimized for ten bendings between � = 0 and � = 0.1.
The reason for � = 0.1 as the upper limit for bending that I
term “gentle” will be clarified later. Finally, the number of κ

points was 50 Å/L for geometry optimization and 500 Å/L

for electronic structure analysis.

III. BENT RIBBONS GET STRETCHED

Let us now turn our attention to the results. Prior to
discussing electronic properties, however, let us first look at
energy and geometry. The energy in bent ribbons, as hinted by
nanoshell elasticity,34 comes chiefly from axial in-plain strain.
A quick estimate yields energy per unit area as E/A = 1

6k�2,
where k = 25 eV Å−2 is graphene’s in-plane modulus.35 This
simple estimate is in fair agreement with the simulations, as
shown in the inset of Fig. 2. Only the narrowest ribbons deviate
from this estimate, for two reasons: First, the comparison
of W between atomic and continuum methods is inherently
ambiguous; for small W this ambiguity is emphasized. Second,
in narrow ribbons the value of k is affected by distinct
elastic properties near the edges. While I could remedy these
deficiencies by improving the model, my main interest is not
in the minutiae of narrow ribbons, but in the wider ribbons and
their universal trends.

If we set the adhesion energy ε equal to the strain energy,
we get

�ε =
√

6ε/kAc (2)

as a rough estimate for the limit where the ribbon rather desorbs
and straightens than remains adsorbed and bent on the support.
The maximum adhesion ε = 70 meV/atom yields �ε = 0.08,
justifying the upper limit � � 0.1 for a “gently” bent ribbon,
even though �ε really depends on the substrate. This is only
an order-of-magnitude estimate, as fluctuations and finite-size

FIG. 2. (Color online) The cross-ribbon averaged strain εavg as
a function of bending parameter � for AGNRs (solid lines) and for
ZGNRs (dashed lines); the bold dashed line is an analytical estimate.
Inset: Elastic energy density as a function of bending; the bold dashed
line is an analytical estimate, Eq. (4). In both plots the line width
is proportional to W . Hence both in εavg and in E/A the largest
deviations are for the narrowest ribbons.

effects can cause ribbons to desorb earlier. Direct experimental
evidence8 shows how GNRs on SiO2 bend up to � ≈ 0.01—
still nearly half the simple-minded limit of �ε ≈ 0.025 given
by ε ≈ 6 meV/Å2.36

Given the definition for �, the strain on the ribbon’s inner
edge is εin ≈ −� and on the outer edge εout ≈ �. With strains
around 10% the bond anharmonicities begin to emerge, and
stretching becomes cheaper, compression more expensive.
This implies that the neutral line moves away from the origin
(R increases) and the ribbon stretches. We can take this
effect into account by a strain-dependent in-plane modulus,
k(ε) = k0(1 − γ ε). Then, by minimizing the total energy per
unit length ∫ R+W/2

R−W/2

1

2
k0(1 − γ ε)ε2dr (3)

with respect to R, we obtain the cross-ribbon averaged strain
as

εavg = 1
2γ�2. (4)

This analytical estimate, given the value γ = 1.7 obtained
from DFTB simulations of stretched GNRs, agrees well with
simulations, as shown in Fig. 2. The largest deviations occur
again for the narrow ribbons, albeit with opposite tendencies
for AGNRs and ZGNRs due to different edge morphologies.

IV. ARMCHAIR RIBBONS ARE DOMINATED
BY STRETCHING

Equipped with these geometrical notions, let us now turn
our attention to the electronic properties, starting with AGNRs.
The inset in Fig. 3(a) shows the energy gaps for the known three
families of N -AGNRs, defined by q = mod (N,3).33,37 The
gaps scale as Eg ≈ βW−1, where β ≈ 13 eV Å for q = 0,1
(for q = 2 the scaling is a bit different). Figure 3(a) shows
how these gaps respond to bending: They widen or narrow
with the same q-dependent families. Deviations occur only
for the narrowest ribbons.

These trends can be understood by the following model.
The energy gaps in stretched q = 0,1 AGNRs depend on the
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FIG. 3. (Color online) Electronic structure of bent AGNRs.
(a) Bending-induced gap changes Eg(�) − Eg(0) for the three q

families of AGNRs. Line width is proportional to W ; dashed lines
are estimates for q = 0,1. Inset: Gaps in straight AGNRs. (b) Wave
functions for the frontier orbitals in straight 16-AGNR (q = 1):
the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO). (c) Density of states for
16-AGNR with straight (� = 0.0), bent (� = 0.1), and stretched
(ε = 1

2 γ (0.1)2 = 0.85%) geometries.

strain as 	E
straight
g ≈ (−1)qεδ with δ = 12 eV (fit for q = 2 is

just more complex).17,38 The origin for this strain dependence
is illustrated in Fig. 3(b) for 16-AGNR with q = 1: The highest
occupied orbital is bonding and the lowest unoccupied orbital
is antibonding along the ribbon’s axis, and therefore stretching
tends to narrow the gap (for q = 0 AGNRs the situation is the
opposite and for q = 2 intermediate).39 Next, if we pretend, in
effect, that the bent AGNRs experience only the average axial
strain (even if the strain is uneven), and thus juxtapose ε with
εavg from Eq. (4), we get

	Eg(�) ≈ 1
2 (−1)qγ δ�2. (5)

Figure 3(a) plots these estimates for q = 0 and q = 1 AGNRs
by the dashed lines. The fair agreement suggests that the
electronic structure of AGNRs subject to bending is domi-
nated by the cross-ribbon averaged strain. Similar physics
have been observed previously in bent carbon nanotubes
and twisted GNRs.15,31,39,40 Hence the argument is easily
generalized to combined bending and stretching, where the
electronic structure is modified by the average strain εstretch +
1
2γ�2.15

These trends, as given by four-valence DFTB, are repro-
duced by a π -only tight-binding Hamiltonian

H = −t

n.n.∑
i,j

c
†
i cj − t ′

next-n.n.∑
i,j

c
†
i cj , (6)

with the nearest-neighbor (n.n.) hopping parameter

t(r) = 2.6 eV − 5.8 eV/Å (r − 1.42 Å), (7)

and with the next-nearest neighbor hopping equal to zero (t ′ =
0, not shown). Figure 3(c) shows further that the stretching
analogy extends beyond energy gaps, as the entire density of
states (DOS) is well described by the stretched geometry. This
carries the average strain analogy also for optical transitions, as
shown earlier.31 Note that, if gauged through the relative gap
change |	Eg/Eg| ≈ 0.8 Å

−1
W�2, the influence of bending

becomes more important as W increases.

V. ZIGZAG RIBBONS ARE DOMINATED
BY BROKEN SYMMETRY

Let us now leave AGNRs and turn our attention to the
electronic properties of ZGNRs. First I have to remind that, for

(a)

(b)

(c)

FIG. 4. (Color online) Electronic structure of bent ZGNRs.
(a) Band structure of 10-ZNGR with straight and bent geometries.
For the straight ribbon, having a reflection symmetry, the dashed lines
denote symmetric and solid lines denote antisymmetric states under
reflection. (For the bent ribbons no such distinction can be made.)
(b) Wave functions of the frontier orbitals in straight 10-ZGNR:
highest occupied molecular orbital (HOMO, symmetric) and lowest
unoccupied molecular orbital (LUMO, antisymmetric). (c) Density
of states in straight and bent 10-ZGNR. The dashed lines are from
a next-nearest-neighbor tight-binding model [Eq. (6) with Eq. (8)].
Inset: Gaps for all ZGNRs plotted as a function of � − �crit (Eg = 0
when � < �crit).
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straight ZGNRs as such, the spin-parallel DFTB simulations
are dubious, given the prediction for a spin-polarized ground
state.33 The magnetic structure should arise when the curious
flat bands near the Fermi level41 [left panel of Fig. 4(a)]—the
famous edge states—spin polarize, lift degeneracies, and open
a gap (not shown).33 This way spontaneous magnetization can
stabilize the electronic structure.

It has been shown that, unlike in AGNRs,38 the electronic
structure in ZGNRs is unaffected by stretching.17,42 Therefore,
after discovering above the average-strain argument with
AGNRs, it’s natural to guess that bending would leave ZGNRs’
electronic structure unaffected. The right panel of Fig. 4(a)
shows, however, that bending can open an energy gap in
ZGNRs. That is, electronic structure is stabilized by sheer
bending, and the cause for magnetic spin polarization is lost.
Note how the band structure changes only near the Fermi level,
while other bands remain stable.

The mechanism of the gap opening is related to broken
reflection symmetry, as clarified by the following three-step
reasoning. First step: The bands are called “flat” because they
have small dispersion. In the absence of next-nearest-neighbor
hopping (t ′ = 0), the Hamiltonian (6) gives edge states whose
dispersion and energy are essentially zero, independent of
t . This is illustrated in Fig. 4(b), where flat band electrons
appear localized to next-nearest-neighbor sites, separated by
vacancies. Therefore the t in Eq. (7), even if strain dependent,
doesn’t affect the flat bands—splitting and dispersion hence
require next-nearest-neighbor hopping t ′. Second step: Fitting
t ′ to strained GNRs by DFTB gives

t ′(r) = 0.25 eV − 0.6 eV Å (r − 2.46 Å). (8)

The Hamiltonian (6), with hoppings (7) and (8), reproduces
the electronic structure fairly well, as shown by the DOS for
10-ZGNR in Fig. 4(c). [Pure stretching leaves DOS intact
(not shown).] Third step: the flat band energies (also the band
dispersion) are proportional to t ′ and hence proportional to
edge strain via Eq. (8). Upon bending, the reflection symmetry
breaks and states localize on either of the edges with strain
difference εout − εin = 2�; opposite edges hence get unequal
hoppings 	t ′ = t ′out − t ′in ∝ �. Because energy splitting is
proportional to 	t ′, it is also proportional to �. This is the

mechanism by which bending splits the flat bands with direct
proportionality to �.

As mentioned above, since t ′ gives flat bands a small
dispersion, splitting does not open the gap immediately. When
W increases, the span of the flat region in kz space increases,
and gap opening requires larger splitting. A fit to all ZGNRs
yields a critical value for opening a gap as �crit ≈ W/200 nm
(or Rcrit ≈ 100 nm for all W ), yielding the energy gap as

EZGNR
g ≈ 4 eV(� − �crit). (9)

The gaps, displaying values up to 0.4 eV, are plotted in the
inset of Fig. 4(c).

VI. CONCLUSIONS

The physics in AGNRs and ZGNRs hence appear quite
different: AGNRs are governed by average strain, whereas
ZGNRs are governed by broken reflection symmetry. The
effects of broken symmetry on AGNRs or average strain
on ZGNRs surely exist, but they are just less important. In
ZGNRs bending can have particular impact on transport, since
the localization of edge states depends on the direction of
bending; if the ribbon has bends both to the left and to the right,
the current-carrying electrons need to jump from one edge to
the other, suggesting width-dependent resistivity.43 Although
it’s plausible that bent ZGNRs indeed acquire gaps and turn
nonmagnetic, spin-polarized calculations would be opportune,
even if the existence of magnetism has been disputed also for
the straight ribbons.44

I obtained similar results also for unpassivated GNRs,
observing similar phenomena. Thus it appears that these clear
trends arise from simple physics with plausible explanations,
and it’s unlikely that, say, higher level electronic structure
methods should change the picture. I believe, therefore, that
these general trends are helpful enough to serve as rules of
thumb to aid GNR device fabrication and analysis.
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