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We investigate theoretically the PbTe/Pb1−xSnxTe heterostructure grown in the [111] direction, specifically a
quantum wall (potential step of width d) of PbTe embedded in Pb1−xSnxTe. For x large enough to lead to band
inversion and for large d , there are well-known gapless interface states associated with four L valleys. We show
that for d ≈ 10 nm, the three pairs of states from oblique valleys strongly couple and become gapped with a gap
∼10 meV. On the other hand, the interface states from the [111] valley are essentially uncoupled, and they retain
their helical character, remaining analogous to states at surfaces of thin layers of three-dimensional topological
insulators. This opens up a possibility of studying the physics of two-dimensional helical Dirac fermions in
heterostuctures of already widely studied IV-VI semiconductors.
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I. INTRODUCTION

Much attention has been recently devoted to topolog-
ical insulators (TIs), materials in which the topology of
the bulk band structure guarantees the existence of robust
(against nonmagnetic disorder) spin-nondegenerate (helical)
edge/surface states.1,2 TIs are essentially a subclass of narrow-
gap semiconductors since their band gaps must be smaller
than the typical energy scale of relativistic corrections to their
band structures (<1 eV). In fact, the first two-dimensional
(2D) TI was realized3 in a quantum well of HgTe/HgCdTe,
i.e., a heterostructure based on well-known compounds of
narrow-gap semiconductors. Helical edge modes have also
been recently reported in a heterostructure of InAs/GaSb.4

Part of the interest in TIs stems from the fact that
they represent a new topological phase of noninteracting
electrons: the TI character of a material is its bulk property,
nontrivially encoded in the wave functions of the occupied
(valence-band) states. However, it is the presence of the helical
edge/surface states which leads to observable consequences.
In three-dimensional strong (weak) TIs, they consist of an
odd (even) number of spin-nondegenerate Dirac cones,5 and
many interesting effects have been predicted to occur when
these states become gapped due to a perturbation,1,2 e.g.,
due to proximity to a superconductor6 or a ferromagnet.7,8

The superconducting-proximity effect was predicted to lead
to the creation of Majorana excitations at the surface of a
TI6 while covering the surface with a magnetic insulator was
predicted to lead to new magnetoelectric effects.7,8 By now
many materials have been shown to be 3D TIs (see Ref. 1 and
references therein) with Bi2Se3

9 and Bi2Te3
10 gathering the

most attention due to the feature of having a single Dirac cone
at the surface. Despite recent progress in the gating of thin
layers of Bi2Se3,11–13 it would be desirable to investigate the
helical surface states in a well-known semiconductor system
for which the growth and nanostructure processing are already
mastered. One such platform is strained bulk HgTe.14 In this
article we propose to focus on heterostuctures of compound
semiconductors from the IV-VI lead chalcogenide family,
(Pb,Sn)Te.15

The superlattices of PbTe/Pb1−xSnxTe (with x � 0.18)
were thoroughly characterized.16 Due to the huge dielectric
constant of PbTe, mesoscopic structures of PbTe/PbEuTe

exhibit very robust ballistic transport properties.17–19 Both
Mn and Eu can be incorporated into PbTe, and exchange
coupling between their spins and the band carriers was
studied.20 Furthermore, there exist heterostructures of PbTe
and europium chalcogenides,21,22 such as EuSe and EuTe,
which are magnetic semiconductors with rich phase diagrams.
Finally, a superconducting proximity effect has been recently
shown to exist at In-PbTe junctions.23 All these features
suggest that IV-VI-based heterostructures, if they host gapless
helical states, could be good candidates for investigations of
phenomena related to TIs.

When changing the Sn content in a Pb1−xSnxTe alloy,
band inversion between the topmost valence band and the
lowest conduction band occurs at x ≈ 0.37. In an unstrained
sample this happens simultaneously at the four L points at
the edges of the Brillouin zone. Since the topological class of
the band structure changes at the instances of local band gap
closing24 after an even number of local band inversions, this
class remains the same. In fact, both PbTe and PbSnTe are
in a topologically trivial class5 although very recently it was
argued25 that SnTe is a topological crystalline insulator,26 i.e.,
that it supports an even number of surface states for specific
surface orientations. However, we focus here on the mutual
band inversion between PbTe and PbSnTe, which leads to the
existence of interfacial helical states, predicted theoretically
25 years ago.27–30

Such an interface of PbTe and Pb1−xSnxTe, at which four
Dirac cones appear, is analogous to the surface of a weak TI.
Recent research on weak TIs suggests that these cones are
in fact protected against time-reversal invariant perturbations
as long as these are not periodic and commensurate with the
lattice spacing,31,32 a situation which is rather improbable at
an epitaxial interface of two materials with the same lattice
structure. It would, however, be even more interesting if one
could obtain a single gapless helical state at an interface.
As we show in this article, this can be instituted via a
confinement effect in a properly designed PbTe/Pb1−xSnxTe
heterostructure grown in the [111] direction. This happens
due to an anisotropic energy structure near the four L points,
leading to a much stronger coupling of oblique valley states
from opposite interfaces compared to the [111] valley along
the growth direction. Note that a similar coupling opens up a
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gap in a thin layer of a TI.33–36 With a proper choice of strain,
composition, and layer width, we obtain practically gapless
helical states for the [111] valley with Dirac points located in
the finite width-induced gap in the remaining three valleys.

The paper is organized in the following way. In Sec. II we
describe the k · p Hamiltonian at the L-point band extrema in
PbSnTe, and we note its close relation to the k · p Hamiltonian
describing the states at the � point in Bi2Se3-type materials.
In Sec. III we review the properties of helical states existing at
the PbTe/Pb1−xSnxTe interface, and we reexpress some known
results27–30 in a manner that shows their complete analogy
with the surface states of TIs. Then, in Sec. IV we present
the main results of the paper, the calculation of the electronic
structure of a finite-width PbTe/Pb1−xSnxTe heterostructure.
There we present our prediction that in a properly designed
heterostructure, one can have a practically gapless single Dirac
cone with its Dirac point located in the gaps of the states from
the other valleys. Finally, in Sec. V we discuss a few practical
issues related to the experimental realization of the proposed
heterostructure.

II. THE HAMILTONIAN

The electronic states near the L-point extrema in
Pb1−xSnxTe are described by Dimmock’s Hamiltonian.15,16

Since we focus on heterostructures grown in the [111] direc-
tion, we choose the z axis parallel to [111]. The Hamiltonian
in the basis of 1√

2
(X − iY )|↑〉, 1√

2
(X + iY )|↓〉, 1√

2
(SX −

iSY )|↑〉, and 1√
2
(SX + iSY )|↓〉 (where SX,Y transform like X,Y

but do not change sign under reflection) is then given by

Ĥ = ε(k) +
(M(k) σ̂ · Q

σ̂ · Q −M(k)

)
+ ĤS, (1)

where ε(k) = V (x) + D1k
2
z + D2k

2
⊥, M(k) = �(x) + B1k

2
z +

B2k
2
⊥, and Q = P̂0 · k. For the [111] valley, P̂0 is a matrix

with (v⊥,v⊥,v‖) on the diagonal. We stress that a realistic
large ratio of v⊥/v‖ is crucial for our considerations. For
remaining oblique valleys we replace P̂0 with P̂ = ŜP̂0Ŝ−1,
where Ŝ is a transformation matrix between the coordinate
systems associated with the oblique valley {êα′ }, with êz′ along
the valley direction, and {êα}, with êz along the growth axis:
(êx ′ ,êy ′ ,êz′ ) = (êx,êy,êz) · Ŝ.

We take �(x) = 0.095 − 0.26x eV, corresponding to the
gap inversion at xc ≈ 0.37, and V (x) = 0.125x eV.16 For
the remaining parameters we take D1(2) = 1.65(9.25) eV Å2,
B1(2) = 6.15(49.35) eV Å2, v‖ = 1.44 eV Å, and v⊥ =
4.76 eV Å, and we neglect their composition dependence
which is, if any, very weak in the considered regime of
x < 0.5. Fitting of the Hamiltonian parameters to the results of
nuclear-magnetic-resonance37 measurements in Pb1−xSnxTe
with x up to 0.6 showed no changes in the v⊥ or v‖ parameters
while the x dependence of B1(2) and D1(2) was inferred to be
very weak. In other works,38 a constant v⊥ was inferred for x

up to 0.16 while v‖ was seen to change by an amount which
extrapolates to about a 16% change for x = 0.46 compared to
PbTe. Experimental data on the v⊥/v‖ ratio collected in Ref. 39
also suggest a very weak dependence of these parameters on
the Sn content up to x ≈ 0.5.

The strain described by tensor ε̂ is accounted for by
ĤS = diag{Dc

dTrε̂ + Dc
uεzz,D

v
dTrε̂ + Dv

uεzz} in which the two
entries correspond to 2 × 2 blocks. Note that ĤS gives
strain-dependent corrections to � and V . The acoustic-
deformation potentials are taken again as composition inde-
pendent: Dc

d = −1.09 eV, Dv
d = −2.23 eV, Dc

u = 2.07 eV, and
Dv

u = 2.62 eV.16 The lattice constants of PbTe (SnTe) are taken
as a0 = 6.454 Å(6.313 Å).

The above Hamiltonian is written in a form which allows
one to immediately see that after a basis reordering it becomes
the same as the recently studied model k · p Hamiltonian
describing the states near the � point in the Bi2Se3 family of
materials.40 There, the TI phase occurs33,40 when � · B1,2 <

0, i.e., when the conduction and valence bands at the �

point become inverted. As mentioned before, in unstrained
Pb1−xSnxTe the inversion occurs simultaneously at four L

points, and the bulk phase remains topologically trivial.

III. HELICAL NATURE OF INTERFACE STATES

We first analyze interface bound states (IBS) local-
ized at two decoupled heterointerfaces of a very wide
PbTe/Pb1−xSnxTe heterostructure grown in the [111] direction.
We assume that for |z| < d/2 we have the values of � > 0 and
V , corresponding to PbTe, while �′ < 0 and V ′ correspond
to Pb0.54Sn0.46Te. From the point of view of band lineup, this
structure is in fact a finite-width potential step—a quantum
wall (QWa) instead of a quantum well (QWe).

We use the effective-mass approximation and replace kz

by −i∂/∂z in Eq. (1). As long as the intervalley coupling
(due to alloy disorder or atomic-scale-interface reconstruction)
can be neglected, the presence of mutual-band inversion at
the interfaces guarantees the existence of helical Dirac-like
IBS.27,30 The dispersion and the spin structure of IBS is
insensitive to the exact profile of the interface27,30 with only
the z dependence of wave functions being affected in the
region of interdiffusion. For simplicity we assume an abrupt
interface28,29,41 and use the boundary conditions of continuity
of the wave function and its derivative (the latter only when
we consider nonzero k2 terms). Note that these boundary
conditions are sufficient in the case when, as we assume, the
k · p Hamiltonian’s parameters v⊥, v‖, D1,2, and B1,2 are the
same for both compounds.

Since our numerical calculations show that for realistic
parameters the k2 terms are of minor quantitative importance,
we present much simpler analytical results obtained by
neglecting them. We also focus on results for the [111]
valley, which we label with superscript α (with β denoting
the oblique-valley results). The energies of the IBS are
Eα

±(k⊥) = E0 ± v⊥k⊥ D
�−�′ , where D2 = (� − �′)2 − (V −

V ′)2 and E0 = �V ′−V �′
�−�′ . (In oblique valleys the dispersion

is, of course, anisotropic in k⊥.) The eigenvectors are the
4-spinors ψ̂

L/R
± (k⊥) with L/R denoting the left (z = −d/2)

and the right (z = d/2) interfaces, respectively, multiplied
by appropriate functions f

L/R
± (z) describing the exponential

decay away from a given interface. The inverse-decay lengths
are given by

χα
± = 1

v‖

(
D �

� − �′ ± ηv⊥k⊥

)
(2)
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in the middle layer and χ ′
∓ = χ±(� ↔ �′) outside with η ≡

(V − V ′)/(� − �′). Let us note that in the oblique valley case
χ

β
± acquire an imaginary part at finite k⊥; however, what is

crucial is the fact that at k⊥ = 0, χ
β

0 is given by Eq. (2) with

v‖ replaced by 1
3

√
8v2

⊥ + v2
‖ .

The two-dimensional subspaces of IBS at the two interfaces
are spanned by 4-spinors {φ̂L/R

↑ ,φ̂
L/R

↓ } for which the subscripts
signify that their components correspond to well-defined spin
states although they remain linear combinations of different
orbitals. Defining γ ≡ arctan

√
(1 + η)/(1 − η), we can write

them as φ̂
L/R

↑ = [∓i cos γ,0, sin γ,0]T and φ̂
L/R

↓ = [0, ±
i cos γ,0, sin γ ]T . Using these basis states, we can write the
solutions of the 4-spinor parts of the IBS: ψ̂L

±(k⊥) = (±iφ̂L
↑ +

eiθ φ̂L
↓ )/

√
2 and ψ̂R

± (k⊥) = (φ̂R
↑ ± ieiθ φ̂R

↓ )/
√

2, where eiθ =
(kx + iky)/k⊥.

The helical nature of these states can be seen by calculating
the expectation values of spin operators: 〈ψ̂L

±|σ̂x |ψ̂L
±〉 =

∓ cos 2γ sin θ and 〈ψ̂L
±|σ̂y |ψ̂L

±〉 = ± cos 2γ cos θ , i.e., the spin
vector is perpendicular to k⊥, pointing clockwise (anticlock-
wise) for the negative (positive) energy branch. The pattern on
the R interface is reversed. More generally,42 we can write an
effective surface Hamiltonian in the {φ̂L/R

↑ ,φ̂
L/R

↓ } basis:

Ĥ
L/R

surf = ±v⊥
D

� − �′ (σ̃xky − σ̃ykx) (3)

with the σ̃ Pauli matrices operating in the respective two-
dimensional spaces. Let us remark that the spin pattern for
states from the oblique valleys is more complicated with
nonzero out-of-plane 〈σ̂z〉 polarization.
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FIG. 1. (Color online) The solid line is the dispersion of the [111]-
valley interface bound states for the PbTe/Pb0.54Sn0.46Te quantum
wall grown in the [111] direction with PbTe widths d of 12 and
100 nm (undistinguishable), plotted as a function of the in-plane k

vector. The dashed lines are the bulk band edges for Pb0.54Sn0.46Te.
(The band edges of PbTe are outside of the shown energy region.)
There is a gap of 0.2 meV opened at the Dirac point for d = 12 nm
(see Fig. 3).

All these results show complete analogy with the surface
states in TIs such as Bi2Se3.40 The difference is the existence
of four pairs of IBS with the states from all the valleys
coexisting at a given energy in the bulk gap, showing that the
PbTe/Pb1−xSnxTe heterointerface is analogous to the surface
of a weak TI.

IV. THE EFFECT OF FINITE QUANTUM-WALL WIDTH

We assume that the lattice mismatch between PbTe and
Pb0.54Sn0.46Te is shared in the 4 : 1 ratio between the two ma-
terials (i.e., assuming a common lattice constant corresponding
to the 0.37 content of Sn). This requires an engineering of strain
distribution by, e.g., the choice of a substrate. If we neglect the
k2 terms, the calculation is fairly straightforward.28,29,41 With
the k2 terms and for a general valley direction, we have to
resort to solving the problem numerically.

In Fig. 1 we show the energy dispersion of the [111]-valley
states formed in the QWa. For both widths of d = 12 and
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FIG. 2. (Color online) The solid line is the dispersion of the [1̄11]-
valley IBS for the PbTe/Pb0.54Sn0.46Te quantum wall with a PbTe
width d of (a) 100 nm and (b) 12 nm. The dashed (dotted) lines are
the bulk band edges for Pb0.54Sn0.46Te (PbTe). The gap of ∼10 meV
opens for d = 12 nm.
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FIG. 3. (Color online) (a) The energy gaps of the IB-derived states
from the [111] valley and the three oblique valleys. The solid lines are
the results of an exact calculation while the dashed lines are obtained
with Eq. (4), which neglects the k2 terms in the Hamiltonian. (b)
Band-edge energies for the IB-derived states. The Dirac point of
the [111]-valley states is located in the gap of the states from the
remaining valleys.

100 nm, the IBS from the two interfaces remain practically
uncoupled: the gap opened for d = 12 nm is only ≈0.2 meV.
On the other hand, as we show in Fig. 2 with decreasing
d, a sizable gap opens for the interface bound (IB) derived
states (formed due to the coupling of IBS from the opposite
interfaces) in the oblique valleys, and it is ∼10 meV for d = 12
nm. As shown in Fig. 3(a) , the gaps E

α/β
g are visibly different.

Thus, for most practical purposes (e.g., for experiments done
at temperatures ∼1 K) in a structure with d ≈ 10 nm, the
dispersion of the states from the [111] valley can be considered
gapless while the states from the oblique valleys are gapped.
Let us also stress that at energies |E±(k⊥) − E0| � Eg , the
eigenstates are essentially the L/R-interface bound states (the
description in terms of massive Dirac fermions35 is relevant
only at small k⊥). Furthermore, as shown in Fig. 3(b) for
the chosen QWa, the [111]-valley states are in the gap of the
oblique valley solutions so that disorder with a typical energy
scale smaller than this gap cannot mix the states from the [111]
valley with the others. Thus, for an epitaxial interface of good

quality we expect that the above-described system is basically
equivalent to a layer of material such as Bi2Te3 or Bi2Se3 with
the only difference being the smaller size of the gap within
which the surface states exist (∼10 meV vs ∼0.3 eV).

The above results can be understood using a calculation
with the k2 terms neglected and d assumed to be large. We
orthogonalize the IBS and form their symmetric and anti-
symmetric combinations, approximating the exact solutions
in the large-d limit. We calculate the gap by evaluating the
matrix elements of the QWa Hamiltonian between them. The d

dependence of E
α,β
g comes from exponential decay of the IBS

in the step region, described by inverse lengths χ
α,β

0 (calculated
for k⊥ = 0) given in Eq. (2) and below. In this way we obtain
the band gaps (see also Ref. 28):

Eα/β
g = 4D2 |��′|

(� − �′)3
exp(−χα/βd). (4)

The predictions of this formula agree well with the results of
the full calculation shown in Fig. 3(a).

V. DISCUSSION

The above choice of a heterostructure was dictated by
the strain dependence of the energies of band extrema in
Pb1−xSnxTe. As shown in Fig. 4 when the lattice constant of
Pb1−xSnxTe is adjusted to the PbTe constant in a heterostruc-
ture grown in the [111] direction, with the realistic values of
deformation potentials16 we obtain that the gaps at the [111]
L point and the remaining ones do not overlap. One can see
then that in the Pb1−xSnxTe quantum well (with PbTe being
the barrier), it is practically impossible (without applying a
compressive strain) to obtain a Dirac point of the [111]-valley
IBS within the gap of the oblique valley IB-derived states.
For the QWa with material parameters adopted here, we only
require a modest amount of additional tensile strain, which
could be provided at low temperatures by BaF2 substrate
typically used for IV-VI compounds.16 Additional tuning of
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FIG. 4. (Color online) The energies of the extrema of the
conduction and valence bands for the Pb1−xSnxTe lattice matched
to PbTe (grown in the [111] direction), calculated using Eq. (1) as a
function of x.
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band-edge offsets can also be obtained by using quaternary
alloys and replacing a fraction of Te with Se.

Note, however, that if band-inverted Pb1−xSnxTe itself
possesses gapless surface states,25 which would then appear at
its interfaces with the substrate and with the gate covering
the structure, then the choice of a compressively strained
Pb1−xSnxTe/PbTe quantum well will be more experimentally
practical. In such a case, apart from the IB-derived states we
obtain also the “normal” quantum-well states with energies
outside of the gap of Pb1−xSnxTe. The behavior of gaps of
IB-derived states as a function of d is analogous to the QWa
case, and with the same strain distribution as used before, i.e.,
strain shared in a 4:1 ratio between PbTe and Pb0.54Sn0.46Te,
the Dirac point of the [111]-valley states can be located in the
gap of the remaining IB-derived states (and, of course, also in
the gap of all the normal quantum-well states).

Let us note that a result qualitatively the same as shown in
Fig. 4 can be obtained for Pb1−xSnxTe uniaxially strained in
the [111] direction. The nonoverlapping of band gaps in the
range of x corresponding to the inverted oblique valley and
noninverted [111] valley implies that applying such a strain,
as proposed in Ref. 5, cannot change Pb1−xSnxTe into a strong
TI but into a topological semimetal.

Another possible practical obstacle in the investigation of
helical states in the proposed structure is the issue of p-type
self-doping43 of Pb1−xSnxTe with x > 0.2. This is analogous
to the situation in materials from the Bi2Se3 family, the mem-
bers of which possess large bulk conductivities when as-grown
(see, e.g., Ref. 44). At x = 0.25, holes were compensated by
indium doping,45 but it remains to be investigated how effective
this would be at x ∼ 0.4 as considered here.

VI. CONCLUSIONS

We have calculated the band structure of a heterostructure
based on PbTe and band-inverted Pb1−xSnxTe in which
PbTe forms a quantum wall of finite thickness d. The
normal quantum-well states are then absent, and the localized
solutions appear due to the mutual band inversion between
the constituent materials. For very large d these solutions
correspond to four pairs of Dirac cones located at the two
interfaces.27–30 As the QWa grown in the [111] direction is
narrowed, these states become gapped due to the overlap of
wave functions localized on the two interfaces. We have found
that the opened gap is at least two orders of magnitude larger
for states associated with three oblique valleys compared to
the states from the [111] valley. Thus, after properly choosing
the QWa composition, its width, and the strain distribution in
it, one can obtain a practically gapless pair of helical Dirac
states from the [111] valley with their Dirac points located
in the gaps of the states from the other valleys. The IV-VI
heterostructure can then serve as an analog of a thin layer of a
strong topological insulator.
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